Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 263(2): 257-269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613194

RESUMO

Genomic rearrangements of the neurotrophic receptor tyrosine kinase genes (NTRK1, NTRK2, and NTRK3) are the most common mechanism of oncogenic activation for this family of receptors, resulting in sustained cancer cell proliferation. Several targeted therapies have been approved for tumours harbouring NTRK fusions and a new generation of TRK inhibitors has already been developed due to acquired resistance. We established a patient-derived LMNA::NTRK1-rearranged soft-tissue sarcoma cell model ex vivo with an acquired resistance to targeted TRK inhibition. Molecular profiling of the resistant clones revealed an acquired NF2 loss of function mutation that was absent in the parental cell model. Parental cells showed continuous sensitivity to TRK-targeted treatment, whereas the resistant clones were insensitive. Furthermore, resistant clones showed upregulation of the MAPK and mTOR/AKT pathways in the gene expression based on RNA sequencing data and increased sensitivity to MEK and mTOR inhibitor therapy. Drug synergy was seen using trametinib and rapamycin in combination with entrectinib. Medium-throughput drug screening further identified small compounds as potential drug candidates to overcome resistance as monotherapy or in combination with entrectinib. In summary, we developed a comprehensive model of drug resistance in an LMNA::NTRK1-rearranged soft-tissue sarcoma and have broadened the understanding of acquired drug resistance to targeted TRK therapy. Furthermore, we identified drug combinations and small compounds to overcome acquired drug resistance and potentially guide patient care in a functional precision oncology setting. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Rearranjo Gênico , Lamina Tipo A , Mutação , Neurofibromina 2 , Inibidores de Proteínas Quinases , Receptor trkA , Sarcoma , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptor trkA/genética , Receptor trkA/antagonistas & inibidores , Receptor trkA/metabolismo , Sarcoma/genética , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Sarcoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Piridonas/farmacologia , Benzamidas/farmacologia , Pirimidinonas/farmacologia , Sirolimo/farmacologia , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/tratamento farmacológico , Neoplasias de Tecidos Moles/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sinergismo Farmacológico , Indazóis
2.
Mol Biol Rep ; 51(1): 652, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734792

RESUMO

OBJECTIVE: To compare the mRNA expression of placental iron transporters (TfR-1 and FPN), markers of placental vascularization (VEGF and sFLT1) and marker of structural integrity (LMN-A) in term women with and without iron deficiency anemia. MATERIALS AND METHODS: A total of 30 pregnant women were enrolled; 15 cases of iron deficiency anemia (Hb 7-10.9 gm/dL) and 15 gestational age matched healthy controls (Hb ≥ 11 gm/dL). Peripheral venous blood was collected for assessment of hemoglobin levels and serum iron profile. Placental tissue was used for assessing the mRNA expression of TfR-1, FPN, VEGF, sFLT-1 and LMN-A via real time PCR. RESULTS: Placental expression of TfR-1, VEGF and LMN-A was increased in pregnant women with anemia compared to healthy pregnant controls. Placental expression of sFLT-1 was decreased in pregnant women with anemia compared to healthy pregnant controls. There was no change in the placental expression of FPN. CONCLUSION: The increased expression of TfR-1, VEGF and LMN-A in cases of iron deficiency anemia are most likely to be compensatory in nature to help maintain adequate fetal iron delivery. WHAT DOES THIS STUDY ADDS TO THE CLINICAL WORK: Compensatory changes in the placenta aimed at buffering transport of iron to the fetus are seen in pregnant women with anemia compared to healthy pregnant controls.


Assuntos
Anemia Ferropriva , Biomarcadores , Proteínas de Transporte de Cátions , Ferro , Placenta , Receptores da Transferrina , Fator A de Crescimento do Endotélio Vascular , Humanos , Feminino , Gravidez , Placenta/metabolismo , Adulto , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Anemia Ferropriva/genética , Anemia Ferropriva/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Estudos de Casos e Controles , Antígenos CD/metabolismo , Antígenos CD/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expressão Gênica/genética
3.
Pediatr Dermatol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965877

RESUMO

Restrictive dermopathy is a lethal autosomal recessive disease characterized by tightly adherent skin, distinctive facial dysmorphisms, arthrogryposis, and pulmonary hypoplasia. While clinical findings are unique, histopathology and genetic analysis are critical for early diagnostic confirmation and to initiate appropriate management for this lethal disease. We report on a preterm Hutterite male neonate with biallelic ZMPSTE24 mutations to highlight the clinical and histopathological features of restrictive dermopathy and share our skin-directed management strategies.

4.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279282

RESUMO

The accumulation of farnesylated prelamin A has been suggested as one of the mechanisms responsible for the loss of fat in type 2 familial partial lipodystrophy due to variants in the LMNA gene. In this rare disease, fat loss appears in women after puberty, affecting sex-hormone-dependent anatomical areas. This study investigated the impact of 17-ß-estradiol on adipogenesis in murine preadipocytes subjected to a pharmacologically induced accumulation of farnesylated and non-farnesylated prelamin A. To induce the accumulation of non-farnesylated or farnesylated prelamin A, 3T3-L1 cells were treated with the farnesyltransferase inhibitor 277 or the methyltransferase inhibitor N-acetyl-S-farnesyl-l-cysteine methylester. Subsequently, the cells were induced to undergo adipocyte differentiation in the presence or absence of 17-ß-estradiol. Prelamin A accumulation was assessed through immunofluorescence, while real-time PCR and Western blot techniques were used to quantify several adipogenic genes and evaluate protein levels, respectively. The results showed that 17-ß-estradiol increased adipogenesis, although the combination of this hormone plus farnesylated prelamin A led to a reduction in the number of mature adipocytes and the expression of the different genes involved in adipogenesis. In conclusion, the influence of farnesylated prelamin A accumulation on adipogenesis manifested only in the presence of estradiol. These in vitro findings suggest a potential mechanism that could explain the characteristic phenotype in women suffering type 2 familial partial lipodystrophy.


Assuntos
Lamina Tipo A , Lipodistrofia Parcial Familiar , Humanos , Feminino , Camundongos , Animais , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Adipogenia , Células 3T3-L1 , Proteínas Nucleares/genética , Estradiol/farmacologia
5.
Am J Physiol Cell Physiol ; 324(6): C1223-C1235, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125775

RESUMO

Dilated cardiomyopathy caused by mutations in LMNA, encoding A-type lamins (i.e., LMNA cardiomyopathy), is characterized by a left ventricle enlargement and ultimately results in poor cardiac contractility associated with conduction defects. Despite current strategies to aggressively manage the symptoms, the disorder remains a common cause of sudden death and heart failure with decreased ejection fraction. Patient care includes cardioverter defibrillator implantation but the last therapeutic option remains cardiac transplantation. A-type lamins are intermediate filaments and are the main components of the nuclear lamina, a meshwork underlying the inner nuclear membrane, which plays an essential role in both maintaining the nuclear structure and organizing the cytoskeletal structures within the cell. Cytoskeletal proteins function as scaffold to resist external mechanical stress. An increasing amount of evidence demonstrates that LMNA mutations can lead to disturbances in several structural and cytoskeletal components of the cell such as microtubules, actin cytoskeleton, and intermediate filaments. Collectively, this review focuses on the significance of these cytoskeletal modulators and emphasizes their potential therapeutic role in LMNA cardiomyopathy. Indeed, molecular tuning of cytoskeletal dynamics has been successfully used in preclinical models and provides adequate grounds for a therapeutic approach for patients with LMNA cardiomyopathy.


Assuntos
Cardiomiopatias , Lamina Tipo A , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/terapia , Cardiomiopatias/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Mutação/genética
6.
Cell Tissue Res ; 394(1): 189-207, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572165

RESUMO

Cardiovascular diseases, atherosclerosis, and strokes are the most common causes of death in patients with Hutchinson-Gilford progeria syndrome (HGPS). The LMNA variant c.1824C > T accounts for ~ 90% of HGPS cases. The detailed molecular mechanisms of Lamin A in the heart remain elusive due to the lack of appropriate in vitro models. We hypothesize that HGPS patient's induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMCs) will provide a model platform to study the cardio-pathologic mechanisms associated with HGPS. To elucidate the effects of progerin in cardiomyocytes, we first obtained skin fibroblasts (SFs) from a de-identified HGPS patient (hPGP1, proband) and both parents from the Progeria Research Foundation. Through Sanger sequencing and restriction fragment length polymorphism, with the enzyme EciI, targeting Lamin A, we characterized hPGP1-SFs as heterozygous mutants for the LMNA variant c.1824 C > T. Additionally, we performed LMNA exon 11 bisulfite sequencing to analyze the methylation status of the progeria cells. Furthermore, we reprogrammed the three SFs into iPSCs and differentiated them into iCMCs, which gained a beating on day 7. Through particle image velocimetry analysis, we found that hPGP1-iCMCs had an irregular contractile function and decreased cardiac-specific gene and protein expressions by qRT-PCR and Western blot. Our progeria-patient-derived iCMCs were found to be functionally and structurally defective when compared to normal iCMCs. This in vitro model will help in elucidating the role of Lamin A in cardiac diseases and the cardio-pathologic mechanisms associated with progeria. It provides a new platform for researchers to study novel treatment approaches for progeria-associated cardiac diseases.


Assuntos
Cardiopatias , Progéria , Humanos , Progéria/genética , Progéria/metabolismo , Progéria/patologia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Miócitos Cardíacos/metabolismo , Diferenciação Celular
7.
Europace ; 25(2): 634-642, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36352512

RESUMO

AIMS: Cardiac disease progression prior to first ventricular arrhythmia (VA) in LMNA genotype-positive patients is not described. METHODS AND RESULTS: We performed a primary prevention cohort study, including consecutive LMNA genotype-positive patients from our centre. Patients underwent repeated clinical, electrocardiographic, and echocardiographic examinations. Electrocardiographic and echocardiographic disease progression as a predictor of first-time VA was evaluated by generalized estimation equation analyses. Threshold values at transition to an arrhythmic phenotype were assessed by threshold regression analyses. We included 94 LMNA genotype-positive patients without previous VA (age 38 ± 15 years, 32% probands, 53% females). Nineteen (20%) patients experienced VA during 4.6 (interquartile range 2.1-7.3) years follow up, at mean age 50 ± 11 years. We analysed 536 echocardiographic and 261 electrocardiogram examinations. Individual patient disease progression was associated with VA [left ventricular ejection fraction (LVEF) odds ratio (OR) 1.4, 95% confidence interval (CI) 1.2-1.6 per 5% reduction, left ventricular end-diastolic volume index (LVEDVi) OR 1.2 (95% CI 1.1-1.3) per 5 mL/m2 increase, PR interval OR 1.2 (95% CI 1.1-1.4) per 10 ms increase]. Threshold values for transition to an arrhythmic phenotype were LVEF 44%, LVEDVi 77 mL/m2, and PR interval 280 ms. CONCLUSIONS: Incidence of first-time VA was 20% during 4.6 years follow up in LMNA genotype-positive patients. Individual patient disease progression by ECG and echocardiography were strong predictors of VA, indicating that disease progression rate may have additional value to absolute measurements when considering primary preventive ICD. Threshold values of LVEF <44%, LVEDVi >77 mL/m2, and PR interval >280 ms indicated transition to a more arrhythmogenic phenotype.


Assuntos
Desfibriladores Implantáveis , Laminopatias , Feminino , Masculino , Humanos , Volume Sistólico , Estudos de Coortes , Função Ventricular Esquerda , Fatores de Risco , Desfibriladores Implantáveis/efeitos adversos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Laminopatias/complicações , Prevenção Primária , Progressão da Doença
8.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047128

RESUMO

Mediator 25 (Med25) is a member of the mediator complex that relays signals from transcription factors to the RNA polymerase II machinery. Multiple transcription factors, particularly those involved in lipid metabolism, utilize the mediator complex, but how Med25 is involved in this context is unclear. We previously identified Med25 in a translatome screen of adult cardiomyocytes (CMs) in a novel cell type-specific model of LMNA cardiomyopathy. In this study, we show that Med25 upregulation is coincident with myocardial lipid accumulation. To ascertain the role of Med25 in lipid accumulation, we utilized iPSC-derived and neonatal CMs to recapitulate the in vivo phenotype by depleting lamins A and C (lamin A/C) in vitro. Although lamin A/C depletion elicits lipid accumulation, this effect appears to be mediated by divergent mechanisms dependent on the CM developmental state. To directly investigate Med25 in lipid accumulation, we induced adipogenesis in Med25-silenced 3T3-L1 preadipocytes and detected enhanced lipid accumulation. Assessment of pertinent mediators driving adipogenesis revealed that C/EBPα and PPARγ are super-induced by Med25 silencing. Our results indicate that Med25 limits adipogenic potential by suppressing the levels of master regulators that govern adipogenesis. Furthermore, we caution the use of early-developmental-stage cardiomyocytes to model adult-stage cells, particularly for dissecting metabolic perturbations emanating from LMNA mutations.


Assuntos
Adipogenia , Lamina Tipo A , Animais , Camundongos , Células 3T3-L1 , Adipogenia/genética , Diferenciação Celular , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipídeos/farmacologia , Complexo Mediador/genética , Complexo Mediador/metabolismo , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo
9.
J Biol Chem ; 296: 100165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33293369

RESUMO

The integral membrane zinc metalloprotease ZMPSTE24 is important for human health and longevity. ZMPSTE24 performs a key proteolytic step in maturation of prelamin A, the farnesylated precursor of the nuclear scaffold protein lamin A. Mutations in the genes encoding either prelamin A or ZMPSTE24 that prevent cleavage cause the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS) and related progeroid disorders. ZMPSTE24 has a novel structure, with seven transmembrane spans that form a large water-filled membrane chamber whose catalytic site faces the chamber interior. Prelamin A is the only known mammalian substrate for ZMPSTE24; however, the basis of this specificity remains unclear. To define the sequence requirements for ZMPSTE24 cleavage, we mutagenized the eight residues flanking the prelamin A scissile bond (TRSY↓LLGN) to all other 19 amino acids, creating a library of 152 variants. We also replaced these eight residues with sequences derived from putative ZMPSTE24 cleavage sites from amphibian, bird, and fish prelamin A. Cleavage of prelamin A variants was assessed using an in vivo yeast assay that provides a sensitive measure of ZMPSTE24 processing efficiency. We found that residues on the C-terminal side of the cleavage site are most sensitive to changes. Consistent with other zinc metalloproteases, including thermolysin, ZMPSTE24 preferred hydrophobic residues at the P1' position (Leu647), but in addition, showed a similar, albeit muted, pattern at P2'. Our findings begin to define a consensus sequence for ZMPSTE24 that helps to clarify how this physiologically important protease functions and may ultimately lead to identifying additional substrates.


Assuntos
Lamina Tipo A/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Humanos , Lamina Tipo A/química , Lamina Tipo A/genética , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Mutação , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
10.
Cell Tissue Res ; 389(2): 187-199, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35543755

RESUMO

Tooth loss and maxillofacial bone defect are common diseases, which seriously affect people's health. Effective tooth and maxillofacial bone tissue regeneration is a key problem that need to be solved. In the present study, we investigate the role of PRMT6 in osteo/odontogenic differentiation and migration capacity by using SCAPs. Our results showed that knockdown of PRMT6 promoted the osteo/odontogenic differentiation compared with the control group, as detected by alkaline phosphatase activity, alizarin red staining, and the indicators of osteo/odontogenic differentiation measured by Western blot. In addition, overexpression of PRMT6 inhibited the osteo/odontogenic differentiation potentials of SCAPs. Then, knockdown of PRMT6 promoted the migration ability and overexpression of PRMT6 inhibited the migration ability in SCAPs. Mechanically, we discovered that the depletion of PRMT6 promoted the expression of CXCL12 by decreasing H3R2 methylation in the promoter region of CXCL12. In addition, PRMT6 formed a protein complex with LMNA, a nuclear structural protein. Depletion of LMNA inhibited the osteo/odontogenic differentiation and CXCL12 expression and increased the intranucleus PRMT6 in SCAPs. To sum up, PRMT6 might inhibit the osteo/odontogenic differentiation and migration ability of SCAPs via inhibiting CXCL12. And LMNA might be a negative regulator of PRMT6. It is suggested that PRMT6 may be a key target for SCAP-mediated bone and tooth tissue regeneration.


Assuntos
Odontogênese , Osteogênese , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Quimiocina CXCL12/metabolismo , Papila Dentária , Humanos , Lamina Tipo A/metabolismo , Proteínas Nucleares , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/farmacologia , Transdução de Sinais , Células-Tronco
11.
Heart Fail Rev ; 27(4): 1173-1191, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34263412

RESUMO

Dilated cardiomyopathy (DCM) is an umbrella term entailing a wide variety of genetic and non-genetic etiologies, leading to left ventricular systolic dysfunction and dilatation, not explained by abnormal loading conditions or coronary artery disease. The clinical presentation can vary from asymptomatic to heart failure symptoms or sudden cardiac death (SCD) even in previously asymptomatic individuals. In the last 2 decades, there has been striking progress in the understanding of the complex genetic basis of DCM, with the discovery of additional genes and genotype-phenotype correlation studies. Rigorous clinical work-up of DCM patients, meticulous family screening, and the implementation of advanced imaging techniques pave the way for a more efficient and earlier diagnosis as well as more precise indications for implantable cardioverter defibrillator implantation and prevention of SCD. In the era of precision medicine, genotype-directed therapies have started to emerge. In this review, we focus on updates of the genetic background of DCM, characteristic phenotypes caused by recently described pathogenic variants, specific indications for prevention of SCD in those individuals and genotype-directed treatments under development. Finally, the latest developments in distinguishing athletic heart syndrome from subclinical DCM are described.


Assuntos
Cardiomiopatia Dilatada , Disfunção Ventricular Esquerda , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/terapia , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Humanos , Fenótipo , Medicina de Precisão/métodos , Disfunção Ventricular Esquerda/complicações
12.
Am J Med Genet A ; 188(2): 600-605, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34652067

RESUMO

Dilated cardiomyopathy (DCM) is one of the most common cardiac phenotypes caused by mutations of lamin A/C (LMNA) gene in humans. In our study, a cohort of 57 patients who underwent heart transplant for dilated cardiomyopathy was screened for variants in LMNA. We identified a synonymous variant c.936G>A in the last nucleotide of exon 5 of LMNA in a DCM family. Clinically, the LMNA variant carriers presented with severe familial DCM, conduction disease, and high creatine-kinase level. The LMNA c.936G>A variant is novel and has not been reported in current genetic variant databases. Sanger sequencing results showed the presence of LMNA c.936G>A variant in the genomic DNA but not in the cDNA derived from one family member's heart tissue. Real-time quantitative polymerase chain reaction showed significantly lower LMNA mRNA levels in the patient's heart compared to the controls, suggesting that the c.936G>A LMNA variant resulted in reduced mRNA and possibly lower protein expression of LMNA. These findings expand the understanding on the association between synonymous variant of LMNA and the molecular pathogenesis in DCM patients.


Assuntos
Cardiomiopatia Dilatada , Lamina Tipo A , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Heterozigoto , Humanos , Lamina Tipo A/genética , Mutação , Linhagem
13.
J Endocrinol Invest ; 45(8): 1569-1575, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35384599

RESUMO

PURPOSE: SARS-CoV-2 infection may cause varying degrees of cardiac injury and the presence of underlying cardiovascular morbidities contributes to the frequency and severity of occurrence of this complication. Lipodystrophy syndromes are frequently characterized by severe metabolic derangements that represent relevant cardiovascular risk factors. Besides causing lipodystrophy, mutations in the lamin A/C (LMNA) gene can lead to a wide spectrum of tissue-specific disorders including cardiac involvement. METHODS AND RESULTS: We herein examine the case of two patients affected by atypical progeroid syndrome and partial lipodystrophy due to a heterozygous missense LMNA mutation c.1045 C > T (p.R349W) who presented initially with mild COVID-19 and developed severe cardiovascular complications within few weeks of SARS-CoV-2 infection. Before being infected with SARS-CoV-2, our patients had cardiovascular morbidities (mild mitral regurgitation in one patient, ischemic heart disease with bifascicular block in the other patient) in adjunct to cardiovascular risk factors, but the SARS-CoV-2 infection contributed to quickly and significantly decompensate their balance. CONCLUSION: These findings warn that patients affected by LMNA p.R349W mutation and likely other LMNA mutations associated with cardiovascular morbidity should be considered at extremely elevated risk of post-acute cardiological manifestations and should therefore undergo a vigilant follow-up after SARS-CoV-2 infection. Both patients developed COVID-19 before the specific vaccination was available to them and this unfortunate situation should remark the importance of vaccination coverage against SARS-CoV-2 infection for all patients affected by lipodystrophy, especially those with underlying comorbidities.


Assuntos
COVID-19 , Lipodistrofia , COVID-19/complicações , Humanos , Lamina Tipo A/genética , Mutação , SARS-CoV-2/genética
14.
BMC Pediatr ; 22(1): 601, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253810

RESUMO

BACKGROUND: Emery-Dreifuss Muscular Dystrophy (EDMD) is an uncommon genetic disease among the group of muscular dystrophies. EDMD is clinically heterogeneous and resembles other muscular dystrophies. Mutation of the lamin A/C (LMNA) gene, which causes EDMD, also causes many other diseases. There is inter and intrafamilial variability in clinical presentations. Precise diagnosis can help in patient surveillance, especially before they present with cardiac problems. Hence, this paper shows how a molecular work-out by next-generation sequencing can help this group of disorders. CASE PRESENTATION: A 2-year-10-month-old Javanese boy presented to our clinic with weakness in lower limbs and difficulty climbing stairs. The clinical features of the boy were Gower's sign, waddling gait and high CK level. His father presented with elbow contractures and heels, toe walking and weakness of limbs, pelvic, and peroneus muscles. Exome sequencing on this patient detected a pathogenic variant in the LMNA gene (NM_170707: c.C1357T: NP_733821: p.Arg453Trp) that has been reported to cause Autosomal Dominant Emery-Dreifuss muscular dystrophy. Further examination showed total atrioventricular block and atrial fibrillation in the father. CONCLUSION: EDMD is a rare disabling muscular disease that poses a diagnostic challenge. Family history work-up and thorough neuromuscular physical examinations are needed. Early diagnosis is essential to recognize orthopaedic and cardiac complications, improving the clinical management and prognosis of the disease. Exome sequencing could successfully determine pathogenic variants to provide a conclusive diagnosis.


Assuntos
Distrofia Muscular de Emery-Dreifuss Autossômica , Distrofias Musculares , Distrofia Muscular de Emery-Dreifuss , Exoma , Humanos , Lactente , Lamina Tipo A/genética , Masculino , Músculo Esquelético/patologia , Distrofia Muscular de Emery-Dreifuss/diagnóstico , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patologia , Mutação
15.
Cardiol Young ; 32(7): 1175-1177, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34819192

RESUMO

Emery-Dreifuss muscular dystrophy is a slowly progressive skeletal muscle and joint disorder associated with cardiac complications. Dilated cardiomyopathy was the initial manifestation of Emery-Dreifuss muscular dystrophy in an 8-year-old girl. Despite normal muscle and myocardial biopsies, genetic testing revealed LMNA mutations. As Emery-Dreifuss muscular dystrophy is associated with minimal skeletal muscle weakness, cardiac complications can facilitate its diagnosis.


Assuntos
Cardiomiopatia Dilatada , Distrofia Muscular de Emery-Dreifuss , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/etiologia , Criança , Feminino , Coração , Humanos , Músculo Esquelético/patologia , Distrofia Muscular de Emery-Dreifuss/complicações , Distrofia Muscular de Emery-Dreifuss/diagnóstico , Distrofia Muscular de Emery-Dreifuss/genética , Mutação
16.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362025

RESUMO

For patients exhibiting non-small-cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations, epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are a first-line treatment. However, most patients who initially responded to EGFR-TKIs eventually developed acquired resistance, limiting the effectiveness of therapy. It has long been known that epithelial-mesenchymal transition (EMT) leads to acquired resistance to EGFR-TKIs in NSCLC. However, the mechanisms underlying the resistance dependent on EMT are unknown. This research aimed to reveal the effects of LMNA in the regulation of acquired resistance to erlotinib by EMT in NSCLC. The acquired erlotinib-resistant cells (HCC827/ER) were induced by gradual increase of concentrations of erlotinib in erlotinib-sensitive HCC827 cells. RNA sequencing and bioinformatics analysis were performed to uncover the involvement of LMNA in the EMT process that induced acquired resistance to erlotinib. The effect of LMNA on cell proliferation and migration was measured by clone-formation, wound-healing, and transwell assays, respectively. The EMT-related protein, nuclear shape and volume, and cytoskeleton changes were examined by immunofluorescence. Western blot was used to identify the underlying molecular mechanism of LMNA regulation of EMT. HCC827/ER cells with acquired resistance to erlotinib underwent EMT and exhibited lower LMNA expression compared to parental sensitive cells. LMNA negatively regulated the expression of EMT markers; HCC827/ER cells showed a significant up-regulation of mesenchymal markers, such as CDH2, SNAI2, VIM, ZEB1, and TWIST1. The overexpression of LMNA in HCC827/ER cells significantly inhibited EMT and cell proliferation, and this inhibitory effect of LMNA was enhanced in the presence of 2.5 µM erlotinib. Furthermore, a decrease in LMNA expression resulted in a higher nuclear deformability and cytoskeletal changes. In HCC827/ER cells, AKT, FGFR, ERK1/2, and c-fos phosphorylation levels were higher than those in HCC827 cells; Furthermore, overexpression of LMNA in HCC827/ER cells reduced the phosphorylation of AKT, ERK1/2, c-fos, and FGFR. In conclusion, our findings first demonstrated that downregulation of LMNA promotes acquired EGFR-TKI resistance in NSCLC with EGFR mutations by EMT. LMNA inhibits cell proliferation and migration of erlotinib-resistant cells via inhibition of the FGFR/MAPK/c-fos signaling pathway. These findings indicated LMNA as a driver of acquired resistance to erlotinib and provided important information about the development of resistance to erlotinib treatment in NSCLC patients with EGFR mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Transição Epitelial-Mesenquimal , Cloridrato de Erlotinib , Lamina Tipo A , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Lamina Tipo A/efeitos dos fármacos , Lamina Tipo A/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
17.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555163

RESUMO

LMNA-related muscular dystrophy is an autosomal-dominant progressive disorder caused by mutations in LMNA. LMNA missense mutations are becoming correctable with CRISPR/Cas9-derived tools. Evaluating the functional recovery of LMNA after gene editing bears challenges as there is no reported direct loss of function of lamin A/C proteins in patient-derived cells. The proteins encoded by LMNA are lamins A/C, important ubiquitous nuclear envelope proteins but absent in pluripotent stem cells. We induced lamin A/C expression in induced pluripotent stem cells (iPSCs) of two patients with LMNA-related muscular dystrophy, NM_170707.4 (LMNA): c.1366A > G, p.(Asn456Asp) and c.1494G > T, p.(Trp498Cys), using a short three-day, serum-induced differentiation protocol and analyzed expression profiles of co-regulated genes, examples being COL1A2 and S100A6. We then performed precise gene editing of LMNA c.1366A > G using the near-PAMless (PAM: protospacer-adjacent motif) cytosine base editor. We show that the mutation can be repaired to 100% efficiency in individual iPSC clones. The fast differentiation protocol provided a functional readout and demonstrated increased lamin A/C expression as well as normalized expression of co-regulated genes. Collectively, our findings demonstrate the power of CRISPR/Cas9-mediated gene correction and effective outcome measures in a disease with, so far, little perspective on therapies.


Assuntos
Lamina Tipo A , Distrofias Musculares , Humanos , Lamina Tipo A/genética , Colágeno Tipo I/genética , Mutação , Distrofias Musculares/genética , Expressão Gênica
18.
Yi Chuan ; 44(10): 913-925, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384727

RESUMO

Lipodystrophy syndrome caused by LMNA gene mutation is a group of autosomal dominant monogenic diseases, characterized by selective fat loss and metabolic abnormalities with insulin resistance. In this review, we summarize the clinical manifestations caused by multiple pathogenic LMNA mutations reported so far, including metabolic complications, cardiovascular abnormalities, gonadal axis disorders, myopathy, and renal abnormalities. Meanwhile, we also clarify the possible pathogenic mechanism, diagnosis, and treatment, in order to improve the understanding of the disease and to provide a reference for basic research and clinical diagnosis and treatment of this disease.


Assuntos
Resistência à Insulina , Lipodistrofia , Humanos , Lipodistrofia/genética , Lipodistrofia/metabolismo , Mutação , Resistência à Insulina/genética , Lamina Tipo A/genética
19.
J Biol Chem ; 295(13): 4194-4211, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32071079

RESUMO

Protein phosphatase 2A (PP2A) critically regulates cell signaling and is a human tumor suppressor. PP2A complexes are modulated by proteins such as cancerous inhibitor of protein phosphatase 2A (CIP2A), protein phosphatase methylesterase 1 (PME-1), and SET nuclear proto-oncogene (SET) that often are deregulated in cancers. However, how they impact cellular phosphorylation and how redundant they are in cellular regulation is poorly understood. Here, we conducted a systematic phosphoproteomics screen for phosphotargets modulated by siRNA-mediated depletion of CIP2A, PME-1, and SET (to reactivate PP2A) or the scaffolding A-subunit of PP2A (PPP2R1A) (to inhibit PP2A) in HeLa cells. We identified PP2A-modulated targets in diverse cellular pathways, including kinase signaling, cytoskeleton, RNA splicing, DNA repair, and nuclear lamina. The results indicate nonredundancy among CIP2A, PME-1, and SET in phosphotarget regulation. Notably, PP2A inhibition or reactivation affected largely distinct phosphopeptides, introducing a concept of nonoverlapping phosphatase inhibition- and activation-responsive sites (PIRS and PARS, respectively). This phenomenon is explained by the PPP2R1A inhibition impacting primarily dephosphorylated threonines, whereas PP2A reactivation results in dephosphorylation of clustered and acidophilic sites. Using comprehensive drug-sensitivity screening in PP2A-modulated cells to evaluate the functional impact of PP2A across diverse cellular pathways targeted by these drugs, we found that consistent with global phosphoproteome effects, PP2A modulations broadly affect responses to more than 200 drugs inhibiting a broad spectrum of cancer-relevant targets. These findings advance our understanding of the phosphoproteins, pharmacological responses, and cellular processes regulated by PP2A modulation and may enable the development of combination therapies.


Assuntos
Autoantígenos/genética , Hidrolases de Éster Carboxílico/genética , Proteínas de Ligação a DNA/genética , Chaperonas de Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteína Fosfatase 2/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Lâmina Nuclear/efeitos dos fármacos , Lâmina Nuclear/genética , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/genética , Proteoma/efeitos dos fármacos , Proto-Oncogene Mas , RNA Interferente Pequeno/genética , Biologia de Sistemas
20.
Clin Endocrinol (Oxf) ; 94(6): 1043-1053, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33502018

RESUMO

OBJECTIVES: LMNA variants have been previously associated with cardiac abnormalities independent of lipodystrophy. We aimed to assess cardiac impact of familial partial lipodystrophy (FPLD) to understand the role of laminopathy in cardiac manifestations. STUDY DESIGN: Retrospective cohort study. METHODS: Clinical data from 122 patients (age range: 13-77, 101 females) with FPLD were analysed. Mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with an LMNA variant were studied as proof-of-concept for future studies. RESULTS: Subjects with LMNA variants had a higher prevalence of overall cardiac events than others. The likelihood of having an arrhythmia was significantly higher in patients with LMNA variants (OR: 3.77, 95% CI: 1.45-9.83). These patients were at higher risk for atrial fibrillation or flutter (OR: 5.78, 95% CI: 1.04-32.16). The time to the first arrhythmia was significantly shorter in the LMNA group, with a higher HR of 3.52 (95% CI: 1.34-9.27). Non-codon 482 LMNA variants were more likely to be associated with cardiac events (vs. 482 LMNA: OR: 4.74, 95% CI: 1.41-15.98 for arrhythmia; OR: 17.67, 95% CI: 2.45-127.68 for atrial fibrillation or flutter; OR: 5.71, 95% CI: 1.37-23.76 for conduction disease). LMNA mutant hiPSC-CMs showed a higher frequency of spontaneous activity and shorter action potential duration. Functional syncytia of hiPSC-CMs displayed several rhythm alterations such as early afterdepolarizations, spontaneous quiescence and spontaneous tachyarrhythmia, and significantly slower recovery in chronotropic changes induced by isoproterenol exposure. CONCLUSIONS: Our results highlight the need for vigilant cardiac monitoring in FPLD, especially in patients with LMNA variants who have an increased risk of developing cardiac arrhythmias. In addition, hiPSC-CMs can be studied to understand the basic mechanisms for the arrhythmias in patients with lipodystrophy to understand the impact of specific mutations.


Assuntos
Células-Tronco Pluripotentes Induzidas , Lipodistrofia Parcial Familiar , Lipodistrofia , Adolescente , Adulto , Idoso , Feminino , Humanos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Pessoa de Meia-Idade , Mutação , Fenótipo , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA