Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 43(8): 1587-1598, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29948727

RESUMO

Arachidonic acid and docosahexaenoic acid (DHA) released by the action of phospholipases A2 (PLA2) on membrane phospholipids may be metabolized by lipoxygenases to the anti-inflammatory mediators lipoxin A4 (LXA4) and resolvin D1 (RvD1), and these can bind to a common receptor, formyl-peptide receptor 2 (FPR2). The contribution of this receptor to axonal or dendritic outgrowth is unknown. The present study was carried out to elucidate the distribution of FPR2 in the rat CNS and its role in outgrowth of neuronal processes. FPR2 mRNA expression was greatest in the brainstem, followed by the spinal cord, thalamus/hypothalamus, cerebral neocortex, hippocampus, cerebellum and striatum. The brainstem and spinal cord also contained high levels of FPR2 protein. The cerebral neocortex was moderately immunolabelled for FPR2, with staining mostly present as puncta in the neuropil. Dentate granule neurons and their axons (mossy fibres) in the hippocampus were very densely labelled. The cerebellar cortex was lightly stained, but the deep cerebellar nuclei, inferior olivary nucleus, vestibular nuclei, spinal trigeminal nucleus and dorsal horn of the spinal cord were densely labelled. Electron microscopy of the prefrontal cortex showed FPR2 immunolabel mostly in immature axon terminals or 'pre-terminals', that did not form synapses with dendrites. Treatment of primary hippocampal neurons with the FPR2 inhibitors, PBP10 or WRW4, resulted in reduced lengths of axons and dendrites. The CNS distribution of FPR2 suggests important functions in learning and memory, balance and nociception. This might be due to an effect of FPR2 in mediating arachidonic acid/LXA4 or DHA/RvD1-induced axonal or dendritic outgrowth.


Assuntos
Axônios/metabolismo , Encéfalo/metabolismo , Dendritos/metabolismo , Receptores de Lipoxinas/biossíntese , Medula Espinal/metabolismo , Animais , Axônios/química , Axônios/ultraestrutura , Encéfalo/ultraestrutura , Química Encefálica/fisiologia , Sobrevivência Celular/fisiologia , Sistema Nervoso Central/química , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/ultraestrutura , Dendritos/química , Dendritos/ultraestrutura , Masculino , Ratos , Ratos Wistar , Receptores de Lipoxinas/análise , Medula Espinal/química , Medula Espinal/ultraestrutura
2.
Front Physiol ; 11: 285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32317985

RESUMO

AIMS: To evaluate whether Resolvin D1 attenuates ischemia/reperfusion-induced (IRI) acute kidney injury (AKI) via affecting Tregs. MATERIALS AND METHODS: The IRI-AKI mouse model was established, and RvD1 was injected into the mouse tail vein. Further, the renal function, histological changes, injury markers and serum cytokines were detected at 24 and 72 h after IRI. Flow cytometry was used to categorize regulatory T cells (Tregs) in the spleen and kidney. Treg cells were stripped with the anti-CD25 antibody blocker PC61 to assess its role in the protective effect of RvD1 on IRI mice. CD4+ T cells were obtained from spleen monocytes by magnetic bead sorting and differentiated into induced Treg (iTreg) cells. The effect of RvD1 on iTreg cell differentiation was observed in vitro. In addition, neutralizing antibodies against the orphan receptor G-protein-coupled receptor 32 (anti-GPR32) and LXA4 receptor (anti-ALX/FPR2), both RvD1 receptor blockers, were used to evaluate the effect of RvD1 on iTreg cell differentiation. Boc-1, an ALX/FPR2 receptor inhibitor, was administered via the tail vein to observe its effects on the ameliorative efficacy of RvD1 in IRI-AKI mice in vivo. RESULTS: In vivo, RvD1 increased Treg percentages, alleviated renal tubular injury and reduced the serum levels of IFN-γ, TNF-α and IL-6 in IRI-AKI mice, while PC61 depleted the number of Tregs and reversed the protective effects of RvD1. In vitro, RvD1 induced the generation of iTregs. Importantly, preincubation with anti-ALX/FPR2 neutralizing antibodies but not with anti-GPR32 neutralizing antibodies, abrogated the enhancement activity of RvD1 on iTregs. In addition, in vivo blockade of the receptor ALX/FPR2 by Boc-1 reversed the beneficial effects of RvD1 on the splenic and kidney Treg percentages, renal tubular injury and serum IFN-γ, TNF-α, and IL-6 levels. CONCLUSION: Our study demonstrates that RvD1 protects against IRI-AKI by increasing the percentages of Tregs via the ALX/FPR2 pathway.

3.
J Leukoc Biol ; 103(4): 657-670, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29345368

RESUMO

Acute lung injury (ALI) models are characterized by neutrophil accumulation, tissue damage, alteration of the alveolar capillary membrane, and physiological dysfunction. Lipoxin A4  (LXA4 ) is an anti-inflammatory eicosanoid that was demonstrated to attenuate lipopolysaccharide-induced ALI. Experimental models of severe malaria can be associated with lung injury. However, to date, a putative effect of LXA4  on malaria (M)-induced ALI has not been addressed. In this study, we evaluated whether LXA4 exerts an effect on M-ALI. Male C57BL/6 mice were randomly assigned to the following five groups: noninfected; saline-treated Plasmodium berghei-infected; LXA4 -pretreated P. berghei-infected (LXA4  administered 1 h before infection and daily, from days 0 to 5 postinfection), LXA4 - and LXA4 receptor antagonist BOC-2-pretreated P. berghei-infected; and LXA4 -posttreated P. berghei-infected (LXA4  administered from days 3 to 5 postinfection). By day 6, pretreatment or posttreatment with LXA4  ameliorate lung mechanic dysfunction reduced alveolar collapse, thickening and interstitial edema; impaired neutrophil accumulation in the pulmonary tissue and blood; and reduced the systemic production of CXCL1. Additionally, in vitro treatment with LXA4 prevented neutrophils from migrating toward plasma collected from P. berghei-infected mice. LXA4  also impaired neutrophil cytoskeleton remodeling by inhibiting F-actin polarization. Ex vivo analysis showed that neutrophils from pretreated and posttreated mice were unable to migrate. In conclusion, we demonstrated that LXA4  exerted therapeutic effects in malaria-induced ALI by inhibiting lung dysfunction, tissue injury, and neutrophil accumulation in lung as well as in peripheral blood. Furthermore, LXA4 impaired the migratory ability of P. berghei-infected mice neutrophils.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios não Esteroides/uso terapêutico , Movimento Celular , Lipoxinas/uso terapêutico , Malária/complicações , Neutrófilos/imunologia , Plasmodium berghei/patogenicidade , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/parasitologia , Animais , Células Cultivadas , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Brain Res ; 1659: 113-120, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28089662

RESUMO

Paraplegia caused by spinal cord ischemia is a severe complication following surgeries in the thoracic aneurysm. HMGB1 has been recognized as a key mediator in spinal inflammatory response after spinal cord injury. Electroacupuncture (EA) pretreatment could provide neuroprotection against cerebral ischemic injury through inhibition of HMGB1 release. Therefore, the present study aims to test the hypothesis that EA pretreatment protects against spinal cord ischemia-reperfusion (I/R) injury via inhibition of HMGB1 release. Animals were pre-treated with EA stimulations 30min daily for 4 successive days, followed by 20-min spinal cord ischemia induced by using a balloon catheter placed into the aorta. We found that spinal I/R significantly increased mRNA and cytosolic protein levels of HMGB1 after reperfusion in the spinal cord. The EA-pretreated animals displayed better motor performance after reperfusion along with the decrease of apoptosis, HMGB1, TNF-α and IL-1ß expressions in the spinal cord, whereas these effects by EA pretreatment was reversed by rHMGB1 administration. Furthermore, EA pretreatment attenuated the down-regulation of LXA4 receptor (ALX) expression induced by I/R injury, while the decrease of HMGB1 release in EA-pretreated rats was reversed by the combined BOC-2 (an inhibitor of LXA4 receptor) treatment. In conclusion, EA pretreatment may promote spinal I/R injury through the inhibition of HMGB1 release in a LXA4 receptor-dependent manner. Our data may represent a new therapeutic technique for treating spinal cord ischemia-reperfusion injury.


Assuntos
Eletroacupuntura , Proteína HMGB1/metabolismo , Receptores de Lipoxinas/metabolismo , Traumatismo por Reperfusão/terapia , Isquemia do Cordão Espinal/terapia , Medula Espinal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Masculino , Neurotransmissores/farmacologia , Oligopeptídeos/farmacologia , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores de Lipoxinas/antagonistas & inibidores , Recuperação de Função Fisiológica/fisiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Isquemia do Cordão Espinal/metabolismo , Isquemia do Cordão Espinal/patologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA