Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(4): 507-532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191811

RESUMO

Metabolic syndrome combines major risk factors for cardiovascular disease, making deeper insight into its pathogenesis important. We here explore the mechanistic basis of metabolic syndrome by recruiting an essential patient cohort and performing extensive gene expression profiling. The mitochondrial fatty acid metabolism enzyme acyl-CoA synthetase medium-chain family member 3 (ACSM3) was identified to be significantly lower expressed in the peripheral blood of metabolic syndrome patients. In line, hepatic ACSM3 expression was decreased in mice with metabolic syndrome. Furthermore, Acsm3 knockout mice showed glucose and lipid metabolic abnormalities, and hepatic accumulation of the ACSM3 fatty acid substrate lauric acid. Acsm3 depletion markedly decreased mitochondrial function and stimulated signaling via the p38 MAPK pathway cascade. Consistently, Acsm3 knockout mouse exhibited abnormal mitochondrial morphology, decreased ATP contents, and enhanced ROS levels in their livers. Mechanistically, Acsm3 deficiency, and lauric acid accumulation activated nuclear receptor Hnf4α-p38 MAPK signaling. In line, the p38 inhibitor Adezmapimod effectively rescued the Acsm3 depletion phenotype. Together, these findings show that disease-associated loss of ACSM3 facilitates mitochondrial dysfunction via a lauric acid-HNF4a-p38 MAPK axis, suggesting a novel therapeutic vulnerability in systemic metabolic dysfunction.


Assuntos
Ácidos Láuricos , Síndrome Metabólica , Humanos , Camundongos , Animais , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fígado/metabolismo , Ácidos Graxos/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/farmacologia
2.
Fish Shellfish Immunol ; 151: 109739, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960108

RESUMO

Lauric acid (LA), a saturated fatty acid with 12 carbon atoms, is widely regarded as a healthy fatty acid that plays an important role in disease resistance and improving immune physiological function. The objective of this study was to determine the effects of dietary lauric acid on the growth performance, antioxidant capacity, non-specific immunity and intestinal microbiology, and evaluate the potential of lauric acids an environmentally friendly additive in swimming crab (Portunus trituberculatus) culture. A total of 192 swimming crabs with an initial body weight of 11.68 ± 0.02 g were fed six different dietary lauric acid levels, the analytical values of lauric acid were 0.09, 0.44, 0.80, 1.00, 1.53, 2.91 mg/g, respectively. There were four replicates per treatment and 8 juvenile swimming crabs per replicate. The results indicated that final weight, percent weight gain, specific growth rate, survival and feed intake were not significantly affected by dietary lauric acid levels; however, crabs fed diets with 0.80 and 1.00 mg/g lauric acid showed the lowest feed efficiency among all treatments. Proximate composition in hepatopancreas and muscle were not significantly affected by dietary lauric acid levels. The highest activities of amylase and lipase in hepatopancreas and intestine were found at crabs fed diet with 0.80 mg/g lauric acid (P < 0.05), the activity of carnitine palmityl transferase (CPT) in hepatopancreas and intestine significantly decreased with dietary lauric acid levels increasing from 0.09 to 2.91 mg/g (P < 0.05). The lowest concentration of glucose and total protein and the activity of alkaline phosphatase in hemolymph were observed at crabs fed diets with 0.80 and 1.00 mg/g lauric acid among all treatments. The activity of GSH-Px in hepatopancreas significantly increased with dietary lauric acid increasing from 0.09 to 1.53 mg/g, MDA in hepatopancreas and hemolymph was not significantly influenced by dietary lauric acid levels. The highest expression of cat and gpx in hepatopancreas were exhibited in crabs fed diet with 1.00 mg/g lauric acid, however, the expression of genes related to the inflammatory signaling pathway (relish, myd88, traf6, nf-κB) were up-regulated in the hepatopancreas with dietary lauric acid levels increasing from 0.09 to 1.00 mg/g, moreover, the expression of genes related to intestinal inflammatory, immune and antioxidant were significantly affected by dietary lauric acid levels (P < 0.05). Crabs fed diet without lauric acid supplementation exhibited higher lipid drop area in hepatopancreas than those fed the other diets (P < 0.05). The expression of genes related to lipid catabolism was up-regulated, however, and the expression of genes related to lipid synthesis was down-regulated in the hepatopancreas of crabs fed with 0.80 mg/g lauric acid. Lauric acid improved hepatic tubular integrity, and enhanced intestinal barrier function by increasing peritrophic membrane (PM) thickness and upregulating the expression of structural factors (per44, zo-1) and intestinal immunity-related genes. In addition, dietary 1.00 mg/g lauric acid significantly improved the microbiota composition of the intestinal, increased the abundance of Actinobacteria and Rhodobacteraceae, and decreased the abundance of Vibrio, thus maintaining the microbiota balance of the intestine. The correlation analysis showed that there was a relationship between intestinal microbiota and immune-antioxidant function. In conclusion, the dietary 1.00 mg/g lauric acid is beneficial to improve the antioxidant capacity and intestinal health of swimming crab.


Assuntos
Ração Animal , Antioxidantes , Braquiúros , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Ácidos Láuricos , Animais , Braquiúros/imunologia , Braquiúros/efeitos dos fármacos , Braquiúros/crescimento & desenvolvimento , Braquiúros/microbiologia , Ácidos Láuricos/farmacologia , Ácidos Láuricos/administração & dosagem , Ração Animal/análise , Antioxidantes/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Distribuição Aleatória , Relação Dose-Resposta a Droga
3.
Foodborne Pathog Dis ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230428

RESUMO

Staphylococcus aureus contamination and prevention has always been a major concern for food industry. This work investigated the antibacterial activity and mechanisms of lauric acid (LA) against S. aureus. Results revealed 156 µg/mL was the minimum inhibitory concentration (MIC) for LA and it retarded growth rate of S. aureus. The inhibitory effect was enhanced with LA concentration. After being treated with 2 MIC LA for 24 h, the number of S. aureus decreased by 3.56 log colony-forming unit (CFU)/mL. Scanning electron microscopy profiling revealed that LA resulted in altered morphology of S. aureus cells. In addition, propidium iodide staining of flow cytometry suggested that LA treatment disrupted the cell membrane integrity. Changes in 8-anilino-1-naphthalenesulfonic acid fluorescence indicated a depolarization change in cell membrane fluidity. For practical applications, LA also displayed an antimicrobial potential in cooked chicken food model system, with 1.25-5 g/L of LA prolonging shelf life by 2 days at 4°C. Moreover, it had no adverse effect on pH values, color in cooked chicken meat, and even reduced lipid oxidation. To sum up, LA has great antimicrobial properties and is a candidate preservative for cooked meat food.

4.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891984

RESUMO

Although inflammation is primarily a protective response guarding the human body, it can result in a variety of chronic diseases such as allergies, auto-immune, cardiovascular diseases, and cancer. In NF-κB-mediated inflammation, many small molecules and food compounds characterized as nutraceuticals have shown positive effects associated with immunomodulatory properties. We investigated the effects of selected bioactive small molecules, commonly found in food components, vanillyl alcohol (VA) and lauric acid (LA), on different cell lines exposed to pro-inflammatory stimuli, lipopolysaccharide (LPS), and the food allergen actinidin (Act d 1). Pro-inflammatory cytokines were downregulated in response to both VA and LA, and this downregulation was caused by a decrease in the activation of the NF-κB pathway and the translocation of p65, the pathway's major component. Small nutraceutical molecules, VA and LA, showed not only inhibition of the pro-inflammatory cytokines, but also inhibition of the NF-κB activation, and reduced translocation of the p65 component. The present study may contribute to the therapeutic use of these molecules for various inflammatory diseases, which have in common an increased expression of pro-inflammatory cytokines and NF-κB-mediated inflammation.


Assuntos
Citocinas , Inflamação , Lipopolissacarídeos , NF-kappa B , Transdução de Sinais , Citocinas/metabolismo , Humanos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Regulação para Baixo/efeitos dos fármacos , Ácidos Láuricos/farmacologia , Alérgenos/imunologia , Animais , Hipersensibilidade Alimentar/metabolismo , Hipersensibilidade Alimentar/tratamento farmacológico , Hipersensibilidade Alimentar/imunologia , Camundongos
5.
Toxicol Mech Methods ; 34(4): 454-467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38166588

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has emerged as a major chronic liver illness characterized by increase of lipid content in the liver. This study investigated the role of lauric acid to treat NAFLD in male adult Sprague Dawley rats. In this study, to induce NAFLD in the rats, a high-fat diet (HFD) was administered for eight consecutive weeks. Lauric acid groups received lauric acid (250 and 500 mg/kg; orally), concurrently with HFD for eight consecutive weeks. Lauric acid could ameliorate the serum levels of TG, TC, ALT, AST, blood glucose, and insulin. Moreover, lauric acid significantly elevated the levels of SOD, GSH, catalase, and IL-10. Additionally, it lowered the hepatic levels of MDA, ROS, MPO, 4-HNE, interleukin (IL)-1ß, and tumor necrosis factor (TNF-α). Furthermore, lauric acid significantly up-regulated the hepatic expression of IRS1, AMPK, PI3K, and SIRT1 genes. In parallel, lauric acid could improve the histopathological picture of the liver and reduce the liver apoptosis via decreasing the expression of annexin V (Anx V). Finally, our data proposed that lauric acid could be an effective candidate for the NAFLD treatment.


Assuntos
Ácidos Láuricos , Hepatopatia Gordurosa não Alcoólica , Ratos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/etiologia , Dieta Hiperlipídica/efeitos adversos , Ratos Sprague-Dawley , Fígado , Fator de Necrose Tumoral alfa/metabolismo
6.
J Nutr ; 153(11): 3207-3219, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696395

RESUMO

BACKGROUND: Lauric acid (LA), a major, natural, medium-chain fatty acid, is considered an efficient energy substrate for intense exercise and in patients with long-chain fatty acid ß-oxidation disorders. However, few studies have focused on the role of LA in exercise performance and related glucolipid metabolism in vivo. OBJECTIVES: We aimed to investigate the effect of dietary supplementation with LA on exercise performance and related metabolic mechanisms. METHODS: Male C57BL/6N mice (14 wk old) were fed a basal diet or a diet containing 1% LA, and a series of exercise tests, including a high-speed treadmill test, aerobic endurance exercises, a 4-limb hanging test, and acute aerobic exercises, were performed. RESULTS: Dietary supplementation with 1.0% LA accelerated the recovery from fatigue after explosive exercise (P < 0.05) and improved aerobic endurance and muscle strength in sedentary mice (P = 0.039). Lauric acid intake not only changed muscle fatty acid profiles, including increases in C12:0 and n-6/n-3 PUFAs (P < 0.001) and reductions in C18:0, C20:4n-6, C22:6n-3, and n-3 PUFAs (P < 0.05) but also enhanced fat mobilization from adipose tissue and fatty acid oxidation in the liver, at least partly via the AMP-activated protein kinase-acetyl CoA carboxylase pathway (P < 0.05). Likewise, LA supplementation promoted liver glyconeogenesis and conserved muscular glycogen during acute aerobic exercise (P < 0.05), which was accompanied by an increase in the mitochondrial DNA copy number and Krebs cycle activity in skeletal muscle (P < 0.05). CONCLUSIONS: Dietary supplemental LA serves as an efficient energy substrate for sedentary mice to improve aerobic exercise endurance and muscle strength through regulation of glucolipid metabolism. These findings imply that LA supplementation might be a promising nutritional strategy to improve aerobic exercise performance in sedentary people.


Assuntos
Suplementos Nutricionais , Músculo Esquelético , Humanos , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Ácidos Graxos/metabolismo , Resistência Física
7.
J Environ Manage ; 344: 118392, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384987

RESUMO

Utilisation of microalgae to extract nutrients from the effluent of anaerobic digestion of food waste is an emerging technology. A by-product of this process is the microalgal biomass which has potential to be used as an organic bio-fertilizer. However, microalgal biomass are rapidly mineralized when applied to soil which may result in N loss. One solution is to emulsify microalgal biomass with lauric acid (LA) to delay the release of mineral N. This study aimed to investigate whether combining LA with microalgae to develop a new fertilizer product with a controlled release function of mineral N when applied to soil, and any potential impacts the bacterial community structure and activity. The treatments were applied to soil emulsified with LA and were combined with either microalgae or urea at rates of 0%, 12.5%, 25% and 50% LA, untreated microalgae or urea and unamended control were incubated at 25 °C and 40% water holding capacity for 28 days. Quantification of soil chemistry (NH4+-N, NO3--N, pH and EC), microbial biomass carbon, CO2 production and bacterial diversity were characterised at 0, 1, 3, 7, 14 and 28 days. The NH4+-N and NO3--N concentration decreased with increasing rate of LA combined microalgae indicating that both N mineralization and nitrification were impacted. As a function of time, NH4+-N concentration increased up to 7 days for the microalgae at lower rates of LA, and then slowly decreased for 14 and 28 days, with an inverse relationship with soil NO3-N. Aligning with soil chemistry, an observed decrease in the predicted nitrification genes amoA·amoB and relative abundance of ammonia oxidizing bacteria (Nitrosomonadaceae) and nitrifying bacteria (Nitrospiraceae) with an increasing rate of LA with microalgae provides further support for possible inhibition of nitrification. The MBC and CO2 production was higher in the soil amended with increasing rates of LA combined microalgae and there was an increase in the relative abundance of fast-growing heterotrophs. Treating microalgae by emulsification with LA has the potential to control the release of N by increasing immobilization over nitrification and therefore it might be possible to engineer microalgae to match plant nutrient growth requirements whilst recovering waste from waste resources.


Assuntos
Microalgas , Eliminação de Resíduos , Solo/química , Fertilizantes/análise , Alimentos , Nitrogênio/química , Dióxido de Carbono , Biomassa , Preparações de Ação Retardada , Bactérias , Minerais
8.
Molecules ; 28(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005232

RESUMO

Camphene, C12-C18 fatty acids, and titanium sulfate were used as raw materials to study the synthesis of long-chain fatty acid isobornyl esters. Products were analyzed quantitatively by gas chromatography (GC), characterized by nuclear magnetic resonance spectroscopy (hydrogen and carbon), and evaluated using toxicity tests. The optimum reaction conditions were as follows: n(lauric acid):n(camphene) = 2.5:1, m(titanium sulfate):m(camphene) = 0.25:1, reaction temperature of 80 °C, and reaction time of 25 h. Under these conditions, the content of isobornyl laurate in the product was 74.49%, and the content of purified product was 95.02%. The reaction kinetics for isobornyl laurate showed an apparent first-order reaction in the first 9 h with an activation energy of 31.01 kJ/mol. The reaction conditions of myristic acid, palmitic acid, and stearic acid were similar to those of lauric acid, but the reaction time had to be increased as the molecular weight of the fatty acid increased. Toxicity tests for four types of long-chain fatty acid isobornyl esters showed that the samples had low toxicity.

9.
Molecules ; 28(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175220

RESUMO

In contrast to the other components of the medium-chain triglycerides ketogenic diet (MCT KD), i.e., caprylic acid (CA8), a comprehensive evaluation of caproic (CA6) and lauric acids' (CA12) properties in standard chemical and electrical seizure tests in mice has not yet been performed. We investigated their effects in maximal electroshock seizure threshold (MEST), 6 Hz seizure threshold and intravenous (i.v.) pentylenetetrazole (PTZ) seizure tests. Since ketone body production can be regulated by the activation of 5'AMP-activated protein kinase (AMPK), we hypothesized that metformin (an AMPK activator) enhance ketogenesis and would act synergistically with the fatty acids to inhibit convulsions. We assessed the effects of acute and chronic co-treatment with metformin and CA6/CA8 on seizures. CA6 and CA12 (p.o.) increased seizure threshold in the 6 Hz seizure test. CA6 at the highest tested dose (30 mmol/kg) developed toxicity in several mice, impaired motor performance and induced ketoacidosis. Acute and chronic co-treatment with metformin and CA6/CA8 did not affect seizure thresholds. Moreover, we observed the pro-convulsive effect of the acute co-administration of CA8 (5 mmol/kg) and metformin (100 mg/kg). Since this co-treatment was pro-convulsive, the safety profile and risk/benefit ratio of MCT KD and metformin concomitant therapy in epileptic patients should be further evaluated.


Assuntos
Epilepsia , Metformina , Camundongos , Animais , Anticonvulsivantes/efeitos adversos , Metformina/farmacologia , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP , Convulsões/induzido quimicamente , Epilepsia/tratamento farmacológico , Pentilenotetrazol/efeitos adversos , Eletrochoque/efeitos adversos , Relação Dose-Resposta a Droga , Modelos Animais de Doenças
10.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985490

RESUMO

Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious bacterial disease affecting developing honeybee larvae and pupas. In this study, a library of 24 (thio)glycosides, glycosyl sulfones, 6-O-esters, and ethers derived from d-mannose, d-glucose, and d-galactose having C10 or C12 alkyl chain were evaluated for their antibacterial efficacy against two P. larvae strains. The efficacy of the tested compounds determined as minimal inhibitory concentrations (MICs) varied greatly. Generally, dodecyl derivatives were found to be more potent than their decylated analogs. Thioglycosides were more efficient than glycosides and sulfones. The activity of the 6-O-ether derivatives was higher than that of their ester counterparts. Seven derivatives with dodecyl chain linked (thio)glycosidically or etherically at C-6 showed high efficacy against both P. larvae strains (MICs ranged from 12.5 µM to 50 µM). Their efficacies were similar or much higher than those of selected reference compounds known to be active against P. larvae-lauric acid, monolaurin, and honeybee larval food components, 10-hydroxy-2-decenoic acid, and sebacic acid (MICs ranged from 25 µM to 6400 µM). The high efficacies of these seven derivatives suggest that they could increase the anti-P. larvae activity of larval food and improve the resistance of larvae to AFB disease through their application to honeybee colonies.


Assuntos
Paenibacillus larvae , Paenibacillus , Abelhas , Animais , Estados Unidos , Ésteres/farmacologia , Sulfetos/farmacologia , Antibacterianos/farmacologia , Larva , Carboidratos/farmacologia , Sulfonas/farmacologia , Éteres/farmacologia , Glicosídeos/farmacologia
11.
Am J Physiol Endocrinol Metab ; 322(6): E540-E550, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35466692

RESUMO

Maternal obesity [body mass index (BMI) > 30 kg/m2] is associated with greater neonatal adiposity, cord blood (CB) insulin levels, and a proinflammatory phenotype at birth, contributing to risk of future cardiometabolic disease in the offspring. Variation in neonatal adiposity within maternal BMI groups is underappreciated, and it remains unclear whether the metabolic impairments at birth are an outcome of maternal obesity or excess fetal fat accrual. We examined the hypothesis that CB metabolites associated with fetal fat accrual differ between offspring of normal-weight and obese women. Umbilical venous blood was collected at the time of scheduled cesarean delivery from 50 normal-weight women (LE; pregravid BMI = 22.3 ± 1.7 kg/m2) and 50 obese women (OB; BMI = 34.5 ± 3.0 kg/m2). Neonatal adiposity was estimated from flank skinfold thickness. The first (low adiposity, LA) and third (high adiposity, HA) tertiles of neonatal %body fat were used to create four groups: OBLA, OBHA, LELA, and LEHA. CB metabolites were measured via untargeted metabolomics. Broadly, the LA offspring of OB women (OBLA) metabolite signature differed from other groups. Lauric acid (C12:0) was 82-118% higher in OBLA vs. all other groups [false discovery rate (FDR) < 0.01]. Several other fatty acids, including palmitate, stearate, and linoleate, were higher in OBLA vs. OBHA groups. CB metabolites, such as lauric acid, a medium-chain fatty acid that may improve insulin sensitivity, were associated with neonatal adiposity differently between offspring of women with and without obesity. Changes in metabolically active lipids at birth may have long-term consequences for offspring metabolism.NEW & NOTEWORTHY Using untargeted metabolomics in 100 newborns, we found that cord blood metabolite signatures associated with neonatal adiposity differed between offspring of women with and without obesity.


Assuntos
Adiposidade , Obesidade Materna , Peso ao Nascer , Índice de Massa Corporal , Feminino , Humanos , Recém-Nascido , Ácidos Láuricos , Metabolômica , Obesidade/metabolismo , Gravidez
12.
Artigo em Inglês | MEDLINE | ID: mdl-35499234

RESUMO

Selenoprotein P (SeP; encoded by SELENOP in humans, Selenop in rodents) is a hepatokine that is upregulated in the liver of humans with type 2 diabetes. Excess SeP contributes to the onset of insulin resistance and various type 2 diabetes-related complications. We have previously reported that the long-chain saturated fatty acid, palmitic acid, upregulates Selenop expression, whereas the polyunsaturated fatty acids (PUFAs) downregulate it in hepatocytes. However, the effect of medium-chain fatty acids (MCFAs) on Selenop is unknown. Here we report novel mechanisms that underlie the lauric acid-mediated Selenop gene regulation in hepatocytes. Lauric acid upregulated Selenop expression in Hepa1-6 hepatocytes and mice liver. A luciferase promoter assay and computational analysis of transcription factor-binding sites identified the hepatic nuclear factor 4α (HNF4α) binding site in the SELENOP promoter. A chromatin immunoprecipitation (ChIP) assay showed that lauric acid increased the binding of HNF4α to the SELENOP promoter. The knockdown of Hnf4α using siRNA canceled the upregulation of lauric acid-induced Selenop. Thus, the lauric acid-induced impairment of Akt phosphorylation brought about by insulin was rescued by the knockdown of either Hnf4α or Selenop. These results provide new insights into the regulation of SeP by fatty acids and suggest that SeP may mediate MCFA-induced hepatic insulin signal reduction.

13.
Br Poult Sci ; 63(5): 650-661, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35363105

RESUMO

1. Due to the increasing global demand for more sustainably produced animal protein, there is an intensive search for feeds to replace soybeans. Black soldier fly larvae (BSFL) appear to have great potential for replacing soybeans in poultry diets. The main objective of this study was to determine if the nutritional value of BSFL is superior to soybeans when feeding organic broilers, since smaller amounts of BSFL could replace the soybean content in the feed, thus saving even more resources.2. Eighty Hubbard S757, a slow growing organic broiler type, were fattened for 63 d, spending the last 49 d on one of five diets. Two soybean cake- and soybean oil-based diets (SS, SS-) were compared with three diets based on partially defatted BSFL meal and BSFL fat from two origins (AA-, AB-, BB-). Different from diet SS, diets SS-, AA-, AB-and BB- were designed with approximately 20% less lysine and methionine. Growth (n = 16), metabolisability, body nitrogen retention, carcase and meat quality (n = 8) were evaluated.3. Broilers of the insect-based feeding groups, AA- and AB-, grew similarly well compared to those of group SS. They also retained more nitrogen in the body than those fed BB- and SS-. Breast meat yield was higher with AA- and AB- than with BB- and SS-, but still lower than with SS. Dietary variations in physicochemical meat quality were of low practical relevance. Diet BB- resulted in a more yellow skin and meat. The fatty acid profile of the breast meat lipids reflected the high lauric acid proportion of the BSFL lipids, resulting in up to 80 times higher proportions than when feeding the soybean-based diets.4. The results indicate that high-quality BSFL, depending on their origin, may indeed be superior to soybean protein, but that the meat lipids from BSFL-fed broilers can contain significant amounts of lauric acid, which, from a human nutrition perspective, could have a negative impact on meat quality.


Assuntos
Ração Animal , Glycine max , Animais , Ração Animal/análise , Galinhas , Dieta/veterinária , Dípteros , Ácidos Graxos , Larva , Lisina , Carne/análise , Metionina , Nitrogênio , Óleo de Soja , Proteínas de Soja
14.
Microb Pathog ; 158: 105079, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34245824

RESUMO

Brucella abortus, one of the most important members of the genus Brucella responsible for human disease, is an intracellular pathogen capable of avoiding or interfering components of the host immune responses that are critical for its virulence. GPR84, on the other hand, is a seven-transmembrane GPCR involved in the inflammatory response and its induced expression was associated with B. abortus infection of RAW264.7 cells. Here we examined the effects of the reported GPR84 surrogate and endogenous agonists, namely 6-n-octylaminouracil (6-OAU) and lauric acid (LU), respectively in the progression of B. abortus infection in a cell and mouse models. The in vitro studies revealed the LU had bactericidal effect against Brucella starting at 24 h post-incubation. Adhesion of Brucella to RAW264.7 cells was attenuated in both 6-OAU and LU treatments. Brucella uptake was observed to be inhibited in a dose and time-dependent manner in 6-OAU but only at the highest non-cytotoxic concentration in LU-treated cells. However, survival of Brucella within the cells was reduced only in LU-treated cells. We also investigated the possible inhibitory effects of the agonist in other Gram-negative bacterium, Salmonella Typhimurium and we found that both adhesion and uptake were inhibited in 6-OAU treatment and only the intracellular survival for LU treatment. Furthermore, 6-OAU treatment reduced ERK phosphorylation and MCP-1 secretion during Brucella infection as well as reduced MALT1 protein expression and ROS production in cells without infection. LU treatment attenuated ERK and JNK phosphorylation, MCP-1 secretion and NO accumulation but increased ROS production during infection, and similar pattern with MALT1 protein expression. The in vivo studies showed that both treatments via oral route augmented resistance to Brucella infection but more pronounced with 6-AOU as observed with reduced bacterial proliferation in spleens and livers. At 7 d post-treatment and 14 d post-infection, 6-OAU-treated mice displayed reduced IFN-γ serum level. At 7 d post-infection, high serum level of MCP-1 was observed in both treatments with the addition of TNF-α in LU group. IL-6 was increased in both treatments at 14 d post-infection with higher TNF-α, MCP-1 and IL-10 in LU group. Taken together, 6-OAU and LU are potential candidates representing pharmaceutical strategy against brucellosis and possibly other intracellular pathogens or inflammatory diseases.


Assuntos
Brucelose , Ácidos Láuricos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Uracila/análogos & derivados , Animais , Brucella abortus , Bovinos , Humanos , Camundongos , Células RAW 264.7 , Uracila/farmacologia
15.
Pharmacol Res ; 164: 105406, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359913

RESUMO

It is well known that free fatty acids (FFAs) have beneficial effects on the skeletal system, however, which fatty acid sensing GPCR(s) and how the GPCR(s) regulating cartilage development and osteoarthritis (OA) pathogenesis is largely unknown. In this study, we found Gpr84, a receptor for medium-chain FFAs (MCFA), was the only FFA-sensing GPCR in human and mouse chondrocytes that exhibited elevated expression when stimulated by interleukin (IL)-1ß. Gpr84-deficiency upregulated cartilage catabolic regulator expression and downregulated anabolic factor expression in the IL-1ß-induced cell model and the destabilization of the medial meniscus (DMM)-induced OA mouse model. Gpr84-/- mice exhibited an aggravated OA phenotype characterized by severe cartilage degradation, osteophyte formation and subchondral bone sclerosis. Moreover, activating Gpr84 directly enhanced cartilage extracellular matrix (ECM) generation while knockout of Gpr84 suppressed ECM-related gene expression. Especially, the agonists of GPR84 protected human OA cartilage explants against degeneration by inducing cartilage anabolic factor expression. At the molecular level, GPR84 activation inhibited IL-1ß-induced NF-κB signaling pathway. Furthermore, deletion of Gpr84 had little effect on articular and spine cartilaginous tissues during skeletal growth. Together, all of our results demonstrated that fatty acid sensing GPCR (Gpr84) signaling played a critical role in OA pathogenesis, and activation of GPR84 or MCFA supplementation has potential in preventing the pathogenesis and progression of OA without severe cartilaginous side effect.


Assuntos
Osteoartrite/genética , Receptores Acoplados a Proteínas G/genética , Animais , Artralgia/genética , Artralgia/metabolismo , Artralgia/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Ácidos Graxos/metabolismo , Homeostase , Humanos , Interleucina-1beta/farmacologia , Articulação do Joelho/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Coluna Vertebral/patologia , Tíbia/patologia
16.
Bioprocess Biosyst Eng ; 44(9): 1807-1818, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34009462

RESUMO

Virgin coconut oil is a useful substance in our daily life. It contains a high percentage of lauric acid which has many health benefits. The current industry has developed several methods to extract the oil out from the coconut fruit. This review paper aims to highlight several common extraction processes used in modern industries that includes cold extraction, hot extraction, low-pressure extraction, chilling, freezing and thawing method, fermentation, centrifugation, enzymatic extraction and supercritical fluid carbon dioxide. Different extraction methods will produce coconut oil with different yields and purities of lauric acid, thus having different uses and applications. Challenges that are faced by the industries in extracting the coconut oil using different methods of extraction are important to be explored so that advancement in the oil extraction technology can be done for efficient downstream processing. This study is vital as it provides insights that could enhance the production of coconut oil.


Assuntos
Óleo de Coco/química , Cocos/química , Frutas/química , Ácidos Láuricos/química , Ácidos Láuricos/isolamento & purificação
17.
Trop Anim Health Prod ; 53(4): 433, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34386894

RESUMO

This study evaluated the effects of dietary inclusion of cracked babassu coconut (CBC) in the supplement on nutrient utilization, performance, and milk fatty acid (FA) composition of dairy cows grazing Megathyrsus maximus cv. Mombasa. Five multiparous Holstein × Zebu mid-lactation cows (125 ± 16.5 days in milk) were assigned to five dietary treatments (replacement of 0%, 20%, 40%, 60%, and 80% of ground corn with CBC, on a dry matter (DM) basis) in a 5 × 5 Latin square design. The intake of DM from the supplement, crude protein (CP), non-fiber carbohydrate (NFC), fat (ether extract (EE)), and total digestible nutrients (TDNs) decreased linearly (P < 0.05), while the intake of DM from forage increased linearly (P < 0.05), with the increase in CBC inclusion in the supplement. Conversely, total DM intake was unaffected (P > 0.05). The DM, NFC, EE, and TDN digestibility decreased linearly (P < 0.05), while organic matter (OM) digestibility decreased in a quadratic fashion (P < 0.05), as CBC inclusion in the supplement increased. Nevertheless, digestibility of CP was unaffected (P > 0.05). Milk yield and composition (lactose, fat, protein, casein, and majority of FA) showed a linearly decreasing pattern (P < 0.05) with the increasing of CBC inclusion. However, proportions of trans-vaccenic acid, rumenic acid, total monounsaturated FA, and odd- and branched-chain FAs increased linearly (P < 0.05). On the opposite, total saturated FA (SFA) and the n-6:n-3 FA ratio in milk fat decreased linearly (P < 0.01). Hence, replacement of corn meal with CBC up to 80% in the supplement decreases nutrient intake and digestibility, as well as milk yield response in grazing dairy cows. However, CBC inclusion may enhance the nutritional properties of milk fat.


Assuntos
Ácidos Graxos , Leite , Ração Animal/análise , Animais , Bovinos , Cocos , Dieta/veterinária , Suplementos Nutricionais , Digestão , Feminino , Quênia , Lactação , Nutrientes
18.
Ann Hum Genet ; 84(5): 400-411, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32396266

RESUMO

The objectives of the present study were to identify CYP4V2 genetic variants and characterize their functional consequences. A total of 26CYP4V2 genetic variants were identified, including seven novel variants in 60 randomly selected healthy subjects. Six protein-coding variants were studied, including three novel variants (L22V, R287T, and G410C) and three previously reported variants (R36S, Q259K, and H331P). The cDNA sequences encoding each amino acid variant and the wild-type CYP4V2 protein were cloned into the pcDNA/PDEST40 expression vector and transfected into eukaryotic 293T cells for overexpression of the CYP4V2 coding variants. CYP4V2 H331P and CYP4V2 G410C exhibited significant decreases in activity for lauric acid oxidation (20-30% of wild-type activity), when compared to the wildtype, which was correlated with low expression of CYP4V2 H331P and G410C substituted proteins. The other four CYP4V2 amino variants were comparable to wild-type CYP4V2 for lauric acid metabolism. The CYP4V2 H331P and G410C substitutions were predicted to cause a structural change through in silico analysis. In conclusion, the present study provides functional information about CYP4V2 genetic variants. These findings will be valuable for interpreting individual variations in phenotypes associated with CYP4V2 function in the clinical setting.


Assuntos
Povo Asiático/genética , Família 4 do Citocromo P450/genética , Ácidos Láuricos/metabolismo , Adulto , Sequência de Aminoácidos , Haplótipos , Humanos , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , República da Coreia , Adulto Jovem
19.
Microb Pathog ; 147: 104261, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32422333

RESUMO

Glycerol monolaurate (GML) is composed of lauric acid and glycerol. Research has shown that such organic acids can minimize negative effects caused by mycotoxins. Therefore, the objective of this study was to determine whether adding GML (free or encapsulated) to chick feed minimizes the effects of natural contamination by fumonisin (Fusarium verticillioides), evaluating parameters such as biochemistry, antioxidant properties, histological analysis and chick growth. Were weighed 84 chicks of the Cobb 500 strain and randomly distributed them into six groups of two replicates each (n = 14). The F group consumed feed containing fumonisin (levels 400 ppb), with no performance enhancer; F + ZB- feed with fumonisin (levels 400 ppb) + zinc bacitracin; F + GLM100 - feed with fumonisin (levels 400 ppb) + 100 mg of GML/kg of feed; F + NGLM4 - feed with fumonisin (levels 400 ppb) + 4 mg GML/kg in nanocapsules added to the feed; F + NGLM8 - fumonisin feed (levels 400 ppb) + 8 mg GML/kg in nanocapsules in the feed; and F0 - fumonisin-free feed (negative control) + zinc bacitracin. The body weights of birds fed with feed fumonisin-contaminated feed (F, F + ZB, F + GLM100, F + NGLM4 and F + NGLM8) were significantly lower (P < 0.05) than those of the negative control (F0), despite the use of GML (free and nanoencapsulated). Serum levels of triglycerides, globulins and cholesterol were significantly lower in the F0 group than in the other groups (P < 0.05), except for the F + NGLM8 group. Significantly greater levels of lipid peroxidation were observed in livers in the groups that consumed fumonisin than in the control group (F0) (P < 0.05). Serum levels of reactive oxygen species were significantly lower in groups F + NGLM8 and F0 than in the other treatments (P < 0.05). Superoxide dismutase activity was significantly greater in groups F + NGLM8 and F0 than in groups F, F + ZB and F + NGLM4. Hepatic catalase activity was significantly lower in birds that consumed contaminated feed (F, F + ZB, F + GLM100, F + NGLM4 and F + NGLM8) than in the control group (F0). Greater hepatic glutathione S-transferase activity was observed in the F + NGLM8 group than in the F0 group. Despite changes in cellular lesions in the liver, no histological changes were observed in the liver or intestines, even though visually there was yellowing of the liver. Taken together, the data suggest that free or nano-encapsulated GML did not minimize oxidative stress caused by fumonisin, and consequently, these birds had less weight gain.


Assuntos
Fumonisinas , Ração Animal/análise , Animais , Galinhas , Dieta , Fumonisinas/toxicidade , Fusarium , Lauratos , Fígado , Monoglicerídeos
20.
Mol Biol Rep ; 47(12): 9595-9607, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33259010

RESUMO

Mitochondrial dysfunction plays a crucial role in the central pathogenesis of insulin resistance and type 2 diabetes mellitus. Macrophages play important roles in the pathogenesis of insulin resistance. Lauric acid is a 12-carbon medium chain fatty acid (MCFA) found abundantly in coconut oil or palm kernel oil and it comes with multiple beneficial effects. This research objective was to uncover the effects of the lauric acid on glucose uptake, mitochondrial function and mitochondrial biogenesis in insulin-resistant macrophages. THP-1 monocytes were differentiated into macrophages and induce insulin resistance, before they were treated with increasing doses of lauric acid (5 µM, 10 µM, 20 µM, and 50 µM). Glucose uptake assay, cellular ROS and ATP production assays, mitochondrial content and membrane potential assay were carried out to analyse the effects of lauric acid on insulin resistance and mitochondrial biogenesis in the macrophages. Quantitative RT-PCR (qRT-PCR) and western blot analysis were also performed to determine the expression of the key regulators. Insulin-resistant macrophages showed lower glucose uptake, GLUT-1 and GLUT-3 expression, and increased hallmarks of mitochondrial dysfunction. Interestingly, lauric acid treatment upregulated glucose uptake, GLUT-1 and GLUT-3 expressions. The treatment also restored the mitochondrial biogenesis in the insulin-resistant macrophages by improving ATP production, oxygen consumption, mitochondrial content and potential, while it promoted the expression of mitochondrial biogenesis regulator genes such as TFAM, PGC-1α and PPAR-γ. We show here that lauric acid has the potential to improve insulin sensitivity and mitochondrial dysregulation in insulin-resistant macrophages.


Assuntos
Glucose/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Ácidos Láuricos/farmacologia , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Humanos , Resistência à Insulina , Macrófagos/citologia , Macrófagos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Biogênese de Organelas , PPAR gama/genética , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA