Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Chemistry ; 30(28): e202400410, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38483106

RESUMO

We have prepared and characterized three coordination polymers formulated as [Dy2(C6O4Cl2)3(fma)6] ⋅ 4.5fma (1) and [Dy2(C6O4X2)3(fma)6] ⋅ 4fma ⋅ 2H2O with X=Br (2) and Cl (3), where fma=formamide and C6O4X2 2-=3,6-disubstituted-2,5-dihydroxy-1,4-benzoquinone dianion with X=Cl (chloranilato) and Br (bromanilato). Compounds 1 and 3 are solvates obtained with slow and fast precipitation methods, respectively. Compounds 2 and 3 are isostructural and only differ in the X group of the anilato ligand. The three compounds present (6,3)-gon two-dimensional hexagonal honey-comb structures. Magnetic measurements indicate that the three compounds show slow relaxation of the magnetization at low temperatures when a continuous magnetic field is applied, although with different relaxation times and energy barriers depending on X and the crystallisation molecules. Compounds 1-3 represent the first examples of anilato-based lattices with formamide and field-induced slow relaxation of the magnetization.

2.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446565

RESUMO

Asymmetric two-dimensional (2D) structures (often named Janus), like SeMoS and their nanotubes, have tremendous scope in material chemistry, nanophotonics, and nanoelectronics due to a lack of inversion symmetry and time-reversal symmetry. The synthesis of these structures is fundamentally difficult owing to the entropy-driven randomized distribution of chalcogens. Indeed, no Janus nanotubes were experimentally prepared, so far. Serendipitously, a family of asymmetric misfit layer superstructures (tubes and flakes), including LaX-TaX2 (where X = S/Se), were synthesized by high-temperature chemical vapor transport reaction in which the Se binds exclusively to the Ta atoms and La binds to S atoms rather than the anticipated random distribution. With increasing Se concentration, the LaS-TaX2 misfit structure gradually transformed into a new LaS-TaSe2-TaSe2 superstructure. No misfit structures were found for xSe = 1. These counterintuitive results shed light on the chemical selectivity and stability of misfit compounds and 2D alloys, in general. The lack of inversion symmetry in these asymmetric compounds induces very large local electrical dipoles. The loss of inversion and time-reversal symmetries in the chiral nanotubes offers intriguing physical observations and applications.

3.
Small ; 19(12): e2206430, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642833

RESUMO

The attention on group III-VI compounds in the last decades has been centered on the optoelectronic properties of indium and gallium chalcogenides. These outstanding properties are leading to novel advancements in terms of fundamental and applied science. One of the advantages of these compounds is to present laminated structures, which can be exfoliated down to monolayers. Despite the large knowledge gathered toward indium and gallium chalcogenides, the family of the group III-VI compounds embraces several other noncommon compounds formed by the other group III elements. These compounds present various crystal lattices, among which a great deal is offered from layered structures. Studies on aluminium chalcogenides show interesting potential as anodes in batteries and as semiconductors. Thallium (Tl), which is commonly present in the +1 oxidation state, is one of the key components in ternary chalcogenides. However, binary Tl-Q (Q = S, Se, Te) systems and derived films are still studied for their semiconducting and thermoelectric properties. This review aims to summarize the biggest features of these unusual materials and to shed some new light on them with the perspective that in the future, novel studies can revive these compounds in order to give rise to a new generation of technology.

4.
Chemistry ; 29(62): e202302042, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37797189

RESUMO

Copper(II) silver(II) sulfate crystallizes in a monoclinic CuSO4 -related structure with P21 /n symmetry. This quasi-ternary compound features Ag(SO4 )2 2- layers, while the remaining cationic sites may be occupied either completely or partially by Cu2+ cations, corresponding to the formula of (Cux Ag1-x )[Ag(SO4 )2 ], x=0.6-1.0. CuAg(SO4 )2 is antiferromagnetic with large negative Curie-Weiss temperature of -140 K and shows characteristic ordering phenomenon at 40.4 K. Density functional theory calculations reveal that the strongest superexchange interaction is a two-dimensional antiferromagnetic coupling within Ag(SO4 )2 2- layers, with the superexchange constant J2D of -11.1 meV. This renders CuAg(SO4 )2 the rare representative of layered Ag2+ -based antiferromagnets. Magnetic coupling is facilitated by the strong mixing of Ag d(x2 -y2 ) and O 2p states. Calculations show that M2+ sites in MAg(SO4 )2 can be occupied with other similar cations such as Zn2+ , Cd2+ , Ni2+ , Co2+ , and Mg2+ .

5.
Molecules ; 28(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375362

RESUMO

A protonated and hydrated Dion-Jacobson-phase HSr2Nb3O10∙yH2O was used to prepare two series of inorganic-organic derivatives containing non-covalently intercalated n-alkylamines and covalently grafted n-alkoxy groups of different lengths, as they are promising hybrid materials for photocatalytic applications. Preparation of the derivatives was carried out both under the conditions of standard laboratory synthesis and by solvothermal methods. For all the hybrid compounds synthesized structure, quantitative composition, a type of bonding between inorganic and organic parts as well as light absorption range were discussed using powder XRD, Raman, IR and NMR spectroscopy, TG, elemental CHN analysis, and DRS. It was shown that the inorganic-organic samples obtained contain approximately one interlayer organic molecule or group per proton of the initial niobate, as well as some amount of intercalated water. In addition, the thermal stability of the hybrid compounds strongly depends on the nature of the organic component anchoring to the niobate matrix. Although non-covalent amine derivatives are stable only at low temperatures, covalent alkoxy ones can withstand heat up to 250 °C without perceptible decomposition. The fundamental absorption edge of both the initial niobate and the products of its organic modification lies in the near-ultraviolet region (370-385 nm).

6.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838688

RESUMO

This paper reports an easy route to immobilize the antiseptic drug miramistin (MR) molecules between the sheets of molybdenum disulfide, known for excellent photothermal properties. Two hybrid layered compounds (LCs) with regularly alternating monolayers of MR and MoS2, differing in thickness of organic layer are prepared and studied by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations and quantum theory of atoms in molecules (QTAIM) topological analysis. The obtained structural models elucidate the noncovalent interaction network of MR molecules confined in the two-dimensional spacing surrounded by sulfide sheets. It emerged that the characteristic folded geometry of MR molecule previously evidenced for pure miramistin is preserved in the hybrid structures. Quantification of the energetics of bonding interactions unveils that the most important contribution to structure stabilization of both compounds is provided by the weak but numerous CH…S bonding contacts. They are accompanied by the intra- and inter-molecular interactions within the MR layers, with dominating bonding effect of intermolecular hydrophobic interaction. The results obtained in the models provide a comprehensive understanding of the driving forces controlling the assembly of MR and MoS2 and may lead towards the development of novel promising MoS2-based photothermal therapeutic agents.


Assuntos
Anti-Infecciosos Locais , Molibdênio , Ligação de Hidrogênio
7.
Angew Chem Int Ed Engl ; 62(9): e202214570, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36581568

RESUMO

Purposely changing the rate-determining step (RDS) of oxygen evolution reaction (OER) remains a major challenge for enhancing the energy efficiency of electrochemical splitting of water. Here we show that the OER RDS can be regulated by simply varying the cation and anion complexity in a family of the metal phosphorous trichalcogenide electrocatalysts (MPT3 , where M=Fe, Ni; T=S, Se), achieving an exceptionally high OER activity in (Ni,Fe)P(S,Se)3 , as demonstrated by its ultra-low Tafel slope (34 mV dec-1 ) and a very low overpotential compared to many relevant OER catalysts. This is strongly supported by density functional theory calculations, which showed that this catalyst has a nearly optimal OER activity descriptor value of ΔG(O*)-ΔG(OH*)=1.5 eV. We also found that the activity descriptor is proportional to a newly proposed cation/anion complexity index that consists of pairwise contributions from cation-anion bonds in a catalyst compound, revealing the pivotal role of the cation-anion interactions in determining the catalyst performance and providing a simple way for predicting catalytic activities.

8.
Chemistry ; 28(32): e202200234, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35357741

RESUMO

In recent years all-solid-state sodium-ion batteries (SS-SIBs) have drawn significant attention due to their potential to be safer and lower cost than lithium-ion batteries. However, the lack of sodium solid-state electrolytes with high ionic conductivity has become one of the major challenges. Here, with first-principles computation we took NaCuZrS3 , consisting of earth-abundant and environmentally benign elements only, as an example to study Na-ion transport in the post-perovskite-like structure and used computation-guided design to improve its potential as a solid-state electrolyte. With ab initio molecular dynamics simulation and nudged elastic band calculation, we studied possible diffusion mechanisms in this material and found that Na ion interstitials have a favorable migration barrier of 0.22 eV, which is among the smallest in the literature reported values. Considering the large formation energy of Frenkel defects, we proposed doping strategy to introduce extra Na interstitials in the material. Our study suggests that the post-perovskite-like sulfides are worth of exploration for applications in SS-SIBs.

9.
Proc Natl Acad Sci U S A ; 116(1): 58-66, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30563858

RESUMO

In the fast-evolving field of halide perovskite semiconductors, the 2D perovskites (A')2(A) n-1M n X3n+1 [where A = Cs+, CH3NH3+, HC(NH2)2+; A' = ammonium cation acting as spacer; M = Ge2+, Sn2+, Pb2+; and X = Cl-, Br-, I-] have recently made a critical entry. The n value defines the thickness of the 2D layers, which controls the optical and electronic properties. The 2D perovskites have demonstrated preliminary optoelectronic device lifetime superior to their 3D counterparts. They have also attracted fundamental interest as solution-processed quantum wells with structural and physical properties tunable via chemical composition, notably by the n value defining the perovskite layer thickness. The higher members (n > 5) have not been documented, and there are important scientific questions underlying fundamental limits for n To develop and utilize these materials in technology, it is imperative to understand their thermodynamic stability, fundamental synthetic limitations, and the derived structure-function relationships. We report the effective synthesis of the highest iodide n-members yet, namely (CH3(CH2)2NH3)2(CH3NH3)5Pb6I19 (n = 6) and (CH3(CH2)2NH3)2(CH3NH3)6Pb7I22 (n = 7), and confirm the crystal structure with single-crystal X-ray diffraction, and provide indirect evidence for "(CH3(CH2)2NH3)2(CH3NH3)8Pb9I28" ("n = 9"). Direct HCl solution calorimetric measurements show the compounds with n > 7 have unfavorable enthalpies of formation (ΔHf), suggesting the formation of higher homologs to be challenging. Finally, we report preliminary n-dependent solar cell efficiency in the range of 9-12.6% in these higher n-members, highlighting the strong promise of these materials for high-performance devices.

10.
Nanotechnology ; 32(48)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298524

RESUMO

Owing to their unique structural and electronic properties such as layered structure with tuneable bandgap and high electron mobility, 2D materials have emerged as promising candidates for photocatalysis. Recently, bismuth oxyselenide (Bi2O2Se), a member of bismuth oxychalcogenide's family has shown great potential in high-speed field-effect transistors, infrared photodetectors, ferroelectric devices, and electrochemical sensors. However, the potential of Bi2O2Se in photocatalysis has not yet been explored. In the current work, Bi2O2Se nanosheets with an average size of ∼170 nm and a lattice strain of 0.01 were synthesized at room temperature using a facile solution-processed method and the as-synthesized material was investigated with various characterization techniques such as x-ray diffraction, FE-SEM, UV-vis spectroscopy. The bandgap for the indirect transition in Bi2O2Se nanosheets was estimated to be 1.19 eV. Further, the visible-light-driven photocatalytic degradation of methylene blue (MB) dye using Bi2O2Se as a photocatalyst is presented. The photocatalytic experiments demonstrate the promising photocatalytic ability of Bi2O2Se as it leads to 25.06% degradation of MB within 80 min of light illumination. The effect of active species trapping agents (carrier and radical scavengers) on photocatalytic activity is also presented and discussed.

11.
Angew Chem Int Ed Engl ; 60(15): 8289-8296, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33491840

RESUMO

Anode-free lithium metal batteries can maximize the energy density at the cell level. However, without the Li compensation from the anode side, it faces much more challenging to achieve a long cycling life with a competitive energy density than Li metal-based batteries. Here, we prolong the lifespan of an anode-free Li metal battery by introducing Li-rich Li2 [Ni0.8 Co0.1 Mn0.1 ]O2 into the cathode as a Li-ions extender. The Li2 [Ni0.8 Co0.1 Mn0.1 ]O2 can release a large amount of Li-ions during the first charging process to supplement the Li loss in the anode, then convert into NCM811, thus extending the lifespan of the battery without the introduction of inactive elements. By the benefit of Li-rich cathode and high reversibility of Li metal on Cu foil, the anode-free pouch cells enable to achieve 447 Wh kg-1 energy density and 84 % capacity retention after 100 cycles in the condition of limited electrolyte addition (E/C ratio of 2 g Ah-1 ).

12.
Chemistry ; 26(32): 7244-7249, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32153069

RESUMO

NiFe layered double hydroxides (LDHs) have been denoted as benchmark non-noble-metal electrocatalysts for the oxygen evolution reaction (OER). However, for laminates of NiFe LDHs, the edge sites are active, but the basal plane is inert, leading to underutilization as catalysts for the OER. Herein, for the first time, light and electron-deficient Li ions are intercalated into the basal plane of NiFe LDHs. The results of theoretical calculations and experiments both showed that electrons would be transferred from near Ni2+ to the surroundings of Li+ , resulting in electron-deficient properties of the Ni sites, which would function as "electron-hungry" sites, to enhance surface adsorption of electron-rich oxygen-containing groups, which would enhance the effective activity for the OER. As demonstrated by the catalytic performance, the Li-NiFe LDH electrodes showed an ultralow overpotential of only 298 mV at 50 mA cm-2 , which was lower than that of 347 mV for initial NiFe LDHs and lower than that of 373 mV for RuO2 . Reasonable intercalation adjustment effectively activates laminated Ni2+ sites and constructs the electron-deficient structure to enhance its electrocatalytic activity, which sheds light on the functional treatment of catalytic materials.

13.
Chemistry ; 26(63): 14359-14365, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32557928

RESUMO

A highly effective way to produce an oxygen reduction electrocatalyst was developed through the self-assembly of exfoliated single layers of cobalt hydroxide (Co(OH)2 ) and graphene oxide (GO). These 2D materials have complete contact with one another because of their physical flexibility and the electrostatic attraction between negatively charged GO and positively charged Co(OH)2 layers. The strong coupling induces transformation of the Co(OH)2 single layer into a discrete nanocrystal of spinel Co3 O4 with an average size of 8 nm on reduced GO (RGO) during calcination, which could not be obtained with bulk-layered cobalt hydroxide because of its rapid layer collapse. The ultrafine Co3 O4 /RGO hybrid exhibited not only comparable performance in the oxygen reduction reaction but also higher durability compared with the commercial 20 wt % Pt/C catalyst.

14.
Chemistry ; 26(46): 10459-10470, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32427389

RESUMO

In this work, an MWW-type zeolite with pillars containing silicon and niobium oxide was synthesized to obtain a hierarchical zeolite. The effect of niobium insertion in the pillaring process was determined by combining a controllable acidity and accessibility in the final material. All pillared materials had niobium occupying framework positions in pillars and extra-framework positions. The pillared material, Pil-Nb-4.5 with 4.5 wt % niobium, did not compromise the mesoporosity formed by pillaring, while the increase of niobium in the structure gradually decreased the mesoporosity and ordering of lamellar stacking. The morphology of the pillared zeolites and the niobium content were found to directly affect the catalytic activity. Specifically, we report on the activity of the MWW-type zeolites with niobium catalyzing the gas-phase oxidation of volatile organic compounds (VOCs), which is an important reaction for clean environmental. All produced MWW-type zeolites with niobium were catalytically active, even at low temperatures and low niobium loading, and provided excellent conversion efficiencies.

15.
Chemistry ; 26(47): 10676-10681, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32220131

RESUMO

The layered compound Sn2.8(4) Bi20.2(4) Se27 exhibits an extraordinarily long-periodic 150R stacking sequence. The crystal structure contains three different building blocks, which form upon the addition of Sn to a Bi-rich bismuth selenide. Sn-doped Bi2 double ("2") layers similar to those in elemental bismuth, Sn0.3 Bi1.7 Se3 quintuple ("5") layers and Sn0.4 Bi2.6 Se4 septuple ("7") layers are arranged in a 7525757525|7525757525|7525757525 sequence, which corresponds to a structure with a=4.1819(4) and c=282.64(6) Šin space group R 3 ‾ m. The structure of a microcrystal was determined using microfocused synchrotron radiation and refined as a formally commensurately modulated structure in (3+1)D superspace (superspace group R 3 ‾ m(00γ)00), with a trivial basic structure that contains just one atom. The stacking sequence as well as the cation distribution are confirmed by aberration-corrected scanning transmission electron microscopy (STEM) in combination with chemical mapping by X-ray spectroscopy with atomic resolution. Stacking faults are not typical but have been observed occasionally.

16.
Chemistry ; 26(45): 10307-10313, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32363612

RESUMO

Recently, 2D organic-inorganic hybrid lead halide perovskites have attracted intensive attention in solid-state luminescence fields such as single-component white-light emitters, and rational optimization of the photoluminescence (PL) performance through accurate structural-design strategies is still significant. Herein, by carefully choosing homologous aliphatic amines as templates, isotypical perovskites [DMEDA]PbCl4 (1, DMEDA=N,N-dimethylethylenediamine) and [DMPDA]PbCl4 (2, DMPDA=N,N-dimethyl-1,3-diaminopropane) having tunable and stable broadband bluish white emission properties were rationally designed. The subtle regulation of organic cations leads to a higher degree of distortion of the 2D [PbCl4 ]2- layers and enhanced photoluminescence quantum efficiencies (<1 % for 1 and 4.9 % for 2). The broadband light emissions could be ascribed to self-trapped excitons on the basis of structural characterization, time-resolved PL, temperature-dependent PL emission, and theoretical calculations. This work gives a new guidance to rationally optimize the PL properties of low-dimensional halide perovskites and affords a platform to probe the structure-property relationship.

17.
Chemistry ; 26(29): 6679-6685, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32314827

RESUMO

SnS and SnS2 are layered semiconductors, with potential promising properties for electro- and photocatalytic hydrogen (H2 ) production. The vast knowledge in preparation and modification of layered structures was still not employed successfully in this system to fully maximize its potential. Here, the first report of structural transformation of SnS2 into SnS with Mo-doping as a bifunctional catalyst for the hydrogen evolution reaction (HER) is reported. The structural phase transition optimized the properties of the material, providing a more delicate morphology with additional catalytic sites. The electrochemical studies showed overpotential of 377 mV at 10 mA cm-2 for HER with Tafel slopes of 100 mV dec-1 in 0.5 m H2 SO4 for 10 % Mo-SnS. The same structure acts as an efficient photocatalyst in the generation of H2 from water under visible illumination with rate of 0.136 mmol g-1 h-1 of H2 , which is 20 times higher than pristine SnS2 under visible light.

18.
Chemistry ; 26(29): 6504-6517, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32053228

RESUMO

Layered double hydroxides (LDHs) are a class of 2D anionic materials exhibiting wide chemical versatility and promising applications in different fields, ranging from catalysis to energy storage and conversion. However, the covalent chemistry of this kind of 2D materials is still barely explored. Herein, the covalent functionalization with silanes of a magnetic NiFe-LDH is reported. The synthetic route consists of a topochemical approach followed by anion exchange reaction with surfactant molecules prior to covalent functionalization with the (3-aminopropyl)triethoxysilane (APTES) molecules. The functionalized NiFe-APTES was fully characterized by X-ray diffraction, infrared spectroscopy, electron microscopy, thermogravimetric analysis coupled with mass spectrometry and 29 Si solid-state nuclear magnetic resonance, among others. The effect on the electronic properties of the functionalized LDH was investigated by a magnetic study in combination with Mössbauer spectroscopy. Moreover, the reversibility of the silane-functionalization at basic pH was demonstrated, and the quality of the resulting LDH was proven by studying the electrochemical performance in the oxygen evolution reaction in basic media. Furthermore, the anion exchange capability for the NiFe-APTES was tested employing CrVI , resulting in an increase of 200 % of the anion retention. This report allows for a new degree of tunability of LDHs, opening the door to the synthesis of new hybrid architectures and materials.

19.
Chemistry ; 26(35): 7747-7766, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32086844

RESUMO

Sodium-ion batteries (SIBs) have attracted much attention due to their abundance, easy accessibility, and low cost. All of these advantages make them potential candidates for large-scale energy storage. The P2-type layered transition-metal oxides (Nax TMO2 ; TM=Mn, Co, Ni, Ti, Fe, V, Cr, and a mixture of multiple elements) exhibit good Na+ ion conductivity and structural stability, which make them an excellent choice for the cathode materials of SIBs. Herein, the structural evolution, anionic redox reaction, some challenges, and recent progress of Nax TMO2 cathodes for SIBs are reviewed and summarized. Moreover, a detailed understanding of the relationship of chemical components, structures, phase compositions, and electrochemical performance is presented. This Review aims to provide a reference for the development of P2-type layered transition-metal oxide cathode materials for SIBs.

20.
Chemistry ; 26(70): 16755-16766, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32648594

RESUMO

The insertion of "sandwiched spins" between magnetic layers could efficiently affect the interlayer magnetic correlations, but doing so increases the complexity in the interlayer spin alignment because of competition between the inserted spin-layer interaction JNNI and the interlayer through-space interaction JNNNI if the magnitude of JNNI is of the same order as JNNNI with reciprocal signs of the respective interactions. Herein, systematic tuning of the magnetic phase variations by JNNI and JNNNI in two kinds of metal-variable isostructural series of supramolecular pillared layer magnets [MCp*2 ][{Ru2 II,II (2,3,5,6-F4 CO2 )4 }2 (TCNQ)]⋅2 DCE (M=Co, Fe, Cr; 2,3,5,6-F4 PhCO2 - =2,3,5,6-tetrafluorobenzoate; TCNQ=7,7,8,8-tetracyano-p-quinodimethane; DCE=1,2-dichloroethane) and their DCE-free series, in which [MCp*2 ]+ (Cp*=η5 -C5 Me5 ) species with S=0, 1/2, and 3/2 for M=Co, Fe, Cr, respectively, are sandwiched between ferrimagnetic layers of [{Ru2 }2 (TCNQ)]- , is demonstrated. The results showed that the flexible magnetic natures of these magnets are changeable in dependence on JNNI and JNNNI , as well as on interlayer inserted spins M.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA