RESUMO
PURPOSE: Diabetes mellitus (DM)-induced brain damage is characterized by cellular, molecular and functional changes. The mechanisms include oxidative stress, neuroinflammation, reduction of neurotrophic factors, insulin resistance, excessive amyloid beta (Aß) deposition and Tau phosphorylation. Both antidiabetic and neuroprotective effects of the phytoestrogen genistein have been reported. However, the beneficial effect of genistein in brain of the ob/ob mouse model of severe obesity and diabetes remains to be determined. METHODS: In this study, female ob/ob mice and lean control mice were fed with either a standard diet or a diet containing genistein (600mg/kg) for a period of 4 weeks. Body weight was monitored weekly. Blood was collected for the measurement of glucose, insulin and common cytokines. Mice brains were isolated for Western immunoblotting analyses. RESULTS: Treatment with genistein reduced weight gain of ob/ob mice and decreased hyperglycemia compared to ob/ob mice fed the standard diet. The main findings show that genistein treatment increased insulin sensitivity and the expression levels of the neurotrophic factors nerve growth factor (NGF) and brain-derived neurotrophic factors (BDNF). In these mice, genistein also reduced Aß deposition and the level of hyper-phosphorylated Tau protein. CONCLUSION: The results of our study indicate the beneficial effects of genistein in the obese diabetic mouse brain, including improving brain insulin signaling, increasing neurotrophic support, and alleviating Alzheimer's disease-related pathology.
Assuntos
Encéfalo/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Genisteína/farmacologia , Fármacos Neuroprotetores/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Dieta , Feminino , Genisteína/administração & dosagem , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fármacos Neuroprotetores/administração & dosagem , Aumento de Peso/efeitos dos fármacosRESUMO
BACKGROUND: Growing evidence supports the role of gut microbiota in obesity and its related disorders including type 2 diabetes. Ob/ob mice, which are hyperphagic due to leptin deficiency, are commonly used models of obesity and were instrumental in suggesting links between gut microbiota and obesity. Specific changes in their gut microbiota such as decreased microbial diversity and increased Firmicutes to Bacteroidetes ratio have been suggested to contribute to obesity via increased microbiota capacity to harvest energy. However, the differential development of ob/ob mouse gut microbiota compared to wild type microbiota and the role of hyperphagia in their metabolic impairment have not been investigated thoroughly. RESULTS: We performed a 10-week long study in ob/ob (n = 12) and wild type control (n = 12) mice fed ad libitum. To differentiate effects of leptin deficiency from hyperphagia, we pair-fed an additional group of ob/ob mice (n = 11) based on the food consumption of control mice. Compared to control mice, ob/ob mice fed ad libitum exhibited compromised glucose metabolism and increased body fat percentage. Pair-fed ob/ob mice exhibited even more compromised glucose metabolism and maintained strikingly similar high body fat percentage at the cost of lean body mass. Acclimatization of the microbiota to our facility took up to 5 weeks. Leptin deficiency impacted gut microbial composition, explaining 18.3% of the variance. Pair-feeding also altered several taxa, although the overall community composition at the end of the study was not significantly different. We found 24 microbial taxa associations with leptin deficiency, notably enrichment of members of Lactobacillus and depletion of Akkermansia muciniphila. Microbial metabolic functions related to energy harvest, including glycan degradation, phosphotransferase systems and ABC transporters, were enriched in the ob/ob mice. Taxa previously reported as relevant for obesity were associated with body weight, including Oscillibacter and Alistipes (both negatively correlated) and Prevotella (positively correlated). CONCLUSIONS: Leptin deficiency caused major changes in the mouse gut microbiota composition. Several microbial taxa were associated with body composition. Pair-fed mice maintained a pre-set high proportion of body fat despite reduced calorie intake, and exhibited more compromised glucose metabolism, with major implications for treatment options for genetically obese individuals.
RESUMO
Cardiomyocytes are particularly sensitive to oxidative damage due to the link between mitochondria and sarcoplasmic reticulum necessary for calcium flux and contraction. Melatonin, important indoleamine secreted by the pineal gland during darkness, also has important cardioprotective properties. We designed the present study to define morphological and ultrastructural changes in cardiomyocytes and mainly in mitochondria of an animal model of obesity (ob/ob mice), when treated orally or not with melatonin at 100 mg/kg/day for 8 weeks (from 5 up to 13 week of life). We observed that ob/ob mice mitochondria in sub-sarcolemmal and inter-myofibrillar compartments are often devoid of cristae with an abnormally large size, which are called mega-mitochondria. Moreover, in ob/ob mice the hypertrophic cardiomyocytes expressed high level of 4hydroxy-2-nonenal (4HNE), a marker of lipid peroxidation but scarce degree of mitofusin2, indicative of mitochondrial sufferance. Melatonin oral supplementation in ob/ob mice restores mitochondrial cristae, enhances mitofusin2 expression and minimizes 4HNE and p62/SQSTM1, an index of aberrant autophagic flux. At pericardial fat level, adipose tissue depot strictly associated with myocardium infarction, melatonin reduces adipocyte hypertrophy and inversely regulates 4HNE and adiponectin expressions. In summary, melatonin might represent a safe dietary adjuvant to hamper cardiac mitochondria remodeling and the hypoxic status that occur in pre-diabetic obese mice at 13 weeks of life.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Leptina/deficiência , Melatonina/farmacologia , Obesidade/metabolismo , Adiponectina/metabolismo , Aldeídos/metabolismo , Animais , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/metabolismo , Deleção de Genes , Leptina/genética , Peroxidação de Lipídeos , Camundongos , Camundongos Obesos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Obesidade/genética , Proteína Sequestossoma-1/metabolismoRESUMO
OBJECTIVE: To evaluate antidiabetic and anti-inflammatory effects of resveratrol on the ovarian response to controlled ovarian hyperstimulation (COH) in obesity-related infertility. DESIGN: Experimental. SETTING: University laboratory. ANIMAL(S): Sixteen female ob/ob mice and 16 female C57BL/6J mice undergoing COH. INTERVENTION(S): Wild-type placebo group; wild-type resveratrol group; ob/ob mice placebo group; ob/ob mice resveratrol group. Resveratrol 3.75 mg/kg daily for 20 days and undergoing COH protocol. MAIN OUTCOME MEASURE(S): Body and reproductive system weight, food intake, fasting blood glucose, plasma insulin and T levels, and Homeostatic Index of Insulin Resistance; interleukin-6 and tumor necrosis factor-α levels in adipose tissue by Western blot; assessment of quality and quantity of oocytes retrieved; and quantitative analysis of ovarian follicles. RESULT(S): Plasma insulin and T levels decreased and Homeostatic Index of Insulin Resistance improved in ob/ob mice treated with resveratrol. Interleukin-6 and tumor necrosis factor-α levels were significantly reverted back to near normalcy after resveratrol treatment in obese mice. Administration of resveratrol resulted in a significantly higher number of oocytes collected in wild-type mice. The number of primary, growing, preovulatory, and atretic follicles was found to be decreased in the group of obese mice treated with resveratrol when compared with the obese control group. CONCLUSION(S): Resveratrol administration could exert benefits against loss of ovarian follicles, and these actions may be mediated, at least in part, via anti-inflammatory, insulin-sensitizing, and antihyperandrogenism effects. These observations further validate the therapeutic potential of resveratrol to preserve ovarian reserve in conditions associated with obesity. Our results suggest the possible clinical use of resveratrol to enhance the ovarian response to COH in normal-weight females.
Assuntos
Síndrome de Hiperestimulação Ovariana/tratamento farmacológico , Síndrome de Hiperestimulação Ovariana/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , ResveratrolRESUMO
This study sought to determine the role of physical training (PT) on body weight (BW), energy balance, histological markers of nonalcoholic fatty liver disease (NAFLD) and metabolic gene expression in the liver of ob/ob mice. Adult male ob/ob mice were assigned into groups sedentary (S; n = 8) and trained (T; n = 9). PT consisted in running sessions of 60 min at 60% of maximal speed conducted five days per week for eight weeks. BW of S group was higher from the 4(th) to 8(th) week of PT compared to their own BW at the beginning of the experiment. PT decreased daily food intake and increased resting oxygen consumption and energy expenditure in T group. No difference was observed in respiratory exchange ratio, but the rates of carbohydrate and lipids oxidation, and maximal running capacity were greater in T than S group. Both groups showed liver steatosis but not inflammation. PT increased CPT1a and SREBP1c mRNA expression in T group, but did not change MTP, PPAR-α, PPAR-γ, and NFKB mRNA expression. In conclusion, PT prevented body weight gain in ob/ob mice by inducing negative energy balance and increased physical exercise tolerance. However, PT did not change inflammatory gene expression and failed to prevent liver steatosis possible due to an upregulation in the expression of SREBP1c transcription factor. These findings reveal that PT has positive effect on body weight control but not in the liver steatosis in a leptin deficiency condition.
RESUMO
OBJECTIVE: Hypothalamic agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) expressing neurons play critical roles in control of energy balance. Glutamatergic input via n-methyl-d-aspartate receptors (NMDARs) is pivotal for regulation of neuronal activity and is required in AgRP neurons for normal body weight homeostasis. NMDARs typically consist of the obligatory GluN1 subunit and different GluN2 subunits, the latter exerting crucial differential effects on channel activity and neuronal function. Currently, the role of specific GluN2 subunits in AgRP and POMC neurons on whole body energy and glucose balance is unknown. METHODS: We used the cre-lox system to genetically delete GluN2A or GluN2B only from AgRP or POMC neurons in mice. Mice were then subjected to metabolic analyses and assessment of AgRP and POMC neuronal function through morphological studies. RESULTS: We show that loss of GluN2B from AgRP neurons reduces body weight, fat mass, and food intake, whereas GluN2B in POMC neurons is not required for normal energy balance control. GluN2A subunits in either AgRP or POMC neurons are not required for regulation of body weight. Deletion of GluN2B reduces the number of AgRP neurons and decreases their dendritic length. In addition, loss of GluN2B in AgRP neurons of the morbidly obese and severely diabetic leptin-deficient Lep (ob/ob) mice does not affect body weight and food intake but, remarkably, leads to full correction of hyperglycemia. Lep (ob/ob) mice lacking GluN2B in AgRP neurons are also more sensitive to leptin's anti-obesity actions. CONCLUSIONS: GluN2B-containing NMDA receptors in AgRP neurons play a critical role in central control of body weight homeostasis and blood glucose balance via mechanisms that likely involve regulation of AgRP neuronal survival and structure, and modulation of hypothalamic leptin action.
RESUMO
Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of central metabolic signaling, and mice with whole brain-, leptin receptor (LepRb) expressing cell-, or proopiomelanocortin neuron-specific PTP1B-deficiency are lean, leptin hypersensitive, and display improved glucose homeostasis. However, whether the metabolic effects of central PTP1B-deficiency are due to action within the hypothalamus remains unclear. Moreover, whether or not these effects are exclusively due to enhanced leptin signaling is unknown. Here we report that mice with hypothalamic PTP1B-deficiency (Nkx2.1-PTP1B(-/-)) display decreased body weight and adiposity on high-fat diet with no associated improvements in glucose tolerance. Consistent with previous reports, we find that hypothalamic deletion of the LepRb in mice (Nkx2.1-LepRb(-/-)) results in extreme hyperphagia and obesity. Interestingly, deletion of hypothalamic PTP1B and LepRb (Nkx2.1-PTP1B(-/-):LepRb(-/-)) does not rescue the hyperphagia or obesity of Nkx2.1-LepRb(-/-) mice, suggesting that hypothalamic PTP1B contributes to the central control of energy balance through a leptin receptor-dependent pathway.