RESUMO
Tin dioxide (SnO2) is a promising alternative material to graphite anode, but the large volume change induced electrode pulverization issue has limited its application in lithium-ion batteries (LIBs). In contrast, titanium dioxide (TiO2) anode shows high structure stability upon lithium insertion/extraction, but with low specific capacity. To overcome their inherent disadvantages, combination of SnO2 with TiO2 and highly conductive carbon material is an effective way. Herein, we report a facile fabrication method of carbon-coated SnO2/TiO2 nanowires (SnO2/TiO2@C) using tin titanate nanowires as precursor, which are prepared by reacting SnCl2·2H2O with layered sodium titanate (Na2Ti3O7) nanowires in the aqueous solution though the ion exchange between Sn2+ and Na+. After annealing under argon atmosphere, the hydrothermally carbon-coated tin-titanate nanowires decompose, forming a unique hybrid structure, where ultrafine SnO2 nanoparticles are uniformly embedded within the TiO2 substrate with carbon coating. Consequently, the SnO2/TiO2@C nanowires demonstrate excellent lithium storage capacity with high pseudocapacitance contribution, excellent reversible capacity, and long-term cycling stability (673.7/510.5 mAh/g at 0.5/1.0 A/g after 250/800 cycles), owing to the unique hybrid structure, as the well-dispersion of ultra-small SnO2 within TiO2 nanowire substrate with simultaneous carbon coating efficiently suppresses the volume changes of SnO2, provides abundant reactive sites for lithium storage, and enhances the electrical conductivity with shortened ion transport distance.
RESUMO
TiNb2O7 (TNO) as a promising candidate anode for lithium-ion batteries (LIBs) shows obvious advantages in terms of specific capacity and safety, but which undergoes the intrinsic poor electrical and ionic conductivity. Herein, we propose a simple synthesis strategy of mesoporous TNO via a polymeric surfactant-mediated evaporation-induced sol-gel method, using polyvinylpyrrolidone (PVP) with different molecular weights (average Mw: 10000/58000/1300000) as the regulating agent, which greatly affects the lithium storage performance of the as-prepared TNO. The optimized TNO (i.e., PVP of 58000) delivers a high reversible capacity of 303.1 mAh/g at 1 C, with a retention rate of 73.4% (222.5 mAh/g) after 300 cycles. Even at 5 C, a high reversible capacity of 185.6 mAh/g can be achieved, with a retention rate of 72.3% after 1000 cycles. The superior lithium storage behavior is attributed to the fine mesoporous framework consisting of interconnected TNO nanocrystallites with high specific surface area and high mesoporosity, which greatly increases the active sites, improves the Li+ diffusion kinetics and alleviates volume fluctuation induced by the repetitive Li+ insertion-extraction processes.