Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Subcell Biochem ; 106: 441-459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159237

RESUMO

The cholesterol of the host cell plasma membrane and viral M2 protein plays a crucial role in multiple stages of infection and replication of the influenza A virus. Cholesterol is required for the formation of heterogeneous membrane microdomains (or rafts) in the budozone of the host cell that serves as assembly sites for the viral components. The raft microstructures act as scaffolds for several proteins. Cholesterol may further contribute to the mechanical forces necessary for membrane scission in the last stage of budding and help to maintain the stability of the virus envelope. The M2 protein has been shown to cause membrane scission in model systems by promoting the formation of curved lipid bilayer structures that, in turn, can lead to membrane vesicles budding off or scission intermediates. Membrane remodeling by M2 is intimately linked with cholesterol as it affects local lipid composition, fluidity, and stability of the membrane. Thus, both cholesterol and M2 protein contribute to the efficient and proper release of newly formed influenza viruses from the virus-infected cells.


Assuntos
Vírus da Influenza A , Orthomyxoviridae , Vírus da Influenza A/metabolismo , Proteínas Virais/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Membrana Celular/metabolismo
2.
J Virol ; 96(18): e0133722, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069551

RESUMO

COVID-19 and influenza are both highly contagious respiratory diseases that have been serious threats to global public health. It is necessary to develop a bivalent vaccine to control these two infectious diseases simultaneously. In this study, we generated three attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates against both SARS-CoV-2 and influenza viruses. These rVSV-based vaccines coexpress SARS-CoV-2 Delta spike protein (SP) bearing the C-terminal 17 amino acid (aa) deletion (SPΔC) and I742A point mutation, or the SPΔC with a deletion of S2 domain, or the RBD domain, and a tandem repeat harboring four copies of the highly conserved influenza M2 ectodomain (M2e) that fused with the Ebola glycoprotein DC-targeting/activation domain. Animal immunization studies have shown that these rVSV bivalent vaccines induced efficient humoral and cellular immune responses against both SARS-CoV-2 SP and influenza M2 protein, including high levels of neutralizing antibodies against SARS-CoV-2 Delta and other variant SP-pseudovirus infections. Importantly, immunization of the rVSV bivalent vaccines effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads. Overall, this study provides convincing evidence for the high efficacy of this bivalent vaccine platform to be used and/or easily adapted to produce new vaccines against new or reemerging SARS-CoV-2 variants and influenza A virus infections. IMPORTANCE Given that both COVID-19 and influenza are preferably transmitted through respiratory droplets during the same seasons, it is highly advantageous to develop a bivalent vaccine that could simultaneously protect against both COVID-19 and influenza. In this study, we generated the attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates that target both spike protein of SARS-Cov-2 Delta variant and the conserved influenza M2 domain. Importantly, these vaccine candidates effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Vacinas Combinadas , Estomatite Vesicular , Aminoácidos/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Cricetinae , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Combinadas/imunologia , Vacinas Sintéticas/genética , Vesiculovirus/imunologia
3.
J Biomed Sci ; 30(1): 10, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737756

RESUMO

BACKGROUND: The association between M segment splicing and pathogenicity remains ambiguous in human influenza A viruses. In this study, we aimed to investigate M splicing in various human influenza A viruses and characterize its physiological roles by applying the splicing inhibitor, herboxidiene. METHODS: We examined the M splicing of human H1N1 and H3N2 viruses by comparing three H1N1 and H3N2 strains, respectively, through reverse transcriptase-polymerase chain reaction (RT-PCR) analyses. We randomly selected M sequences of human H1N1, H2N2, and H3N2 viruses isolated from 1933 to 2020 and examined their phylogenetic relationships. Next, we determined the effects of single nucleotide variations on M splicing by generating mutant viruses harboring the 55C/T variant through reverse genetics. To confirm the importance of M2 splicing in the replication of H1N1 and H3N2, we treated infected cells with splicing inhibitor herboxidiene and analyzed the viral growth using plaque assay. To explore the physiological role of the various levels of M2 protein in pathogenicity, we challenged C57BL/6 mice with the H1N1 WSN wild-type strain, mutant H1N1 (55T), and chimeric viruses including H1N1 + H3wt and H1N1 + H3mut. One-tailed paired t-test was used for virus titer calculation and multiple comparisons between groups were performed using two-way analysis of variance. RESULTS: M sequence splice site analysis revealed an evolutionarily conserved single nucleotide variant C55T in H3N2, which impaired M2 expression and was accompanied by collinear M1 and mRNA3 production. Aberrant M2 splicing resulted from splice-site selection rather than a general defect in the splicing process. The C55T substitution significantly reduced both M2 mRNA and protein levels regardless of the virus subtype. Consequently, herboxidiene treatment dramatically decreased both the H1N1 and H3N2 virus titers. However, a lower M2 expression only attenuated H1N1 virus replication and in vivo pathogenicity. This attenuated phenotype was restored by M replacement of H3N2 M in a chimeric H1N1 virus, despite low M2 levels. CONCLUSIONS: The discrepancy in M2-dependence emphasizes the importance of M2 in human influenza A virus pathogenicity, which leads to subtype-specific evolution. Our findings provide insights into virus adaptation processes in humans and highlights splicing regulation as a potential antiviral target.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Filogenia , Camundongos Endogâmicos C57BL , Nucleotídeos , Influenza Humana/tratamento farmacológico , Influenza Humana/genética
4.
J Virol ; 93(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30918073

RESUMO

In this article we report that the M2 protein encoded by the vaccinia virus is secreted as a homo-oligomer by infected cells and binds two central costimulation molecules, CD80 (B7-1) and CD86 (B7-2). These interactions block the ligation of the two B7 proteins to both soluble CD28 and soluble cytotoxic T-lymphocyte associated protein 4 (CTLA4) but favor the binding of soluble PD-L1 to soluble CD80. M2L gene orthologues are found in several other poxviruses, and the B7-CD28/CTLA4 blocking activity has been identified for several culture supernatants of orthopoxvirus-infected cells and for a recombinant myxoma virus M2 protein homolog (i.e., Gp120-like protein, or Gp120LP). Overall, these data indicate that the M2 poxvirus family of proteins may be involved in immunosuppressive activities broader than the NF-κB inhibition already reported (R. Gedey, X. L. Jin, O. Hinthong, and J. L. Shisler, J Virol 80:8676-8685, 2006, https://doi.org/10.1128/JVI.00935-06). A Copenhagen vaccinia virus with a deletion of the nonessential M2L locus was generated and compared with its parental virus. This M2L-deleted vaccinia virus, unlike the parental virus, does not generate interference with the B7-CD28/CTLA4/PD-L1 interactions. Moreover, this deletion did not affect any key features of the virus (in vitro replication, oncolytic activities in vitro and in vivo, and intratumoral expression of a transgene in an immunocompetent murine model). Altogether, these first results suggest that the M2 protein has the potential to be used as a new immunosuppressive biotherapeutic and that the M2L-deleted vaccinia virus represents an attractive new oncolytic platform with an improved immunological profile.IMPORTANCE The vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus.


Assuntos
Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Vaccinia virus/metabolismo , Animais , Antígenos CD/metabolismo , Antígeno B7-1/genética , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Antígenos CD28/metabolismo , Antígeno CTLA-4/metabolismo , Moléculas de Adesão Celular , Linhagem Celular , Embrião de Galinha , Humanos , Imunoconjugados , Interleucina-2/metabolismo , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , NF-kappa B/metabolismo , Vacínia/genética , Vacínia/metabolismo , Vaccinia virus/genética , Proteínas Virais/metabolismo
5.
Mol Biol (Mosk) ; 54(2): 321-332, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32392203

RESUMO

Influenza A virus is capable of rapidly infecting large human populations, warranting the development of novel drugs to efficiently inhibit virus replication. A transmembrane ion channel formed by the M2 protein plays an important role in influenza virus replication. A reasonable approach to designing an effective antivirus drug is constructing a molecule that binds in the M2 transmembrane proton channel, blocks H^(+) proton diffusion through the channel, and thus the influenza A virus cycle. The known anti-influenza drugs amantadine and rimantadine have a weak effect on influenza A virus replication. A new class of positively charged molecules, diazabicyclooctane derivatives with a constant charge of +2, was proposed to block proton diffusion through the M2 ion channel. Molecular dynamics simulations were performed to study the temperature fluctuations in the M2 structure, and ionization states of histidine residues were established at physiological pH values. Two types of diazabicyclooctane derivatives were analyzed for binding with the M2 ion channel. An optimal structure was determined for a blocker to most efficiently bind with the M2 ion channel and block proton diffusion. The new molecule is advantageous over amantadine and rimantadine in having a positive charge of +2, which creates a positive electrostatic potential barrier to proton transport through the M2 ion channel in addition to a steric barrier.


Assuntos
Antivirais/farmacologia , Compostos Aza/farmacologia , Ciclo-Octanos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Proteínas da Matriz Viral/antagonistas & inibidores , Amantadina , Rimantadina
6.
Biochem Biophys Res Commun ; 517(3): 507-512, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31375212

RESUMO

Molecules interfering with lipid bilayer function exhibit strong antiviral activity against a broad range of enveloped viruses, with a lower risk of resistance development than that for viral protein-targeting drugs. Amphipathic peptides are rich sources of such membrane-interacting antivirals. Here, we report that influenza viruses were effectively inactivated by M2 AH, an amphipathic peptide derived from the M2 protein of the influenza virus. Although overall hydrophobicity () of M2 AH was not related to antiviral activity, modification of the hydrophobic moment (<µH>) of M2 AH dramatically altered the antiviral activity of this peptide. M2 MH, a derivative of M2 AH with a <µH> of 0.874, showed a half maximal inhibitory concentration (IC50) of 53.3 nM against the A/PR/8/34 strain (H1N1), which is 16-times lower than that of M2 AH. The selectivity index (IC50/CC50), where CC50 is the half maximal cytotoxic concentration, was 360 for M2 MH and 81 for M2 AH. Dynamic light scattering spectroscopy and electron microscopy revealed that M2 AH-derived peptides did not disrupt liposomes but altered the shape of viruses. This result suggests that the shape of virus envelope was closely related to its activity. Thus, we propose that deforming without rupturing the membranes may achieve a high selectivity index for peptide antivirals.


Assuntos
Antivirais/farmacologia , Membrana Celular/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas da Matriz Viral/química , Sequência de Aminoácidos , Animais , Antivirais/síntese química , Membrana Celular/química , Membrana Celular/virologia , Cães , Interações Hidrofóbicas e Hidrofílicas , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Concentração Inibidora 50 , Bicamadas Lipídicas/química , Lipossomos/química , Células Madin Darby de Rim Canino , Peptídeos/síntese química , Relação Estrutura-Atividade , Carga Viral/efeitos dos fármacos
7.
Appl Microbiol Biotechnol ; 102(13): 5645-5656, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29736821

RESUMO

M2 protein, a highly conserved protein of influenza A virus (IAV), plays an important role in virus particle uncoating, assembly, and budding. In the present study, eight monoclonal antibodies (mAbs) against the M2 protein of the H3N2 IAV strain were generated with recombinant truncated M2 protein or BSA-coupled M2 peptides as immunogens. The linear epitopes recognized by the mAbs were defined by IFA and peptide ELISA. The results showed that mAb 10F4 recognized an epitope located in the N-terminal 6-12 amino acids of the M2 peptide, and the mAbs 10D9, 1E2, 4B5, and 5G10 recognized the epitopes located in the C-terminal 62-77 amino acids of the M2 peptide. Importantly, mAb 10D9 recognized the M2 protein of H1-H13 IAV subtypes, which stained M2 protein located on the membrane of host cells and could be applied in immunoprecipitation and immunohistochemistry assays. The mAb 10D9 which recognizes the universal M2 epitope of IAVs will be a useful tool for studies on the function of IAV M2 protein and for the development of vaccines or detection methods for IAV infection.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Animais , Mapeamento de Epitopos , Epitopos/imunologia , Escherichia coli/genética , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia
8.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L845-L858, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28775098

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial sodium channels (ENaC) are located in the apical membranes of airway and alveolar epithelial cells. These transporters play an important role in the regulation of lung fluid balance across airway and alveolar epithelia by being the conduits for chloride (Cl-) and bicarbonate ([Formula: see text]) secretion and sodium (Na+) ion absorption, respectively. The functional role of these channels in the respiratory tract is to maintain the optimum volume and ionic composition of the bronchial periciliary fluid (PCL) and alveolar lining fluid (ALF) layers. The PCL is required for proper mucociliary clearance of pathogens and debris, and the ALF is necessary for surfactant homeostasis and optimum gas exchange. Dysregulation of ion transport may lead to mucus accumulation, bacterial infections, inflammation, pulmonary edema, and compromised respiratory function. Influenza (or flu) in mammals is caused by influenza A and B viruses. Symptoms include dry cough, sore throat, and is often followed by secondary bacterial infections, accumulation of fluid in the alveolar spaces and acute lung injury. The underlying mechanisms of flu symptoms are not fully understood. This review summarizes our present knowledge of how influenza virus infections alter airway and alveolar epithelial cell CFTR and ENaC function in vivo and in vitro and the role of these changes in influenza pathogenesis.


Assuntos
Células Epiteliais Alveolares/virologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais Iônicos/metabolismo , Orthomyxoviridae/patogenicidade , Viroses/metabolismo , Animais , Humanos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia
9.
Int J Mol Sci ; 18(12)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215568

RESUMO

Influenza A virus (IAV) matrix protein 2 (M2) is among the smallest bona fide, hence extensively studied, ion channel proteins. The M2 ion channel activity is not only essential for virus replication, but also involved in modulation of cellular homeostasis in a variety of ways. It is also the target for ion channel inhibitors, i.e., anti-influenza drugs. Thus far, several studies have been conducted to elucidate its biophysical characteristics, structure-function relationships of the ion channel, and the M2-host interactome. In this review, we discuss M2 protein synthesis and assembly into an ion channel, its roles in IAV replication, and the pathophysiological impact on the host cell.


Assuntos
Proteínas da Matriz Viral/metabolismo , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Vírus da Influenza A/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Integração Viral , Liberação de Vírus
10.
Virus Genes ; 52(6): 872-876, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27448682

RESUMO

Large-scale sequence analysis of Matrix (M) gene and its coding proteins M1 and M2 was performed for 274 highly pathogenic avian influenza viruses H5N1 circulated in Egypt from 2006 to 2016. The aim is to study the amantadine-resistant markers distribution and to estimate the evolutionary rate. 246 viruses were obtained from the Global Initiative on Sharing All Influenza Data base, and 28 additional viruses were sequenced. Maximum clade credibility (MCC) phylogenetic tree revealed that the M gene has evolved into two different lineages. Estimated Evolutionary analysis showed that the M2 protein possessed higher evolutionary rates (3.45 × 10-3) than the M1 protein (2.73 × 10-3). M gene encoding proteins revealed significant markers described to be associated with host tropism and increase in virulence: V15I, N30D, and T121A in M1 and L55F in M2 protein. Site analysis focusing attention on the temporal and host distribution of the amantadine-resistant markers was carried out and showed that vast majority of the M2 amantadine-resistant variants of clade 2.2.1.1 (n = 90) is N31 marker, in addition to G27 (n = 7), A27 (n = 5), I27 (n = 1), and S30 (n = 1). In 2010-2011, amantadine resistant frequency increased considerably resembling more than half of the resistant variants. Notably, all viruses of clade 2.2.1.1 possessed amantadine-resistant marker. However, almost all current circulating viruses in Egypt of clade 2.2.1.2 from 2014 to 2016 did not carry any amantadine-resistant markers.


Assuntos
Amantadina/farmacologia , Antivirais/farmacologia , Farmacorresistência Viral , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Proteínas da Matriz Viral/genética , Animais , Galinhas , Egito/epidemiologia , Genótipo , História do Século XX , História do Século XXI , Humanos , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/história , Modelos Moleculares , Filogenia , Conformação Proteica , Proteínas da Matriz Viral/química
11.
Biopolymers ; 104(4): 405-11, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25652904

RESUMO

While crystal and NMR structures exist of the influenza A M2 protein, there is disagreement between models. Depending on the requirements of the technique employed, M2 has been studied in a range of membrane mimetics including detergent micelles and membrane bilayers differing in lipid composition. The use of different model membranes complicates the integration of results from published studies necessary for an overall understanding of the M2 protein. Here we show using site-directed spin-label EPR spectroscopy (SDSL-EPR) that the conformations of M2 peptides in membrane bilayers are clearly influenced by the lipid composition of the bilayers. Altering the bilayer thickness or the lateral pressure profile within the bilayer membrane changes the M2 conformation observed. The multiple M2 peptide conformations observed here, and in other published studies, optimistically may be considered conformations that are sampled by the protein at various stages during influenza infectivity. However, care should be taken that the heterogeneity observed in published structures is not simply an artifact of the choice of the model membrane.


Assuntos
Vírus da Influenza A/química , Bicamadas Lipídicas/química , Proteínas da Matriz Viral/química , Vírus da Influenza A/metabolismo , Proteínas da Matriz Viral/metabolismo
12.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260371

RESUMO

We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IAM2) protein reconstituted at pH 7.4 in DOPC/DOPS bilayers to those in isolated E. coli membranes, having preserved its native proteins and lipids. IAM2 is a single-pass transmembrane protein known to assemble into homo-tetrameric proton channel. To represent this channel, we made a construct containing the IAM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitute, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the ESR (electron spin resonance) study. We compared the conformations of the spin-labeled IAM2 residing in DOPC/DOPS and native E. coli membranes using continuous-wave (CW) ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400⩦ The CW ESR spectra corresponded to a nearly rigid limit spin label dynamics in both environments. In all cases, the DEER data were reconstructed into the distance distributions showing well-resolved peaks at 1.68 nm and 2.37 nm. The peak distance ratio was 1.41±0.2 and the amplitude ratio was 2:1. This is what one expects from four nitroxide spin-labels located at the corners of a square, indicative of an axially symmetric tetramer. Distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IAM2 tetramer in agreement with the NMR model. Thus, we can conclude that IAM2 TMD has similar conformations in model and native E. coli membranes of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.

13.
Biochim Biophys Acta Biomembr ; 1865(5): 184152, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36948480

RESUMO

The influenza A M2 protein (AM2) is a multifunctional membrane-associated homotetramer that orchestrates several essential events in the viral infection cycle including viral assembly and budding. An atomic-level conformational understanding of this key player in the influenza life cycle could inform new antiviral strategies. For conformational studies of complex systems like the AM2 membrane protein, a multipronged approach using different biophysical methods and different model membranes is a powerful way to incorporate complementary data and achieve a fuller, more robust understanding of the system. However, one must be aware of how the sample composition required for a particular method impacts the data collected and how conclusions are drawn. In that spirit, we systematically compared the properties of AM2 in two different model membranes: nanodiscs and liposomes. Electron paramagnetic spectroscopy of spin-labeled AM2 showed that the conformation and dynamics were strikingly similar in both AM2-nanodiscs and AM2-liposomes consistent with similar conformations in both model membranes. Analysis of spin labeled lipids embedded in both model membranes revealed that the bilayer in AM2-liposomes was more fluid and permeable to oxygen than AM2-nanodiscs with the same lipid composition. Once the difference in the partitioning of the paramagnetic oxygen relaxation agent was taken into account, the membrane topology of AM2 appeared to be the same in both liposomes and nanodiscs. Finally, functionally relevant AM2 conformational shifts previously seen in liposomes due to the addition of cholesterol were also observed in nanodiscs.


Assuntos
Influenza Humana , Lipossomos , Humanos , Lipossomos/química , Proteínas de Membrana/química , Conformação Molecular , Marcadores de Spin , Oxigênio
14.
Front Microbiol ; 13: 951009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928168

RESUMO

Influenza A virus (IAV) poses a serious threat to human life and property. The IAV matrix protein 2 (M2) is significant in viral budding. Increasing studies have proven the important roles of host factors in IAV replication. In this study, immunoprecipitation combined with mass spectrometry revealed that the host protein tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG), which belongs to the 14-3-3 protein scaffold family, interacts with M2. Their interactions were further confirmed by co-immunoprecipitation (Co-IP), immunofluorescence, and confocal microscopy of virus-infected HeLa cells. Moreover, we constructed YWHAG-KO and YWHAG-overexpressing cells and found that YWHAG knockout significantly increased viral production, whereas its overexpression reduced the titer of virus progeny. Therefore, YWHAG is a negative regulatory factor during IAV infection. Further, YWHAG knockout or overexpression had no effect on the binding, entry, or viral RNA replication in the early stages of the virus life cycle. On the contrary, it impaired the release of virions at the plasma membrane as determined using transmission electron microscopy and suppressed the M2-mediated budding of the influenza virus. Importantly, the H158F mutation of YWHAG was found to affect interaction with M2 and its budding. Collectively, our work demonstrates that YWHAG is a novel cellular regulator that targets and mediates the interaction and release of M2.

15.
Vaccines (Basel) ; 8(3)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784907

RESUMO

BACKGROUND: Development of a universal vaccine capable to induce antibody responses against a broad range of influenza virus strains attracts growing attention. Hemagglutinin stem and the exposed fragment of influenza virus M2 protein are promising targets for induction of cross-protective humoral and cell-mediated response, since they contain conservative epitopes capable to induce antibodies and cytotoxic T lymphocytes (CTLs) to a wide range of influenza virus subtypes. METHODS: In this study, we generated DNA vaccine constructs encoding artificial antigens AgH1, AgH3, and AgM2 designed on the basis of conservative hemagglutinin stem fragments of two influenza A virus subtypes, H1N1 and H3N2, and conservative M2 protein, and evaluate their immunogenicity and protective efficacy. To obtain DNA vaccine constructs, genes encoding the designed antigens were cloned into a pcDNA3.1 vector. Expression of the target genes in 293T cells transfected with DNA vaccine constructs has been confirmed by synthesis of specific mRNA. RESULTS: Immunization of BALB/c mice with DNA vaccines encoding these antigens was shown to evoke humoral and T-cell immune responses as well as a moderated statistically significant cross-protective effect against two heterologous viruses A/California/4/2009 (H1N1pdm09) and A/Aichi/2/68 (H3N2). CONCLUSIONS: The results demonstrate a potential approach to creating a universal influenza vaccine based on artificial antigens.

16.
Immune Netw ; 19(4): e29, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31501717

RESUMO

The matrix protein 2 of influenza A virus (IFAV) has a relatively conserved ectodomain (M2e) composed of 23 amino acids, and M2e-based vaccines have been suggested to induce broad protective immunity in mice. In this study, we investigated whether N-terminal sequence of M2e (nM2e)-based vaccines with more conserved nM2e could induce influenza viral neutralizing activity. We constructed linear peptide vaccines with an nM2e sequence for PR8 virus (nM2Pr) connected to a probable 17-mer IFAV-derived helper T-cell epitope (ThE: T1, T2, or T3) at its N- or C-terminus. The peptide vaccines induced significant production of nM2e Abs regardless of either type or location of the ThE-epitope in BALB/c mice, while only T3 was effective in C57BL/6 mice. The Abs against nM2Pr-T3 elicited broader binding affinities to the nM2e peptides derived from various IFAVs than those against T3-nM2Pr. In addition, the nM2e-based vaccines efficiently protected the immunized mice from the lethal challenge of PR8 virus. These results suggest that the more conserved nM2e without cysteine will be useful for development of universal peptide vaccines than M2e.

17.
Autophagy ; 15(7): 1163-1181, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30741586

RESUMO

Influenza A virus can evade host innate immune response that is involved in several viral proteins with complicated mechanisms. To date, how influenza A M2 protein modulates the host innate immunity remains unclear. Herein, we showed that M2 protein colocalized and interacted with MAVS (mitochondrial antiviral signaling protein) on mitochondria, and positively regulated MAVS-mediated innate immunity. Further studies revealed that M2 induced reactive oxygen species (ROS) production that was required for activation of macroautophagy/autophagy and enhancement of MAVS signaling pathway. Importantly, the proton channel activity of M2 protein was demonstrated to be essential for ROS production and antagonizing the autophagy pathway to control MAVS aggregation, thereby enhancing MAVS signal activity. In conclusion, our studies provided novel insights into mechanisms of M2 protein in modulating host antiviral immunity and uncovered a new mechanism into biology and pathogenicity of influenza A virus. Abbreviations: AKT/PKB: AKT serine/threonine kinase; Apo: apocynin; ATG5: autophagy related 5; BAPTA-AM: 1,2-Bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetrakis; BECN1: beclin 1; CARD: caspase recruitment domain; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CQ: chloroquine; DCF: dichlorodihyd-rofluorescein; DPI: diphenyleneiodonium; DDX58: DExD/H-box helicase 58; eGFP: enhanced green fluorescent protein; EGTA: ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid; ER: endoplasmic reticulum; hpi: hours post infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; IRF3: interferon regulatory factor 3; ISRE: IFN-stimulated response elements; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; MMP: mitochondrial membrane potential; MOI, multiplicity of infection; mRFP: monomeric red fluorescent protein; MTOR: mechanistic target of rapamycin kinase; NC: negative control; NFKB/NF-κB: nuclear factor kappa B; PI3K: class I phosphoinositide 3-kinase; RLR: RIG-I-like-receptor; ROS: reactive oxygen species; SEV: sendai virus; TM: transmembrane; TMRM: tetramethylrhodamine methylester; VSV: vesicular stomatitis virus.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Imunidade Inata , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas da Matriz Viral/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagossomos/imunologia , Autofagossomos/metabolismo , Autofagossomos/virologia , Autofagia/genética , Autofagia/imunologia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Cálcio/imunologia , Cálcio/metabolismo , Células HEK293 , Células HeLa , Humanos , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/metabolismo , Vírus da Influenza A/patogenicidade , Mitocôndrias/virologia , Dinâmica Mitocondrial/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas da Matriz Viral/genética
18.
Am J Chin Med ; 47(6): 1307-1324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31505936

RESUMO

Aloe vera ethanol extract (AVE) reportedly has significant anti-influenza virus activity, but its underlying mechanisms of action and constituents have not yet been completely elucidated. Previously, we have confirmed that AVE treatment significantly reduces the viral replication of green fluorescent protein-labeled influenza A virus in Madin-Darby canine kidney (MDCK) cells. In addition, post-treatment with AVE inhibited viral matrix protein 1 (M1), matrix protein 2 (M2), and hemagglutinin (HA) mRNA synthesis and viral protein (M1, M2, and HA) expressions. In this study, we demonstrated that AVE inhibited autophagy induced by influenza A virus in MDCK cells and also identified quercetin, catechin hydrate, and kaempferol as the active antiviral components of AVE. We also found that post-treatment with quercetin, catechin hydrate, and kaempferol markedly inhibited M2 viral mRNA synthesis and M2 protein expression. A docking simulation suggested that the binding affinity of quercetin, catechin hydrate, and kaempferol for the M2 protein may be higher than that of known M2 protein inhibitors. Thus, the inhibition of autophagy induced by influenza virus may explain the antiviral activity of AVE against H1N1 or H3N2. Aloe vera extract and its constituents may, therefore, be potentially useful for the development of anti-influenza agents.


Assuntos
Aloe/química , Antivirais , Autofagia/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Vírus da Influenza A/patogenicidade , Extratos Vegetais/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Células Cultivadas , Cães , Hemaglutininas Virais/genética , Hemaglutininas Virais/metabolismo , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza A/metabolismo , Rim/citologia , Ligação Proteica/efeitos dos fármacos , Quercetina/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas da Matriz Viral/metabolismo
19.
Biochim Biophys Acta Biomembr ; 1861(8): 1421-1427, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31153909

RESUMO

The influenza A M2 protein is a multifunctional membrane-associated homotetramer that orchestrates several essential events in the viral infection cycle. The monomeric subunits of the M2 homotetramer consist of an N-terminal ectodomain, a transmembrane domain, and a C-terminal cytoplasmic domain. The transmembrane domain forms a four-helix proton channel that promotes uncoating of virions upon host cell entry. The membrane-proximal region of the C-terminal domain forms a surface-associated amphipathic helix necessary for viral budding. The structure of the remaining ~34 residues of the distal cytoplasmic tail has yet to be fully characterized despite the functional significance of this region for influenza infectivity. Here, we extend structural and dynamic studies of the poorly characterized M2 cytoplasmic tail. We used SDSL-EPR to collect site-specific information on the mobility, solvent accessibility, and conformational properties of residues 61-70 of the full-length, cell-expressed M2 protein reconstituted into liposomes. Our analysis is consistent with the predominant population of the C-terminal tail dynamically extending away from the membranes surface into the aqueous medium. These findings provide insight into the hypothesis that the C-terminal domain serves as a sensor that regulates how M2 protein participates in critical events in the viral infection cycle.


Assuntos
Citoplasma/metabolismo , Vírus da Influenza A/metabolismo , Canais Iônicos/metabolismo , Proteínas da Matriz Viral/metabolismo , Membrana Celular/metabolismo , Vírus da Influenza A/fisiologia , Proteínas da Matriz Viral/química , Montagem de Vírus , Liberação de Vírus
20.
Int Rev Immunol ; 37(5): 266-276, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30252547

RESUMO

Despite of ongoing research programs and numerous clinical trials, seasonal influenza epidemics remain a major concern globally. Vaccination remains the most effective method to prevent influenza infection. However, current flu vaccines have several limitations, including limited vaccine capacity, long production times, inconsistence efficacy in certain populations, and lack of a "universal" solution. Different next-generation approaches such as cell line-based culture, reverse genetics, and virus expression technology are currently under development to address the aforementioned challenges in conventional vaccine manufacture pipeline. Such approaches hope for safe and scalable production, induce broad-spectrum immunity, create premade libraries of vaccine strains, and target nonvariable regions of antigenic proteins for "universal" vaccination. Here, we discuss the process and challenges of the current influenza vaccine platform as well as new approaches that are being investigated. These developments indicate that an exciting future lies ahead in the influenza vaccine field.


Assuntos
Vírus da Influenza A/fisiologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Humanos , Imunidade Heteróloga , Vacinação , Proteínas da Matriz Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA