Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.541
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(6): 1212-1229.e21, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36827974

RESUMO

Mitochondrial activity differs markedly between organs, but it is not known how and when this arises. Here we show that cell lineage-specific expression profiles involving essential mitochondrial genes emerge at an early stage in mouse development, including tissue-specific isoforms present before organ formation. However, the nuclear transcriptional signatures were not independent of organelle function. Genetically disrupting intra-mitochondrial protein synthesis with two different mtDNA mutations induced cell lineage-specific compensatory responses, including molecular pathways not previously implicated in organellar maintenance. We saw downregulation of genes whose expression is known to exacerbate the effects of exogenous mitochondrial toxins, indicating a transcriptional adaptation to mitochondrial dysfunction during embryonic development. The compensatory pathways were both tissue and mutation specific and under the control of transcription factors which promote organelle resilience. These are likely to contribute to the tissue specificity which characterizes human mitochondrial diseases and are potential targets for organ-directed treatments.


Assuntos
Mitocôndrias , Organogênese , Animais , Feminino , Humanos , Camundongos , Gravidez , Linhagem da Célula , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais , Especificidade de Órgãos , Desenvolvimento Embrionário , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo
2.
Cell ; 185(7): 1208-1222.e21, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35305314

RESUMO

The tumor microenvironment hosts antibody-secreting cells (ASCs) associated with a favorable prognosis in several types of cancer. Patient-derived antibodies have diagnostic and therapeutic potential; yet, it remains unclear how antibodies gain autoreactivity and target tumors. Here, we found that somatic hypermutations (SHMs) promote antibody antitumor reactivity against surface autoantigens in high-grade serous ovarian carcinoma (HGSOC). Patient-derived tumor cells were frequently coated with IgGs. Intratumoral ASCs in HGSOC were both mutated and clonally expanded and produced tumor-reactive antibodies that targeted MMP14, which is abundantly expressed on the tumor cell surface. The reversion of monoclonal antibodies to their germline configuration revealed two types of classes: one dependent on SHMs for tumor binding and a second with germline-encoded autoreactivity. Thus, tumor-reactive autoantibodies are either naturally occurring or evolve through an antigen-driven selection process. These findings highlight the origin and potential applicability of autoantibodies directed at surface antigens for tumor targeting in cancer patients.


Assuntos
Anticorpos Antineoplásicos , Neoplasias Ovarianas , Anticorpos Monoclonais , Autoanticorpos , Autoantígenos , Feminino , Humanos , Neoplasias Ovarianas/genética , Microambiente Tumoral
3.
Cell ; 174(4): 870-883.e17, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30057120

RESUMO

The mitochondrial unfolded protein response (UPRmt) can be triggered in a cell-non-autonomous fashion across multiple tissues in response to mitochondrial dysfunction. The ability to communicate information about the presence of mitochondrial stress enables a global response that can ultimately better protect an organism from local mitochondrial challenges. We find that animals use retromer-dependent Wnt signaling to propagate mitochondrial stress signals from the nervous system to peripheral tissues. Specifically, the polyQ40-triggered activation of mitochondrial stress or reduction of cco-1 (complex IV subunit) in neurons of C. elegans results in the Wnt-dependent induction of cell-non-autonomous UPRmt in peripheral cells. Loss-of-function mutations of retromer complex components that are responsible for recycling the Wnt secretion-factor/MIG-14 prevent Wnt secretion and thereby suppress cell-non-autonomous UPRmt. Neuronal expression of the Wnt ligand/EGL-20 is sufficient to induce cell-non-autonomous UPRmt in a retromer complex-, Wnt signaling-, and serotonin-dependent manner, clearly implicating Wnt signaling as a strong candidate for the "mitokine" signal.


Assuntos
Animais Geneticamente Modificados/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Poliubiquitina/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Proteínas Wnt/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias/genética , Neurônios/citologia , Neurônios/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas Wnt/genética
4.
Annu Rev Cell Dev Biol ; 32: 555-576, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27501444

RESUMO

Metastasis is responsible for most cancer-associated deaths. Accumulating evidence based on 3D migration models has revealed a diversity of invasive migratory schemes reflecting the plasticity of tumor cells to switch between proteolytic and nonproteolytic modes of invasion. Yet, initial stages of localized regional tumor dissemination require proteolytic remodeling of the extracellular matrix to overcome tissue barriers. Recent data indicate that surface-exposed membrane type 1-matrix metalloproteinase (MT1-MMP), belonging to a group of membrane-anchored MMPs, plays a central role in pericellular matrix degradation during basement membrane and interstitial tissue transmigration programs. In addition, a large body of work indicates that MT1-MMP is targeted to specialized actin-rich cell protrusions termed invadopodia, which are responsible for matrix degradation. This review describes the multistep assembly of actin-based invadopodia in molecular details. Mechanisms underlying MT1-MMP traffic to invadopodia through endocytosis/recycling cycles, which are key to the invasive program of carcinoma cells, are discussed.


Assuntos
Metaloproteinase 14 da Matriz/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Animais , Polaridade Celular , Humanos , Modelos Biológicos , Invasividade Neoplásica , Podossomos/metabolismo
5.
Mol Cell ; 81(23): 4810-4825.e12, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774131

RESUMO

Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced respiratory chain activity. Mitochondrial ribosome profiling uncovered mitoribosome stalling on mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons. Further analysis of the respiratory chain complexes using mass spectrometry revealed reduced incorporation of the mitochondrially encoded proteins ND6 and ND1 into complex I. The well-balanced translation of mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons through METTL8-mediated m3C32 methylation might, therefore, facilitate the optimal composition and function of the mitochondrial respiratory chain.


Assuntos
Metiltransferases/metabolismo , RNA Mitocondrial/química , RNA de Transferência/química , Animais , Anticódon , Proliferação de Células , Códon , Citoplasma , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais , Proteínas Mitocondriais/química , Consumo de Oxigênio , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Ribossomos/metabolismo , Regulação para Cima
6.
Trends Biochem Sci ; 48(9): 761-775, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482516

RESUMO

The cell orchestrates the dance of chromosome segregation with remarkable speed and fidelity. The mitotic spindle is built from scratch after interphase through microtubule (MT) nucleation, which is dependent on the γ-tubulin ring complex (γ-TuRC), the universal MT template. Although several MT nucleation pathways build the spindle framework, the question of when and how γ-TuRC is targeted to these nucleation sites in the spindle and subsequently activated remains an active area of investigation. Recent advances facilitated the discovery of new MT nucleation effectors and their mechanisms of action. In this review, we illuminate each spindle assembly pathway and subsequently consider how the pathways are merged to build a spindle.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Centro Organizador dos Microtúbulos/metabolismo
7.
Trends Biochem Sci ; 47(8): 645-659, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35397926

RESUMO

Age-associated changes in mitochondria are closely involved in aging. Apart from the established roles in bioenergetics and biosynthesis, mitochondria are signaling organelles that communicate their fitness to the nucleus, triggering transcriptional programs to adapt homeostasis stress that is essential for organismal health and aging. Emerging studies revealed that mitochondrial-to-nuclear (mito-nuclear) communication via altered levels of mitochondrial metabolites or stress signals causes various epigenetic changes, facilitating efforts to maintain homeostasis and affect aging. Here, we summarize recent studies on the mechanisms by which mito-nuclear communication modulates epigenomes and their effects on regulating the aging process. Insights into understanding how mitochondrial metabolites serve as prolongevity signals and how aging affects this communication will help us develop interventions to promote longevity and health.


Assuntos
Longevidade , Mitocôndrias , Núcleo Celular/metabolismo , Epigênese Genética , Longevidade/fisiologia , Mitocôndrias/metabolismo
8.
Trends Genet ; 39(2): 125-139, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36137834

RESUMO

Mitochondria, organelles that harbor their own circular genomes, are critical for energy production and homeostasis maintenance in eukaryotic cells. Recent studies discovered hundreds of mitochondria-encoded noncoding RNAs (mt-ncRNAs), including novel subtypes of mitochondria-encoded circular RNAs (mecciRNAs) and mitochondria-encoded double-stranded RNAs (mt-dsRNAs). Here, we discuss the emerging field of mt-ncRNAs by reviewing their expression patterns, biogenesis, metabolism, regulatory roles, and functional mechanisms. Many mt-ncRNAs have regulatory roles in cellular physiology, and some are associated with, or even act as, causal factors in human diseases. We also highlight developments in technologies and methodologies and further insights into future perspectives and challenges in studying these noncoding RNAs, as well as their potential biomedical applications.


Assuntos
RNA Longo não Codificante , RNA não Traduzido , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Circular/genética , RNA Longo não Codificante/metabolismo
9.
Mol Cell ; 69(4): 594-609.e8, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452639

RESUMO

Accumulating evidence indicates that the MDM2 oncoprotein promotes tumorigenesis beyond its canonical negative effects on the p53 tumor suppressor, but these p53-independent functions remain poorly understood. Here, we show that a fraction of endogenous MDM2 is actively imported in mitochondria to control respiration and mitochondrial dynamics independently of p53. Mitochondrial MDM2 represses the transcription of NADH-dehydrogenase 6 (MT-ND6) in vitro and in vivo, impinging on respiratory complex I activity and enhancing mitochondrial ROS production. Recruitment of MDM2 to mitochondria increases during oxidative stress and hypoxia. Accordingly, mice lacking MDM2 in skeletal muscles exhibit higher MT-ND6 levels, enhanced complex I activity, and increased muscular endurance in mild hypoxic conditions. Furthermore, increased mitochondrial MDM2 levels enhance the migratory and invasive properties of cancer cells. Collectively, these data uncover a previously unsuspected function of the MDM2 oncoprotein in mitochondria that play critical roles in skeletal muscle physiology and may contribute to tumor progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Transformação Celular Neoplásica/patologia , Complexo I de Transporte de Elétrons/metabolismo , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Complexo I de Transporte de Elétrons/genética , Genoma Mitocondrial , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Invasividade Neoplásica , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-mdm2/genética , Transdução de Sinais , Transcrição Gênica , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Neurosci ; 44(29)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38744530

RESUMO

Sleep disorders affect millions of people around the world and have a high comorbidity with psychiatric disorders. While current hypnotics mostly increase non-rapid eye movement sleep (NREMS), drugs acting selectively on enhancing rapid eye movement sleep (REMS) are lacking. This polysomnographic study in male rats showed that the first-in-class selective melatonin MT1 receptor partial agonist UCM871 increases the duration of REMS without affecting that of NREMS. The REMS-promoting effects of UCM871 occurred by inhibiting, in a dose-response manner, the firing activity of the locus ceruleus (LC) norepinephrine (NE) neurons, which express MT1 receptors. The increase of REMS duration and the inhibition of LC-NE neuronal activity by UCM871 were abolished by MT1 pharmacological antagonism and by an adeno-associated viral (AAV) vector, which selectively knocked down MT1 receptors in the LC-NE neurons. In conclusion, MT1 receptor agonism inhibits LC-NE neurons and triggers REMS, thus representing a novel mechanism and target for REMS disorders and/or psychiatric disorders associated with REMS impairments.


Assuntos
Locus Cerúleo , Ratos Sprague-Dawley , Receptor MT1 de Melatonina , Sono REM , Animais , Masculino , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Locus Cerúleo/fisiologia , Ratos , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/metabolismo , Sono REM/fisiologia , Sono REM/efeitos dos fármacos , Norepinefrina/metabolismo , Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/metabolismo , Neurônios Adrenérgicos/fisiologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
11.
J Biol Chem ; : 107541, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992438

RESUMO

The amyloid precursor protein (APP) is a key protein in Alzheimer's disease synthesized in the endoplasmic reticulum (ER) and translocated to the plasma membrane where it undergoes proteolytic cleavages by several proteases. Conversely to other known proteases, we previously elucidated rhomboid protease RHBDL4 as a novel APP processing enzyme where several cleavages likely occur already in the ER. Interestingly, the pattern of RHBDL4-derived large APP C-terminal fragments resemble those generated by the η-secretase or MT5-MMP, which was described to generate so called Aη fragments. The similarity in large APP C-terminal fragments between both proteases raised the question whether RHBDL4 may contribute to η-secretase activity and Aη-like fragments. Here, we identified two cleavage sites of RHBDL4 in APP by mass spectrometry, which, intriguingly, lie in close proximity to the MT5-MMP cleavage sites. Indeed, we observed that RHBDL4 generates Aη-like fragments in vitro without contributions of α-, ß-, or γ-secretases. Such Aη-like fragments are likely generated in the ER since RHBDL4-derived APP-C-terminal fragments do not reach the cell surface. Inherited, familial APP mutations appear to not affect this processing pathway. In RHBDL4 knockout mice, we observed increased cerebral full length APP in comparison to wild type (WT) in support of RHBDL4 being a physiologically relevant protease for APP. Furthermore, we found secreted Aη fragments in dissociated mixed cortical cultures from WT mice, however significantly less Aη fragments in RHBDL4 knockout cultures. Our data underscores that RHBDL4 contributes to η-secretease-like processing of APP and that RHBDL4 is a physiologically relevant protease for APP.

12.
Mol Cell Proteomics ; 22(6): 100566, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169079

RESUMO

The secreted metalloproteases ADAMTS9 and ADAMTS20 are implicated in extracellular matrix proteolysis and primary cilium biogenesis. Here, we show that clonal gene-edited RPE-1 cells in which ADAMTS9 was inactivated, and which constitutively lack ADAMTS20 expression, have morphologic characteristics distinct from parental RPE-1 cells. To investigate underlying proteolytic mechanisms, a quantitative terminomics method, terminal amine isotopic labeling of substrates was used to compare the parental and gene-edited RPE-1 cells and their medium to identify ADAMTS9 substrates. Among differentially abundant neo-amino (N) terminal peptides arising from secreted and transmembrane proteins, a peptide with lower abundance in the medium of gene-edited cells suggested cleavage at the Tyr314-Gly315 bond in the ectodomain of the transmembrane metalloprotease membrane type 1-matrix metalloproteinase (MT1-MMP), whose mRNA was also reduced in gene-edited cells. This cleavage, occurring in the MT1-MMP hinge, that is, between the catalytic and hemopexin domains, was orthogonally validated both by lack of an MT1-MMP catalytic domain fragment in the medium of gene-edited cells and restoration of its release from the cell surface by reexpression of ADAMTS9 and ADAMTS20 and was dependent on hinge O-glycosylation. A C-terminally semitryptic MT1-MMP peptide with greater abundance in WT RPE-1 medium identified a second ADAMTS9 cleavage site in the MT1-MMP hemopexin domain. Consistent with greater retention of MT1-MMP on the surface of gene-edited cells, pro-MMP2 activation, which requires cell surface MT1-MMP, was increased. MT1-MMP knockdown in gene-edited ADAMTS9/20-deficient cells restored focal adhesions but not ciliogenesis. The findings expand the web of interacting proteases at the cell surface, suggest a role for ADAMTS9 and ADAMTS20 in regulating cell surface activity of MT1-MMP, and indicate that MT1-MMP shedding does not underlie their observed requirement in ciliogenesis.


Assuntos
Hemopexina , Metaloproteinase 14 da Matriz , Membrana Celular/metabolismo , Hemopexina/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Peptídeos/metabolismo , Proteólise , Humanos
13.
J Neurosci ; 43(21): 3825-3837, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37037605

RESUMO

Behavioral studies suggest that motion perception is rudimentary at birth and matures steadily over the first few years. We demonstrated previously that the major cortical associative areas serving motion processing, like middle temporal complex (MT+), visual cortex area 6 (V6), and PIVC in adults, show selective responses to coherent flow in 8-week-old infants. Here, we study the BOLD response to the same motion stimuli in 5-week-old infants (four females and four males) and compare the maturation between these two ages. The results show that MT+ and PIVC areas show a similar motion response at 5 and 8 weeks, whereas response in the V6 shows a reduced BOLD response to motion at 5 weeks, and cuneus associative areas are not identifiable at this young age. In infants and in adults, primary visual cortex (V1) does not show a selectivity for coherent motion but shows very fast development between 5 and 8 weeks of age in response to the appearance of motion stimuli. Resting-state correlations demonstrate adult-like functional connectivity between the motion-selective associative areas but not between primary cortex and temporo-occipital and posterior-insular cortices. The results are consistent with a differential developmental trajectory of motion area respect to other occipital regions, probably reflecting also a different development trajectory of the central and peripheral visual field.SIGNIFICANCE STATEMENT How the cortical visual areas attain the specialization that we observed in human adults in the first few months of life is unknown. However, this knowledge is crucial to understanding the consequence of perinatal brain damage and its outcome. Here, we show that motion selective areas are already functioning well in 5-week-old infants with greater responses for detecting coherent motion over random motion, suggesting that very little experience is needed to attain motion selectivity.


Assuntos
Lesões Encefálicas , Percepção de Movimento , Córtex Motor , Adulto , Recém-Nascido , Feminino , Masculino , Gravidez , Humanos , Lactente , Conhecimento , Movimento (Física) , Estimulação Luminosa , Imageamento por Ressonância Magnética
14.
J Neurosci ; 43(45): 7690-7699, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37848284

RESUMO

During face-to-face communication, the perception and recognition of facial movements can facilitate individuals' understanding of what is said. Facial movements are a form of complex biological motion. Separate neural pathways are thought to processing (1) simple, nonbiological motion with an obligatory waypoint in the motion-sensitive visual middle temporal area (V5/MT); and (2) complex biological motion. Here, we present findings that challenge this dichotomy. Neuronavigated offline transcranial magnetic stimulation (TMS) over V5/MT on 24 participants (17 females and 7 males) led to increased response times in the recognition of simple, nonbiological motion as well as visual speech recognition compared with TMS over the vertex, an active control region. TMS of area V5/MT also reduced practice effects on response times, that are typically observed in both visual speech and motion recognition tasks over time. Our findings provide the first indication that area V5/MT causally influences the recognition of visual speech.SIGNIFICANCE STATEMENT In everyday face-to-face communication, speech comprehension is often facilitated by viewing a speaker's facial movements. Several brain areas contribute to the recognition of visual speech. One area of interest is the motion-sensitive visual medial temporal area (V5/MT), which has been associated with the perception of simple, nonbiological motion such as moving dots, as well as more complex, biological motion such as visual speech. Here, we demonstrate using noninvasive brain stimulation that area V5/MT is causally relevant in recognizing visual speech. This finding provides new insights into the neural mechanisms that support the perception of human communication signals, which will help guide future research in typically developed individuals and populations with communication difficulties.


Assuntos
Percepção de Movimento , Percepção da Fala , Córtex Visual , Masculino , Feminino , Humanos , Estimulação Magnética Transcraniana , Percepção de Movimento/fisiologia , Fala , Córtex Visual/fisiologia , Estimulação Luminosa
15.
Semin Cell Dev Biol ; 129: 126-134, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35260295

RESUMO

Cell-cell communications are central to a variety of physiological and pathological processes in multicellular organisms. Cells often rely on cellular protrusions to communicate with one another, which enable highly selective and efficient signaling within complex tissues. Owing to significant improvements in imaging techniques, identification of signaling protrusions has increased in recent years. These protrusions are structurally specialized for signaling and facilitate interactions between cells. Therefore, physical regulation of these structures must be key for the appropriate strength and pattern of signaling outcomes. However, the typical approaches for understanding signaling regulation tend to focus solely on changes in signaling molecules, such as gene expression, protein-protein interaction, and degradation. In this short review, we summarize the studies proposing the removal of different types of signaling protrusions-including cilia, neurites, MT (microtubule based)-nanotubes and microvilli-and discuss their mechanisms and significance in signaling regulation.


Assuntos
Comunicação Celular , Extensões da Superfície Celular , Extensões da Superfície Celular/metabolismo , Microtúbulos/metabolismo , Neuritos , Transdução de Sinais
16.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37935058

RESUMO

Genetic elements encoded in nuclear DNA determine the sex of an individual in many animals. In certain bivalve lineages that possess doubly uniparental inheritance (DUI), mitochondrial DNA (mtDNA) has been hypothesized to contribute to sex determination. In these cases, females transmit a female mtDNA to all offspring, while male mtDNA (M mtDNA) is transmitted only from fathers to sons. Because M mtDNA is inherited in the same way as Y chromosomes, it has been hypothesized that mtDNA may be responsible for sex determination. However, the role of mitochondrial and nuclear genes in sex determination has yet to be validated in DUI bivalves. In this study, we used DNA, RNA, and mitochondrial short noncoding RNA (sncRNA) sequencing to explore the role of mitochondrial and nuclear elements in the sexual development pathway of the freshwater mussel Potamilus streckersoni (Bivalvia: Unionida). We found that the M mtDNA sheds a sncRNA partially within a male-specific mitochondrial gene that targets a pathway hypothesized to be involved in female development and mitophagy. RNA-seq confirmed the gene target was significantly upregulated in females, supporting a direct role of mitochondrial sncRNAs in gene silencing. These findings support the hypothesis that M mtDNA inhibits female development. Genome-wide patterns of genetic differentiation and heterozygosity did not support a nuclear sex-determining region, although we cannot reject that nuclear factors are involved with sex determination. Our results provide further evidence that mitochondrial loci contribute to diverse, nonrespiratory functions and additional insights into an unorthodox sex-determining system.


Assuntos
Bivalves , Pequeno RNA não Traduzido , Feminino , Animais , Bivalves/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Genes Mitocondriais
17.
J Cell Sci ; 135(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35762511

RESUMO

Invasion in various cancer cells requires coordinated delivery of signaling proteins, adhesion proteins, actin-remodeling proteins and proteases to matrix-degrading structures called invadopodia. Vesicular trafficking involving SNAREs plays a crucial role in the delivery of cargo to the target membrane. Screening of 13 SNAREs from the endocytic and recycling route using a gene silencing approach coupled with functional assays identified syntaxin 7 (STX7) as an important player in MDA-MB-231 cell invasion. Total internal reflection fluorescence microscopy (TIRF-M) studies revealed that STX7 resides near invadopodia and co-traffics with MT1-MMP (also known as MMP14), indicating a possible role for this SNARE in protease trafficking. STX7 depletion reduced the number of invadopodia and their associated degradative activity. Immunoprecipitation studies revealed that STX7 forms distinct SNARE complexes with VAMP2, VAMP3, VAMP7, STX4 and SNAP23. Depletion of VAMP2, VAMP3 or STX4 abrogated invadopodia formation, phenocopying what was seen upon lack of STX7. Whereas depletion of STX4 reduced MT1-MMP level at the cell surfaces, STX7 silencing significantly reduced the invadopodia-associated MT1-MMP pool and increased the non-invadosomal pool. This study highlights STX7 as a major contributor towards the invadopodia formation during cancer cell invasion. This article has an associated First Person interview with the first author of the paper.


Assuntos
Neoplasias da Mama , Podossomos , Proteínas Qa-SNARE , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Invasividade Neoplásica , Podossomos/metabolismo , Transporte Proteico , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo
18.
Hum Brain Mapp ; 45(2): e26583, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339902

RESUMO

Although it has been established that cross-modal activations occur in the occipital cortex during auditory processing among congenitally and early blind listeners, it remains uncertain whether these activations in various occipital regions reflect sensory analysis of specific sound properties, non-perceptual cognitive operations associated with active tasks, or the interplay between sensory analysis and cognitive operations. This fMRI study aimed to investigate cross-modal responses in occipital regions, specifically V5/MT and V1, during passive and active pitch perception by early blind individuals compared to sighted individuals. The data showed that V5/MT was responsive to pitch during passive perception, and its activations increased with task complexity. By contrast, widespread occipital regions, including V1, were only recruited during two active perception tasks, and their activations were also modulated by task complexity. These fMRI results from blind individuals suggest that while V5/MT activations are both stimulus-responsive and task-modulated, activations in other occipital regions, including V1, are dependent on the task, indicating similarities and differences between various visual areas during auditory processing.


Assuntos
Lobo Occipital , Percepção da Altura Sonora , Humanos , Lobo Occipital/diagnóstico por imagem , Percepção da Altura Sonora/fisiologia , Percepção Auditiva/fisiologia , Cegueira/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos
19.
Development ; 148(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015092

RESUMO

Upon the stimulation of extracellular cues, a significant number of proteins are synthesized distally along the axon. Although local protein synthesis is crucial for various stages throughout neuronal development, its involvement in presynaptic differentiation at developing neuromuscular junctions remains unknown. By using axon severing and microfluidic chamber assays, we first showed that treatment of a protein synthesis inhibitor, cycloheximide, inhibits agrin-induced presynaptic differentiation in cultured Xenopus spinal neurons. Newly synthesized proteins are prominently detected, as revealed by the staining of click-reactive cell-permeable puromycin analog O-propargyl-puromycin, at agrin bead-neurite contacts involving the mTOR/4E-BP1 pathway. Next, live-cell time-lapse imaging demonstrated the local capturing and immobilization of ribonucleoprotein granules upon agrin bead stimulation. Given that our recent study reported the roles of membrane-type 1 matrix metalloproteinase (MT1-MMP) in agrin-induced presynaptic differentiation, here we further showed that MT1-MMP mRNA is spatially enriched and locally translated at sites induced by agrin beads. Taken together, this study reveals an essential role for axonal MT1-MMP translation, on top of the well-recognized long-range transport of MT1-MMP proteins synthesized from neuronal cell bodies, in mediating agrin-induced presynaptic differentiation.


Assuntos
Agrina/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Neurogênese/fisiologia , Biossíntese de Proteínas/fisiologia , Xenopus laevis/embriologia , Animais , Axônios/metabolismo , Células Cultivadas , Cicloeximida/farmacologia , Metaloproteinase 14 da Matriz/genética , Microfluídica/métodos , Neurogênese/efeitos dos fármacos , Junção Neuromuscular/embriologia , Terminações Pré-Sinápticas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
20.
J Neuroinflammation ; 21(1): 57, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388415

RESUMO

BACKGROUND: Neuropathic pain (NP) is a kind of intractable pain. The pathogenesis of NP remains a complicated issue for pain management practitioners. SPARC/osteonectin, CWCV, and Kazal-like domains proteoglycan 2 (SPOCK2) are members of the SPOCK family that play a significant role in the development of the central nervous system. In this study, we investigated the role of SPOCK2 in the development of NP in a rat model of chronic constriction injury (CCI). METHODS: Sprague-Dawley rats were randomly grouped to establish CCI models. We examined the effects of SPOCK2 on pain hpersensitivity and spinal astrocyte activation after CCI-induced NP. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used to reflects the pain behavioral degree. Molecular mechanisms involved in SPOCK2-mediated NP in vivo were examined by western blot analysis, immunofluorescence, immunohistochemistry, and co-immunoprecipitation. In addition, we examined the SPOCK2-mediated potential protein-protein interaction (PPI) in vitro coimmunoprecipitation (Co-IP) experiments. RESULTS: We founded the expression level of SPOCK2 in rat spinal cord was markedly increased after CCI-induced NP, while SPOCK2 downregulation could partially relieve pain caused by CCI. Our research showed that SPOCK2 expressed significantly increase in spinal astrocytes when CCI-induced NP. In addition, SPOCK2 could act as an upstream signaling molecule to regulate the activation of matrix metalloproteinase-2 (MMP-2), thus affecting astrocytic ERK1/2 activation and interleukin (IL)-1ß production in the development of NP. Moreover, in vitro coimmunoprecipitation (Co-IP) experiments showed that SPOCK2 could interact with membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP14) to regulate MMP-2 activation by the SPARC extracellular (SPARC_EC) domain. CONCLUSIONS: Research shows that SPOCK2 can interact with MT1-MMP to regulate MMP-2 activation, thus affecting astrocytic ERK1/2 activation and IL-1ß production to achieve positive promotion of NP.


Assuntos
Astrócitos , Neuralgia , Animais , Ratos , Astrócitos/metabolismo , Constrição , Metaloproteinase 14 da Matriz , Metaloproteinase 2 da Matriz , Neuralgia/etiologia , Neuralgia/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA