Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 681
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2217523120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36634136

RESUMO

In both eukarya and bacteria, the addition of Cys to dehydroalanine (Dha) and dehydrobutyrine (Dhb) occurs in various biological processes. In bacteria, intramolecular thia-Michael addition catalyzed by lanthipeptide cyclases (LanC) proteins or protein domains gives rise to a class of natural products called lanthipeptides. In eukarya, dehydroamino acids in signaling proteins are introduced by effector proteins produced by pathogens like Salmonella to dysregulate host defense mechanisms. A eukaryotic LanC-like (LanCL) enzyme catalyzes the addition of Cys in glutathione to Dha/Dhb to protect the cellular proteome from unwanted chemical and biological activity. To date, the mechanism of the enzyme-catalyzed thia-Michael addition has remained elusive. We report here the crystal structures of the human LanCL1 enzyme complexed with different ligands, including the product of thia-Michael addition of glutathione to a Dhb-containing peptide that represents the activation loop of Erk. The structures show that a zinc ion activates the Cys thiolate for nucleophilic attack and that a conserved His is poised to protonate the enolate intermediate to achieve a net anti-addition. A second His hydrogen bonds to the carbonyl oxygen of the former Dhb and may stabilize the negative charge that builds up on this oxygen atom in the enolate intermediate. Surprisingly, the latter His is not conserved in orthologous enzymes that catalyze thia-Michael addition to Dha/Dhb. Eukaryotic LanCLs contain a His, whereas bacterial stand-alone LanCs have a Tyr residue, and LanM enzymes that have LanC-like domains have a Lys, Asn, or His residue. Mutational and binding studies support the importance of these residues for catalysis.


Assuntos
Peptídeos , Proteínas , Humanos , Peptídeos/química , Glutationa , Bactérias/metabolismo , Catálise , Oxigênio
2.
Proc Natl Acad Sci U S A ; 119(37): e2208540119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36070343

RESUMO

Diversity Oriented Clicking (DOC) is a discovery method geared toward the rapid synthesis of functional libraries. It combines the best attributes of both classical and modern click chemistries. DOC strategies center upon the chemical diversification of core "SuFExable" hubs-exemplified by 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs)-enabling the modular assembly of compounds through multiple reaction pathways. We report here a range of stereoselective Michael-type addition pathways from SASF hubs including reactions with secondary amines, carboxylates, 1H-1,2,3-triazole, and halides. These high yielding conjugate addition pathways deliver unprecedented ß-substituted alkenyl sulfonyl fluorides as single isomers with minimal purification, greatly enriching the repertoire of DOC and holding true to the fundamentals of modular click chemistry. Further, we demonstrate the potential for biological function - a key objective of click chemistry - of this family of SASF-derived molecules as covalent inhibitors of human neutrophil elastase.


Assuntos
Química Click , Fluoretos , Elastase de Leucócito , Proteínas Secretadas Inibidoras de Proteinases , Ácidos Sulfínicos , Química Click/métodos , Fluoretos/síntese química , Fluoretos/química , Fluoretos/farmacologia , Humanos , Elastase de Leucócito/antagonistas & inibidores , Proteínas Secretadas Inibidoras de Proteinases/síntese química , Proteínas Secretadas Inibidoras de Proteinases/química , Proteínas Secretadas Inibidoras de Proteinases/farmacologia , Ácidos Sulfínicos/síntese química , Ácidos Sulfínicos/química , Ácidos Sulfínicos/farmacologia
3.
Small ; 20(27): e2310048, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38279632

RESUMO

Liquid crystalline blue phase (BP) with 3D cubic nanostructure has attracted much interest in the fields of photonic crystals due to their unique optical properties and the ability to control the flow of light. However, there remains a challenge for simultaneously achieving self-assembly and mechanochromic response of soft 3D cubic nanostructures. Herein, a scalable strategy for the preparation of soft 3D cubic nanostructured films using oligomerization of the Michael addition reaction, which can induce the assembly of double-twisted cylinders for collective replication, remodeling, recombination, and growth, with a phase transition from BPII to BPI, and to chiral nematic phase, is presented. The prepared BP patterns can be obtained by Michael addition oligomerization reaction and composite mask photopolymerization, which present distinct mechanochromic sensitive due to patterns derived from different BP state, and the pattern can be reversibly erased and recurred by mechanical force and temperature. The average domain size of BPII prepared using this strategy can achieve 96 µm, which is 2.5 times larger than that obtained using the conventional cooling approach. This work provides new insights into the self-assembly and selective chemochromism of functional materials and devices.

4.
Chemistry ; 30(28): e202400438, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470414

RESUMO

A novel approach has been developed for the synthesis of bicyclic ß, γ-fused bicyclic γ-ureasultams containing two consecutive chiral centers through an intramolecular Mannich and aza-Michael addition cascade of alkenyl sulfamides. The straightforward practical procedure and readily available starting materials enable the synthesis of variously substituted ureasultams. In addition, bicyclic γ-ureasultams is a class of potential biotin analogues.

5.
Chemistry ; 30(20): e202304078, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311856

RESUMO

An asymmetric double desymmetrization methodology has been developed for synthesizing densely functionalized chiral cyclopentylcyclohexane scaffolds. We have constructed four chiral centers, including an all-carbon quaternary stereocenter in a single C-C bond formation event. The methodology has high functional-group tolerance and delivers a broad range of enantioenriched products. This vinylogous Michael addition reaction of prochiral α,α-dicyanocyclohexane to 2,2-disubstituted cyclopentene-1,3-dione is catalyzed by a chiral Ag-(R)-DTBM-SEGPHOS catalyst.

6.
Chemistry ; 30(20): e202303848, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38312108

RESUMO

A tridentate ligand L with a P,NH,N donor motif was synthesized in few steps from commercially available precursors. Upon reaction with [MnBr(CO)5], an octahedral 18-electron complex [Mn(CO)3(L)]Br (1) is obtained in which L adopts a facial arrangement. After deprotonation of the NH group in the cationic complex unit, a neutral Mn(I) amido complex [Mn(CO)2(L-H)] (2) is formed under loss of CO. Rearrangement of L-H leads to a trigonal bipyramidal structure in which the P and N donor centers are in trans position. Further deprotonation of 2 results in a dep-blue anionic complex fragment [Mn(CO)2(L-2H)]- (3). DFT calculations and a QTAIM analysis show that the amido complex 2 contains a Mn-N bond with partial double bond character and 3 an aromatic MnN2C2 ring. The anion [Mn(CO)2(L-2H)]- reacts with Ph2PH to give a phosphido complex, which serves as phosphide transfer reagent to activated olefins. But the catalytic activity is low. However, the neutral amido complex 2 is an excellent catalyst and with loadings as low as 0.04 mol %, turn over frequencies of >40'000 h-1 can be achieved. Furthermore, secondary and primary alkyl phosphines as well as PH3 can be added in a catalytic hydrophosphination reaction to a wide range of activated olefins such as α,ß-unsaturated aldehydes, ketones, esters, and nitriles. But also, vinyl pyridine and some styrene derivatives are converted into the corresponding phosphanes.

7.
Chemistry ; 30(25): e202303980, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391113

RESUMO

Herein, we disclosed the asymmetric construction of an oxa-quaternary stereocenter via an intramolecular oxa-Michael (IOM) reaction in ß-substituted ortho-hydroxymethyl chalcone by the formation of 1,1-disubstituted-1,3-dihydroisobenzofuran using cinchona alkaloid-based chiral amino-squaramide catalyst. Both the (E- and Z)-ß-substituted ortho-hydroxymethyl chalcone provide (S)- and (R)-enantiomers of the 1,1-disubstituted-1,3-dihydroisobenzofuran with excellent stereospecificity. In general, excellent yields (up to 95 %) and enantioselectivity (up to 98 % ee) were obtained. Furthermore, the resulting 1,1-disubstituted isobenzofuran or phthalan was converted to corresponding chiral 3,3-disubstituted phthalides without losing the enantioselectivity. This methodology provides the core moiety of the (S)-citalopram drug.

8.
Bioorg Med Chem Lett ; 109: 129855, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908766

RESUMO

The role of G-quadruplex (G4) in cellular processes can be investigated by the covalent modification of G4-DNA using alkylating reagents. Controllable alkylating reagents activated by external stimuli can react elegantly and selectively. Herein, we report a chemical activation system that can significantly boost the reaction rate of methylamine-protected vinyl-quinazolinone (VQ) derivative for the alkylation of G4-DNA. The two screened activators can transform low-reactive VQ-NHR' to highly reactive intermediates following the Michael addition mechanism. This approach expands the toolbox of activable G4 alkylating reagents.


Assuntos
Quadruplex G , Metilaminas , Quinazolinonas , Alquilação , Quadruplex G/efeitos dos fármacos , Metilaminas/química , Metilaminas/farmacologia , Metilaminas/síntese química , Quinazolinonas/química , Quinazolinonas/farmacologia , Quinazolinonas/síntese química , Humanos , Estrutura Molecular , DNA/química , Compostos de Vinila/química , Compostos de Vinila/farmacologia
9.
Bioorg Med Chem ; 103: 117650, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492540

RESUMO

Reactions for drug synthesis under cell-like conditions or even inside living cells can potentially be used e.g., to minimize toxic side effects, to maximize bioactive compound efficacy and/or to address drug delivery problems. Those reactions should be bioorthogonal to enable the generation of drug-like compounds with sufficiently good yields. In the known bioorthogonal Michael reactions, using thiols and phosphines as nucleophiles (e.g., in CS and CP bond formation reactions) is very common. No bioorthogonal Michael addition with a carbon nucleophile is known yet. Therefore, the development of such a reaction might be interesting for future drug discovery research. In this work, the metal-free Michael addition between cyclohexanone and various trans-ß-nitrostyrenes (CC bond formation reaction), catalysed by a dipeptide salt H-Pro-Phe-O-Na+, was investigated for the first time in the presence of glutathione (GSH) and in phosphate-buffered saline (PBS). We demonstrated that with electron-withdrawing substituents on the aromatic ring and in ß-position of the trans-ß-nitrostyrene yields up to 64% can be obtained under physiological conditions, indicating a potential bioorthogonality of the studied Michael reaction. In addition, the selected Michael products demonstrated activity against human ovarian cancer cells A2780. This study opens up a new vista for forming bioactive compounds via CC bond formation Michael reactions under physiological (cell-like) conditions.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Carbono/química , Compostos de Sulfidrila
10.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063017

RESUMO

Non-enzyme-catalyzed thiol addition onto the α,ß-unsaturated carbonyl system is associated with several biological effects. Kinetics and diastereoselectivity of non-enzyme catalyzed nucleophilic addition of reduced glutathione (GSH) and N-acetylcysteine (NAC) to the six-membered cyclic chalcone analogs 2a and 2b were investigated at different pH values (pH 3.2, 7.4 and 8.0). The selected compounds displayed in vitro cancer cell cytotoxicity (IC50) of different orders of magnitude. The chalcones intrinsically reacted with both thiols under all incubation conditions. The initial rates and compositions of the final mixtures depended both on the substitution and the pH. The stereochemical outcome of the reactions was evaluated using high-pressure liquid chromatography with UV detection (HPLC-UV). The structures of the formed thiol-conjugates and the retro-Michael products (Z)-2a and (Z)-2b were confirmed by high-pressure liquid chromatography-mass spectrometry (HPLC-MS). Frontier molecular orbitals and the Fukui function calculations were carried out to investigate their effects on the six-membered cyclic analogs. Data were compared with those obtained with the open-chain (1) and the seven-membered (3) analogs. The observed reactivities do not directly relate to the difference in in vitro cancer cell cytotoxicity of the compounds.


Assuntos
Chalconas , Compostos de Sulfidrila , Humanos , Chalconas/química , Chalconas/farmacologia , Compostos de Sulfidrila/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Cromatografia Líquida de Alta Pressão , Glutationa/metabolismo , Glutationa/química , Cinética , Compostos de Benzilideno/química
11.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255843

RESUMO

New [1,2]dithiolo[3,4-b]pyridine-5-carboxamides were synthesized through the reaction of dithiomalondianilide (N,N'-diphenyldithiomalondiamide) with 3-aryl-2-cyanoacrylamides or via a three-component reaction involving aromatic aldehydes, cyanoacetamide and dithiomalondianilide in the presence of morpholine. The structure of 6-amino-4-(2,4-dichloro- phenyl)-7-phenyl-3-(phenylimino)-4,7-dihydro-3H-[1,2]dithiolo[3,4-b]pyridine-5-carboxamide was confirmed using X-ray crystallography. To understand the reaction mechanism in detail, density functional theory (DFT) calculations were performed with a Grimme B97-3c composite computational scheme. The results revealed that the rate-limiting step is a cyclization process leading to the closure of the 1,4-dihydropyridine ring, with an activation barrier of 28.8 kcal/mol. Some of the dithiolo[3,4-b]pyridines exhibited moderate herbicide safening effects against 2,4-D. Additionally, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) parameters were calculated and molecular docking studies were performed to identify potential protein targets.


Assuntos
Aldeídos , Piridinas , Simulação de Acoplamento Molecular , Ciclização
12.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257255

RESUMO

The reaction of arylidene-α-amino esters with electrophilic alkenes to yield Michael-type addition compounds is optimized using several phosphines as organocatalysts. The transformation is very complicated due to the generation of several final compounds, including those derived from the 1,3-dipolar cycloadditions. For this reason, the selection of the reaction conditions is a very complex task and the slow addition of the acrylic system is very important to complete the process. The study of the variation in the structural components of the starting imino ester is performed as well as the expansion of other electron-poor alkenes. The crude products have a purity higher than 90% in most cases without any purification. A plausible mechanism is detailed based on the bibliography and the experimental results. The synthesis of pyroglutamate entities, after the reduction of the imino group and cyclization, is performed in high yields. In addition, the hydrolysis of the imino group, under acidic media, represents a direct access to glutamate surrogates.

13.
Molecules ; 29(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124870

RESUMO

Various substituted D-hexopypyranosides units with nitrogen-containing functionalities are present in many important natural compounds and pharmaceutical substances. Since their complex structural diversity contributes to a broad spectrum of biological functions and activities, these derivatives are frequently studied. This review covers syntheses of D-hexopyranosides with vicinal nitrogen-containing functionalities since the 1960s, when the first articles emerged. The syntheses are arranged according to the positions of substitutions, to form a relative configuration of vicinal functionalities, and synthetic methodologies.

14.
Molecules ; 29(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542952

RESUMO

With the aim to develop novel scaffolds for the sustained release of drugs, we initially developed an easy approach for the synthesis of α,ω-homobifunctional mercaptoacyl poly(alkyl oxide)s. This was based on the esterification of the terminal hydroxyl groups of poly(alkyl oxide)s with suitably S-4-methoxytrityl (Mmt)-protected mercapto acids, followed by the removal of the acid labile S-Mmt group. This method allowed for the efficient synthesis of the title compounds in high yield and purity, which were further used in the development of a thioether cross-linked liposome scaffold, by thia-Michael reaction of the terminal thiol groups with pre-formed nano-sized liposomes bearing maleimide groups on their surface. The reaction process was followed by 1H-NMR, using a Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiment (1H-NMR CPMG), which allowed for real-time monitoring and optimization of the reaction process. The thioether cross-linked liposomal scaffold that was synthesized was proven to preserve the nano-sized characteristics of the initial liposomes and allowed for the sustained release of calcein (which was used as a hydrophilic dye and a hydrophilic drug model), providing evidence for the efficient synthesis of a novel drug release scaffold consisting of nanoliposome building blocks.


Assuntos
Lipossomos , Sulfetos , Preparações de Ação Retardada/química , Sulfetos/química , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética
15.
Angew Chem Int Ed Engl ; 63(3): e202316016, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38038685

RESUMO

The first asymmetric total synthesis of the monoterpenoid indole alkaloid arboduridine has been accomplished. The tricyclic A/B/D ring system was constructed by an enantioselective Michael reaction followed by intramolecular nucleophilic addition. Intramolecular α-amination of a ketone forged the piperidine ring, while a Horner-Wadsworth-Emmons (HWE) reaction was used to form the pyrrolidine ring. A reduction cyclization cascade led to formation of the tetrahydrofuran ring.

16.
Angew Chem Int Ed Engl ; 63(12): e202319308, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38231568

RESUMO

Direct and stereodivergent Michael additions of N-acyl 1,3-thiazinane-2-thiones to α,ß-unsaturated aldehydes catalyzed by chiral nickel(II) complexes are reported. The reactions proceed with a remarkable regio-, diastereo-, and enantioselectivity, so access to any of the four potential Michael stereoisomers is granted through the appropriate choice of the chiral ligand of the nickel(II) complex. Simple removal of the heterocyclic scaffold furnishes a wide array of either syn or anti enantiomerically pure derivatives, which can be exploited for the asymmetric synthesis of biologically active compounds, as demonstrated in a new approach to tapentadol. In turn, a mechanism, based on theoretical calculations, is proposed to account for the stereochemical outcome of these transformations.

17.
Angew Chem Int Ed Engl ; : e202407764, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932510

RESUMO

Lipopeptides are an important class of biomolecules for drug development. Compared with conventional acylation, a chemoselective lipidation strategy offers a more efficient strategy for late-stage structural derivatisation of a peptide scaffold. It provides access to chemically diverse compounds possessing intriguing and non-native moieties. Utilising an allenamide, we report the first semi-synthesis of antimicrobial lipopeptides leveraging a highly efficient thia-Michael addition of chemically diverse lipophilic thiols. Using chemoenzymatically prepared polymyxin B nonapeptide (PMBN) as a model scaffold, an optimised allenamide-mediated thia-Michael addition effected rapid and near quantitative lipidation, affording vinyl sulfide-linked lipopeptide derivatives. Harnessing the utility of this new methodology, 22 lipophilic thiols of unprecedented chemical diversity were introduced to the PMBN framework. These included alkyl thiols, substituted aromatic thiols, heterocyclic thiols and those bearing additional functional groups (e.g., amines), ultimately yielding analogues with potent Gram-negative antimicrobial activity and substantially attenuated nephrotoxicity. Furthermore, we report facile routes to transform the allenamide into a ß-keto amide on unprotected peptides, offering a powerful "jack-of-all-trades" synthetic intermediate to enable further peptide modification.

18.
Angew Chem Int Ed Engl ; 63(2): e202315481, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38009457

RESUMO

Herein we report a structure-unit-based asymmetric total synthesis of sinulochmodin C, a norcembranoid diterpenoid bearing a transannular strained ether bridge ß-keto tetrahydrofuran moiety. Our synthetic route features an intramolecular double Michael addition to construct stereospecifically the [7,6,5,5] tetracyclic skeleton, a vinylogous hydroxylation/oxidation procedure or a stereospecific epoxide opening/oxidation sequence to establish the γ-keto enone intermediate, a Lewis acid/Brønsted acid mediated transannular oxa-Michael addition to fuse the ß-keto tetrahydrofuran moiety, a Mukaiyama hydration/Pd-C hydrogenation to reverse the C1-configuration of the isopropenyl unit, and a bioinspired transformation of sinulochmodin C into scabrolide A.

19.
Angew Chem Int Ed Engl ; 63(20): e202319127, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38504637

RESUMO

We have achieved the first total synthesis of pallamolides A-E. Of these compounds, pallamolides B-E possess intriguing tetracyclic skeletons with novel intramolecular transesterifications. Key transformations include highly diastereoselective sequential Michael addition reactions to construct the bicyclo[2.2.2]octane core with the simultaneous generation of two quaternary carbon centers, a one-pot SmI2-mediated intramolecular ketyl-enoate cyclization/ketone reduction to generate the key oxabicyclo[3.3.1]nonane moiety, and an acid-mediated deprotection/oxa-Michael addition/ß-hydroxy elimination cascade sequence to assemble the tetracyclic pallamolide skeleton. Kinetic resolution of ketone 14 through Corey-Bakshi-Shibata reduction enabled the asymmetric synthesis of pallamolides A-E.

20.
Chemistry ; 29(56): e202301793, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466455

RESUMO

The synthesis of undescribed ß-aminodifluoroethylsulfinates and their uses in the hydroaminodifluoroalkylation of alkenes is reported. This reaction is performed in the presence of a photocatalyst (4CzIPN, Ru complexes) and enables the direct incorporation of a ß-difluoroamine moiety into vinylic aryls, unactivated alkenes, and electron-rich, or -deficient alkenes. The mechanism was studied, and the formation of a gem-difluoromethyl radical was observed after the selective oxidation of the sulfinate function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA