Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 429(2): 113684, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307940

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by selective loss of dopaminergic neurons. We previously found that inhibition of von Hippel-Lindau (VHL) can alleviate dopaminergic neuron degeneration in PD models via regulation of mitochondrial homeostasis, however, the disease-related alterations of VHL and the regulatory mechanisms of VHL level in PD need to be further investigated. In this study, we found that the levels of VHL were markedly increased in multiple cell models of PD and identified microRNA-143-3p (miR-143-3p) as a promising candidate for regulating VHL expression involved in PD. miR-143-3p directly bound to the 3'untranslated region of human VHL mRNA and inhibited its translation, and exerted neuroprotective effects by improving cell viability, apoptosis and tyrosine hydroxylase abnormality. Furthermore, we demonstrated that miR-143-3p exerted neuroprotection by attenuating mitochondrial abnormality via AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) axis, and AMPK inhibitor abolished the beneficial effects of miR-143-3p on the cell model of PD. Therefore, we identify the dysregulated VHL and miR-143-3p in PD, and propose the therapeutic potential of miR-143-3p to alleviate PD by improving mitochondrial homeostasis via AMPK/PGC-1α axis.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , MicroRNAs/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
2.
Heart Vessels ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717698

RESUMO

MicroRNA(miR)-143 and miR-145 are mainly expressed in vascular smooth muscle cells. However, the relationship between plasma miR-143 or miR-145 levels and the left ventricular (LV) function in patients with heart diseases remains unclear. Blood samples were taken from the antecubital vein in patients with heart diseases (n = 52), such as coronary artery disease, old myocardial infarction, cardiomyopathy, and valvular heart disease, and controls without heart diseases (n = 22). We measured plasma miR-143 and -145 levels by quantitative RT-PCR using TaqMan MicroRNA Assays and THUNDERBIRD Probe qPCR Mix. Plasma BNP levels were also measured. Echocardiography was performed to measure the LV ejection fraction (LVEF) and LV dilation. Plasma miR-143 and miR-145 levels were significantly higher in patients with heart diseases than in controls, respectively. Plasma miR-143 and miR-145 levels were significantly higher in patients with LVEF < 50% than in those with LVEF ≧ 50%, respectively. Plasma miR-143 and miR-145 levels were inversely correlated with LVEF, respectively. Plasma miR-143 and miR-145 levels were positively correlated with LV end-systolic dimension, respectively. Plasma miR-143 and -145 levels were positively correlated with plasma BNP levels, respectively. Plasma BNP levels were inversely correlated with LVEF. Plasma miR-143 and miR-145 levels are elevated in patients with LV dysfunction and may counteract LV dysfunction.

3.
Biol Chem ; 404(6): 619-631, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36780323

RESUMO

MicroRNA (miR)-143-3p is a potential regulatory molecule in myocardial ischemia/reperfusion injury (MI/RI), wherein its expression and pathological effects remains controversial. Thus, a mouse MI/RI and cell hypoxia/reoxygenation (H/R) models were built for clarifying the miR-143-3p's role in MI/RI. Following myocardial ischemia for 30 min, mice underwent reperfusion for 3, 6, 12 and 24 h. It was found miR-143-3p increased in the ischemic heart tissue over time after reperfusion. Cardiomyocytes transfected with miR-143-3p were more susceptible to apoptosis. Mechanistically, miR-143-3p targeted B cell lymphoma 2 (bcl-2). And miR-143-3p inhibition reduced cardiomyocytes apoptosis upon H/R, whereas it was reversed by a specific bcl-2 inhibitor ABT-737. Of note, miR-143-3p inhibition upregulated bcl-2 with better mitochondrial membrane potential (Δψm), reduced cytoplasmic cytochrome c (cyto-c) and caspase proteins, and minimized infarction area in mice upon I/R. Collectively, inhibition of miR-143-3p might alleviate MI/RI via targeting bcl-2 to limit mitochondria-mediated apoptosis. To our knowledge, this study further clarifies the miR-143-3p's pathological role in the early stages of MI/RI, and inhibiting miR-143-3p could be an effective treatment for ischemic myocardial disease.


Assuntos
MicroRNAs , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , MicroRNAs/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Apoptose , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Traumatismo por Reperfusão/metabolismo
4.
J Transl Med ; 21(1): 309, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149661

RESUMO

BACKGROUND: The previous studies have revealed that abnormal RNA-binding protein Musashi-2 (MSI2) expression is associated with cancer progression through post-transcriptional mechanisms, however mechanistic details of this regulation in acute myeloid leukemia (AML) still remain unclear. Our study aimed to explore the relationship between microRNA-143 (miR-143) and MSI2 and to clarify their clinical significance, biological function and mechanism. METHODS: Abnormal expression of miR-143 and MSI2 were evaluated in bone marrow samples from AML patients by quantitative real time-PCR. Effects of miR-143 on regulating MSI2 expression were investigated using luciferase reporter assay. Functional roles of MSI2 and miR-143 on AML cell proliferation and migration were determined by CCK-8 assay, colony formation, and transwell assays in vitro and in mouse subcutaneous xenograft and orthotopic transplantation models in vivo. RNA immunoprecipitation, RNA stability measurement and Western blotting were performed to assess the effects of MSI2 on AML. RESULTS: We found that MSI2 was significantly overexpressed in AML and exerted its role of promoting AML cell growth by targeting DLL1 and thereby activating Notch signaling pathway. Moreover, we found that MSI2 bound to Snail1 transcript and inhibited its degradation, which in turn upregulated the expression of matrix metalloproteinases. We also found that MSI2 targeting miR-143 is downregulated in AML. In the AML xenograft mouse model, overexpression of MSI2 recapitulated its leukemia-promoting effects, and overexpression of miR-143 partially attenuated tumor growth and prevented metastasis. Notably, low expression of miR-143, and high expression of MSI2 were associated with poor prognosis in AML patients. CONCLUSIONS: Our data demonstrate that MSI2 exerts its malignant properties via DLL1/Notch1 cascade and the Snail1/MMPs axes in AML, and upregulation of miR-143 may be a potential therapeutic approach for AML.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , Animais , Camundongos , Leucemia Mieloide Aguda/patologia , Genes Supressores de Tumor , Proliferação de Células/genética , Regulação para Cima , Modelos Animais de Doenças , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas de Ligação a RNA/genética
5.
J Biomed Sci ; 30(1): 38, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287024

RESUMO

BACKGROUND: The intestinal epithelial barrier is the interface for interaction between gut microbiota and host metabolic systems. Akkermansia muciniphila (A. muciniphila) is a key player in the colonic microbiota that resides in the mucus layer, whose abundance is selectively decreased in the faecal microbiota of inflammatory bowel disease (IBD) patients. This study aims to investigate the regulatory mechanism among A. muciniphila, a transcription factor cAMP-responsive element-binding protein H (CREBH), and microRNA-143/145 (miR-143/145) in intestinal inflammatory stress, gut barrier integrity and epithelial regeneration. METHODS: A novel mouse model with increased colonization of A muciniphila in the intestine of CREBH knockout mice, an epithelial wound healing assay and several molecular biological techniques were applied in this study. Results were analysed using a homoscedastic 2-tailed t-test. RESULTS: Increased colonization of A. muciniphila in mouse gut enhanced expression of intestinal CREBH, which was associated with the mitigation of intestinal endoplasmic reticulum (ER) stress, gut barrier leakage and blood endotoxemia induced by dextran sulfate sodium (DSS). Genetic depletion of CREBH (CREBH-KO) significantly inhibited the expression of tight junction proteins that are associated with gut barrier integrity, including Claudin5 and Claudin8, but upregulated Claudin2, a tight junction protein that enhances gut permeability, resulting in intestinal hyperpermeability and inflammation. Upregulation of CREBH by A. muciniphila further coupled with miR-143/145 promoted intestinal epithelial cell (IEC) regeneration and wound repair via insulin-like growth factor (IGF) and IGFBP5 signalling. Moreover, the gene expressing an outer membrane protein of A. muciniphila, Amuc_1100, was cloned into a mammalian cell-expression vector and successfully expressed in porcine and human IECs. Expression of Amuc_1100 in IECs could recapitulate the health beneficial effect of A. muciniphila on the gut by activating CREBH, inhibiting ER stress and enhancing the expression of genes involved in gut barrier integrity and IEC's regeneration. CONCLUSIONS: This study uncovers a novel mechanism that links A. muciniphila and its membrane protein with host CREBH, IGF signalling and miRNAs in mitigating intestinal inflammatory stress-gut barrier permeability and promoting intestinal wound healing. This novel finding may lend support to the development of therapeutic approaches for IBD by manipulating the interaction between host genes, gut bacteria and its bioactive components.


Assuntos
Doenças Inflamatórias Intestinais , MicroRNAs , Humanos , Animais , Camundongos , Suínos , Proteínas de Membrana/metabolismo , Verrucomicrobia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mamíferos
6.
Circ J ; 87(6): 824-833, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36775328

RESUMO

BACKGROUND: MicroRNA (miR)-143 and miR-145 are non-coding RNAs present in smooth muscle cells and the heart. However, their behavior and physiological role in patients with acute myocardial infarction (AMI) have not been clarified.Methods and Results: Plasma miR-143 and miR-145 concentrations were measured on Day 0 (on admission) and on Day 7 in AMI patients who could be followed up for 6 months (n=25). The control group consisted of subjects without significant coronary stenosis (n=20). Blood samples were collected from the antecubital vein, and plasma miR-143 and miR-145 concentrations were measured by quantitative reverse transcription-polymerase chain reaction. In AMI patients (n=25), left ventricular ejection fraction (LVEF) was measured by echocardiography in the acute and chronic (6 months) phases. On Day 7, plasma miR-143 and miR-145 concentrations were significantly higher in AMI patients than in the control group and on Day 0 in AMI patients. Plasma miR-143 and miR-145 concentrations increased significantly from Day 0 to Day 7. The increase in plasma miR-143 concentrations (∆miR-143) in the acute phase was positively correlated with the increase in LVEF in the chronic phase. Among many factors, only ∆miR-143 was favorably correlated with left ventricle (LV) functional recovery in the chronic phase. CONCLUSIONS: An increase in plasma miR-143 concentrations in the acute phase may be a biomarker predicting recovery of LV function in the chronic phase in AMI patients.


Assuntos
MicroRNAs , Infarto do Miocárdio , Humanos , Volume Sistólico , Função Ventricular Esquerda , Infarto do Miocárdio/genética , Coração , MicroRNAs/genética
7.
Mol Biol Rep ; 49(8): 7637-7647, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35717476

RESUMO

BACKGROUND/AIM: MicroRNAs play crucial roles in controlling cellular biological processes. miR-143 expression is usually downregulated in different cancers. In this study, we focused on exploring the role of miR143 in NSCLC development. METHODS: Bioinformatics analyses were used to detect the expression level of miR-143 in lung tumors. The cells were transfected by pCMV-miR-143 vectors. The efficacy of transfection was verified by Flow cytometry. The influence of miR-143 replacement on NSCLC cells migration, proliferation, and apoptosis was detected using wound-healing assay, MTT assay, and DAPI staining, respectively. RESULTS: MTT assay revealed that overexpression of miR143 inhibited cell growth and proliferation. Scratch assay results demonstrated that restoration of miR143 suppressed cell migration. The qRT-PCR assay was further used to detect the assumed relationship between miR143 and apoptotic and metastatic-related genes. CONCLUSION: The findings showed that miR-143 could reduce cell proliferation, invasion, and migration by reducing CXCR4, Vimentin, MMP-1, Snail-1, C-myc expression level, and increasing E-cadherin expression levels in lung cancer cells and might be a potential target in NSCLC's targeted therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Células A549 , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo
8.
Mol Ther ; 28(10): 2161-2176, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32610100

RESUMO

During brain maturation, cation-independent mannose-6-phosphate receptor (CI-MPR), a key transporter for lysosomal hydrolases, decreases significantly on the blood-brain barrier (BBB). Such a phenomenon leads to poor brain penetration of therapeutic enzymes and subsequent failure in reversing neurological complications in patients with neuropathic lysosomal storage diseases (nLSDs), such as Hurler syndrome (severe form of mucopolysaccharidosis type I [MPS I]). In this study, we discover that upregulation of microRNA-143 (miR-143) contributes to the decline of CI-MPR on the BBB during development. Gain- and loss-of-function studies showed that miR-143 inhibits CI-MPR expression and its transport function in human endothelial cells in vitro. Genetic removal of miR-143 in MPS I mice enhances CI-MPR expression and improves enzyme transport across the BBB, leading to brain metabolic correction, pathology normalization, and correction of neurological functional deficits 5 months after peripheral protein delivery at clinically relevant levels that derived from erythroid/megakaryocytic cells via hematopoietic stem cell-mediated gene therapy, when otherwise no improvement was observed in MPS I mice at a parallel setting. These studies not only uncover a novel role of miR-143 as an important modulator for the developmental decline of CI-MPR on the BBB, but they also demonstrate the functional significance of depleting miR-143 for "rescuing" BBB-anchored CI-MPR on advancing CNS treatment for nLSDs.


Assuntos
Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Lisossomos/metabolismo , MicroRNAs/genética , Mucopolissacaridose I/genética , Mucopolissacaridose I/metabolismo , Animais , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Mucopolissacaridose I/terapia , Transporte Proteico , Interferência de RNA , Transdução Genética
9.
J Cell Biochem ; 121(1): 596-608, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31407404

RESUMO

Cervical cancer is the third leading cause of female death in the world. Serum microRNAs (miRNAs) are currently considered to be valuable as noninvasive cancer biomarkers, but their role in the prognosis of cervical cancer has not been elucidated. We aimed to find serum miRNAs that can be used as prognostic factors for cervical cancer. A traumatic pathological biopsy is the only reliable method for determining the severity of cervical cancer currently. Thus, noninvasive diagnostic markers are needed. The serological expression of candidate miRNAs were measured in 90 participants, including 60 patients with cervical cancer and 50 patients with cervical intraepithelial neoplasia. Two patients with cervical cancer were excluded from the study because of lack of data. miRNAs were evaluated by quantitative reverse transcription polymerase chain reaction. miR-143/-4636 appeared specific for cervical cancer compared with cervical intraepithelial neoplasia (P < .001). The classification performance of validated miRNAs for cervical cancer [Area under the receiver operating characteristic curve (AUC) = 0.942] was better than that reached by squamous cell carcinoma antigen (SCC-Ag; AUC = 0.727). Poor-differentiation group has lower miR-143/-4636 levels in serum (P < .05). miR-4636 level was correlated gross tumor volume and the depth of invasion (P < .0001). In our study, we found a combination of miR-143 and miR-4636 that is independently and strongly associated with cervical cancer prognosis and can be used as a clinically prognostic factor.


Assuntos
Biomarcadores Tumorais/sangue , MicroRNA Circulante/sangue , MicroRNAs/sangue , Displasia do Colo do Útero/patologia , Neoplasias do Colo do Útero/patologia , Adulto , Idoso , Biomarcadores Tumorais/genética , MicroRNA Circulante/genética , Feminino , Seguimentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Prognóstico , Neoplasias do Colo do Útero/sangue , Neoplasias do Colo do Útero/genética , Adulto Jovem , Displasia do Colo do Útero/sangue , Displasia do Colo do Útero/genética
10.
Exp Physiol ; 105(5): 876-885, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32052500

RESUMO

NEW FINDINGS: What is the central question of this study? What is the role of miR-143-3p during human dental pulp stem cell (hDPSC) differentiation. What is the main finding and its importance? miR-143-3p negatively regulates receptor activator of nuclear factor-κB (RANK). RANK ligand (RANKL) binds to RANK and stimulates the development of osteoclasts. Osteoprotegerin (OPG) inhibits the interaction between RANK and RANKL. The OPG-RANKL signalling pathway regulates odontogenic differentiation of hDPSCs. ABSTRACT: Human dental pulp stem cells (hDPSCs) are capable of differentiating into odontoblast-like cells, which secrete reparative dentin after injury, in which the role of microRNA-143-3p (miR-143-3p) has been identified. Therefore, we investigated the mechanism by which miR-143-3p influences odontoblastic differentiation of hDPSCs. The relationship between miR-143-3p and receptor activator of nuclear factor-κB (RANK) was initially identified by bioinformatics prediction and further verified by dual luciferase reporter gene assay. Gain- and loss-of-function analysis with miR-143-3p mimic and miR-143-3p inhibitor was subsequently conducted. Dentin sialophosphoprotein (DSPP), bone sialoprotein (BSP), alkaline phosphatase (ALP), osteocalcin (OCN) and osteopontin (OPN) mRNA levels were then evaluated by RT-qPCR. Osteoprotegerin (OPG), RANK ligand (RANKL), nuclear factor-κB (NF-κB) p65 protein levels and the extent of NF-κB p65 phosphorylation were examined by western blot analysis. Alizarin red staining was performed to assess the mineralization of hDPSCs. Cell apoptosis and cell cycle distribution were determined using flow cytometry. During odontoblastic differentiation of hDPSC, miR-143-3p had high expression, but RANK expression was low. miR-143-3p was found to target RANK, and its inhibition enhanced mineralization and hDPSC apoptosis, while blocking cell cycle entry. At the same time, miR-143-3p inhibition elevated the extent of NF-κB p65 phosphorylation, as well as the expression of RANK, RANKL, DSPP, BSP, ALP, OCN and OPN, while decreasing the OPG level. Silencing RANK had opposite effects on these markers. miR-143-3p regulates odontoblastic differentiation of hDPSCs via the OPG-RANKL pathway that targets RANK. The elucidation of the mechanisms of odontogenic differentiation of hDPSCs may contribute to the development of effective dental pulp repair therapies for the clinical setting.


Assuntos
Polpa Dentária/citologia , MicroRNAs/fisiologia , Osteoprotegerina/fisiologia , Ligante RANK/fisiologia , Células-Tronco/citologia , Adolescente , Diferenciação Celular , Células Cultivadas , Humanos , Odontoblastos/citologia , Receptor Ativador de Fator Nuclear kappa-B , Transdução de Sinais , Fator de Transcrição RelA , Adulto Jovem
11.
Exp Mol Pathol ; 112: 104342, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31738908

RESUMO

As a tumor-associated biological molecule, microRNA-143-3p (miR-143-3p) is implicated in the progression of papillary thyroid carcinoma (PTC). We conducted this study to elucidate the effects of miR-143-3p mediated by Musashi RNA binding protein 2 (MSI2) on the biological activities of PTC cells. The K1 cells with the lowest miR-143-3p expression were selected for the experiments. The targeting relationship between miR-143-3p and MSI2 was verified. The biological functions of miR-143-3p and MSI2 with respect to K1 cell proliferation, cycle distribution, apoptosis, invasion, migration, and tumorigenesis were studied using gain- and loss-of-function assays both in vitro and in vivo. MSI2 was verified to be a target gene of miR-143-3p. Cells treated with upregulation of miR-143-3p or silencing of MSI2 exhibited significantly decreased the expression of Bcl-2, PCNA, MCM2, Ki67, MSI2, MMP-2, and MMP-9. This was accompanied by inhibited cell proliferation, cell invasion, and migration, as well as a significant increase in Bax expression, cell cycle arrest, and cell apoptosis. More importantly, the tumor inhibitory effects of upregulated miR-143-3p were also confirmed in the tumor xenografts in nude mice. Our results indicate that upregulation of miR-143-3p suppresses the progression of PTC by impeding cell growth, invasion, and migration via downregulation of MSI2, highlighting the potential of miR-143-3p as a target for future PTC treatment.


Assuntos
Proliferação de Células/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Câncer Papilífero da Tireoide/genética , Animais , Apoptose , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Masculino , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Prognóstico , Câncer Papilífero da Tireoide/patologia , Ativação Transcricional/genética
12.
Int J Med Sci ; 17(14): 2087-2094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922169

RESUMO

Interleukin (IL)-13 plays a key role in the pathogenesis of atopic dermatitis (AD). Our preliminary study demonstrated that forced expression of miR-143 could block IL-13-induced down-regulation of epidermal barrier related proteins in epidermal keratinocytes. As previous studies suggested that miR-143 expression was regulated by mammalian target of rapamycin (mTOR) signaling pathway, we investigated the mechanism of mTOR signaling pathway in the epidermal barrier dysfunction of AD. The HaCaT cells were stimulated by IL-13 and subsequently treated with rapamycin. The expression levels of miR-143, IL-13 receptor α1 (IL-13Rα1), p-mTOR, p-S6K1, p-Akt, and epidermal barrier related proteins were analyzed through RT-qPCR and/or western blotting. The current study showed that IL-13 increased the expression levels of p-mTOR, p-S6K1, and p-Akt, and that rapamycin blocked IL-13-induced down-regulation of miR-143, suppressed the IL-13Rα1 expression and up-regulated the expressions of filaggrin, loricrin, and involucrin in HaCaT cells. This study proposed that IL-13 could activate the mTOR signaling pathway, and confirmed the vital role of mTOR-miR-143 signaling axis in the pathogenesis of AD. It provided solid evidences regarding rapamycin as a potential effective therapeutic option in the management of AD.


Assuntos
Dermatite Atópica/tratamento farmacológico , Interleucina-13/metabolismo , MicroRNAs/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Proteínas Filagrinas , Células HaCaT , Humanos , Interleucina-13/imunologia , Subunidade alfa1 de Receptor de Interleucina-13/genética , Subunidade alfa1 de Receptor de Interleucina-13/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Precursores de Proteínas/deficiência , Precursores de Proteínas/genética , Proteínas S100/deficiência , Proteínas S100/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Sirolimo/uso terapêutico , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
13.
Int J Mol Sci ; 21(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370060

RESUMO

microRNA-143(miR-143) is a well-known tumor suppressive microRNA that exhibits anti-tumoral function by targeting KRAS signaling pathways in various malignancies. We hypothesized that miR-143 suppresses breast cancer progression by targeting KRAS and its effector molecules. We further hypothesized that high expression of miR-143 is associated with a favorable tumor immune microenvironment of estrogen receptor (ER)-positive breast cancer patients which result in improved survival. Two major publicly available breast cancer cohorts; The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) were used. The miR-143 high expression group was associated with increased infiltration of anti-cancer immune cells and decreased pro-cancer immune cells, as well as enrichment of the genes relating to T helper (Th1) cells resulting in improved overall survival (OS) in ER-positive breast cancer patients. To the best of our knowledge, this is the first study to demonstrate that high expression of miR-143 in cancer cells associates with a favorable tumor immune microenvironment, upregulation of anti-cancer immune cells, and suppression of the pro-cancer immune cells, associating with better survival of the breast cancer patients.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Microambiente Tumoral/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/genética , Biomarcadores Tumorais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Cell Physiol ; 234(4): 4840-4850, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362514

RESUMO

MicroRNAs (miRNAs) play critical roles in various biological processes including cell differentiation. Some researchers suggested that the p38 mitogen-activated protein kinases (MAPK) signaling pathway had an effect on regulating the odontoblastic differentiation of human dental pulp stem cells (hDPSCs). This study focuses on the effects of miR-143-5p on hDPSCs by regulating the p38 MAPK signaling pathway. The targeting relationship of MAPK14 and miR-143-5p targets were verified by TargetScan and dual-luciferase reporter gene assay. Through overexpression of miR-143-5p or silencing of miR-143-5p, expressions of miR-143-5p, MAPK14, Ras, MAPK kinase (MKK) 3/6, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), and osteocalcin (OCN) were detected by reverse transcription quantitative polymerase chain reaction. Protein expressions of MAPK14, Ras, and MKK3/6 were determined by western blot analysis. ALP and alizarin red S staining were used to detect mineralization. Initially, MAPK14 was found to be negatively regulated by miR-143-5p. Meanwhile, the upregulated miR-143-5p decreased the p38 MAPK signaling pathway related genes (MAPK14, Ras, and MKK3/6) and odontoblastic differentiation markers (ALP, DSPP, and OCN) expression. On the contrary, the downregulated miR-143-5p increased the p38 MAPK signaling pathway related genes (MAPK14, Ras, and MKK3/6) and odontoblastic differentiation markers (ALP, DSPP, and OCN) expression. Furthermore, ALP activity and mineralized nodules increased after downregulation of miR-143-5p, and after its upregulation, ALP activity and mineralized nodules decreased. Our data suggest that poor expression of miR-143-5p promotes hDPSCs odontoblastic differentiation through the activation of the p38 MAPK signaling pathway by upregulating MAPK14.


Assuntos
Diferenciação Celular , Polpa Dentária/enzimologia , MicroRNAs/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Odontoblastos/enzimologia , Células-Tronco/enzimologia , Regiões 3' não Traduzidas , Adulto , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Sítios de Ligação , Polpa Dentária/citologia , Regulação para Baixo , Ativação Enzimática , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Masculino , MicroRNAs/genética , Proteína Quinase 14 Ativada por Mitógeno/genética , Osteocalcina/genética , Osteocalcina/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Transdução de Sinais , Adulto Jovem
15.
J Cell Biochem ; 120(10): 16427-16434, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31001854

RESUMO

Mounting evidence has reported that microRNA-143 (miR-143) is involved in the development of multiple cancers. To investigate the underlying mechanisms of miR-143 regulating proliferation and metastasis in nasopharyngeal carcinoma (NPC) cells, we evaluated the levels of miR-143 and formin-like protein 1 (FMNL1) in NPC tissues. The results of qRT-PCR and Western blot analysis showed that the expression of miR-143 was decreased, while FMNL1 was increased in NPC tissues. The expression of miR-143 was significantly elevated in NPC cells compared with that of human nasopharyngeal epithelial cells. The results of MiRcode prediction, dual-luciferase reporter, and Western blot analysis assays indicated that miR-143 negatively regulated the expression of FMNL1 (r2 = 0.4365P = 0.0001). Overexperssion of miR-143 or FMNL1 knockdown inhibited cell proliferation, migration, and invasion in NPC cells (P < 0.05). Ectopic expression of FMNL1 undermined the inhibition effect of miR-143 on proliferation, migration, and invasion in NPC cells. The findings of this study revealed that miR-143 functioned as a tumor suppressor and inhibited the NPC progression by targeting FMNL1.


Assuntos
Proliferação de Células , Forminas/metabolismo , Genes Supressores de Tumor , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Forminas/genética , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Metástase Neoplásica , Proteínas de Neoplasias/genética , RNA Neoplásico/genética
16.
J Cell Biochem ; 119(7): 5233-5242, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29236306

RESUMO

The objective of this study was to explore the role of rs4705342 located in the miR-143 promoter in relation to the control of HBV positive HCC and the underlying molecular mechanism. A luciferase assay was performed to explore the factors which influenced miR-143 transcription activity and the target gene of miR-143. This would further be confirmed by ChIP assay. Western blot and real-time PCR were performed to identify the relationship between miR-143 and ORP8. Luciferase activity of miR-143 SNP was increased with the presence of C allele. The presence of T allele partially restored the transcription ability. NF-κB displayed a much higher degree of luciferase activity in relation to the cells transfected with vectors containing either T or C allele rather than control cells with a greater extent in C allele group than T allele group. At the same time, ChIP assay indicated that the affinity of NF-ΚB in the miR-143 promoter was higher in C/C cells. The over-expression of HBX promotes NF-kB expression thus increasing the extent of binding of NF-kB on the CC allele of the miR-143 promoter. The binding is also abolished by NF-kB siRNA. ORP8 was proven to be a target gene of miR-143 using bioinformatics algorithm analysis. It was further confirmed by the luciferase assay that miR-143 substantially inhibited luciferase activities of wild-type ORP8. However, it did not affect the mutant ORP8. HBx induced by HBV infection up-regulated miR-143 expression. NF- kB can partially abolish the promotion effect of HBx on the miR-143 level in cells genotyped as CC but not in cells genotyped as TT. Tissues derived from participants genotyped as CC exhibited a higher level of miR-143, but a lower level of ORP8. The presence of the minor allele of rs4705342 in the promoter of miR-143 attenuated the transcription ability. This promoted ORP8 expression and could be a factor contributing to the oncogenesis in HBV positive HCC.


Assuntos
Vírus da Hepatite B/patogenicidade , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Polimorfismo Genético/genética , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Imunoprecipitação da Cromatina , Genótipo , Humanos , Imuno-Histoquímica , MicroRNAs/genética , Regiões Promotoras Genéticas/genética , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
17.
J Cell Biochem ; 119(1): 536-546, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28608628

RESUMO

This study aims to elucidate the mechanisms by which microRNA-143-5p (miR-143-5p) targets runt-related transcription factor 2 (Runx2) in the differentiation of dental pulp stem cells (DPSCs) into odontoblasts, through regulating the osteoprotegerin receptor activator of the nuclear factor-κB ligand (OPG/RANKL) signaling pathway. Following transfection, DPSCs were divided into blank, control, miR-143-5p mimics, miR-143-5p inhibitors, miR-143-5p inhibitors + siRunx2 and siRunx2 groups. Alkaline phosphatase (ALP) activity and mineralized nodules were detected using ALP kit and alizarin red staining. Quantitative reverse transcriptase real time PCR (qRT-PCR) was conducted to measure mRNA expressions of miR-143-5p, Runx2, OPG, and RANKL. Western blotting was used to assess protein expression of odontoblast differentiation-related proteins. Transwell assay and an extracellular matrix (ECM) adhesion cell assay were employed to examine cell migration and cell adhesion. Compared with the blank group, the miR-143-5p mimics and siRunx2 groups showed decreased ALP activity, decreased mineralized nodules and displays of calcium. Fewer migrated cells, weakened cell adhesion, decreased protein expression of dentin phosphoprotein (DPP), dentin sialoprotein (DSP), dentin matrix protein 1 (DMP1), osteopontin (OPN), bone sialoprotein (BSP), osteocalcin (OCN), OPG and Runx2, and increased RANKL protein expressions were observed. Additionally, opposite results were observed in the miR-143-5p inhibitors group, demonstrating that down-regulated miR-143-5p promotes the differentiation of DPSCs into odontoblasts by enhancing Runx2 expression via the OPG/RANKL signaling pathway. Based on findings in this study, it is postulated that the enhancement of Runx2 expression via the regulation of the OPG/RANKL signaling pathway could be a beneficial approach for dental pulp regeneration. J. Cell. Biochem. 119: 536-546, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Polpa Dentária/metabolismo , MicroRNAs/metabolismo , Odontoblastos/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Polpa Dentária/citologia , Feminino , Humanos , Masculino , MicroRNAs/genética , Odontoblastos/citologia , Osteoprotegerina/genética , Ligante RANK/genética , Células-Tronco/citologia
18.
Exp Cell Res ; 351(1): 24-35, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28038917

RESUMO

Autophagy and GRP78 overexpression are two important means by which tumor cells resist microenvironmental stress and chemotherapeutic drugs; however, the relationship between autophagy and GRP78 remains unclear. Here, we found that forced expression of GRP78 in tumor cells promoted autophagy, which was indicated by alterations in the levels of autophagy related proteins, such as increased VPS34 and LC3-II, and decreased p62 and LC3-I. Consistently, GRP78 knockdown suppressed tumor cell autophagy. Our results further demonstrated that GRP78-induced autophagy was mediated by VPS34, and that UPR-associated autophagy was also involved. GRP78-overexpressing cells treated with VPS34 siRNA reversed the autophagy induced by GRP78. Importantly, the expression of microRNA-143 (miR-143) was decreased in GRP78-overexpressing cells, and the increased expression of VPS34 was reversed by treatment with miR-143 mimic. This demonstrated that miR-143 plays a key role in GRP78's mediation of VPS34 expression. In addition, GRP78 acetylation was also involved in the occurrence of autophagy through upregulating VPS34. In turn, high expression of VPS34 promoted GRP78 transcription by modulating the GRP78 transcription factor ATF6. Moreover, VPS34 could enhance GRP78 protein stability by inhibiting GRP78 degradation via the ubiquitin-proteasome pathway. Collectively, the results revealed a positive feedback loop between GRP78 and VPS34 in tumor cells that might be important for autophagy during tumor development.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Retroalimentação Fisiológica , Proteínas de Choque Térmico/metabolismo , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Chaperona BiP do Retículo Endoplasmático , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Células MCF-7 , MicroRNAs/genética , Estabilidade Proteica , Proteólise
19.
Basic Res Cardiol ; 112(6): 60, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887629

RESUMO

The cardioprotection of protein kinase Cepsilon (PKCε) against myocardial infarction (MI) mediated by its anti-apoptotic property and underlying mechanism of targeted regulation by microRNA (miRNA) are not established. MI-induced injury, PKCε expression, and targeted regulation of miRNA-143 (miR-143) to PKCε have been evaluated using animal MI and cellular hypoxic models conjugated with series of state-of-art molecular techniques. The results demonstrated that PKCε significantly downregulated along with increased infarcted area and apoptotic and necrotic damage in MI model, and the targeted relationship and potential binding profile were established between miR-143 and PKCε. Both in vivo and in vitro ischemic tests showed that miR-143 induced apoptosis and necrosis, which was reversed by antagomiR-143 or AMO-143. The upregulation of miR-143 by transfection of miR-143 in vitro also induced cell loss, and this effect of miR-143 was completely reversed by co-transfection of miR-143 with AMO-143. The identically deleterious action of miR-143 on mitochondrial membrane potential and ATP synthesis was also observed in both animal MI and cellular hypoxic models, as well as miR-143 overexpressed models and converted by either antagomiR or AMO. Importantly, overexpression of miR-143 downregulated PKCε in all tested models and this downregulation was reversed in the presence of antagomiR or AMO. The direct targeted regulation of miR-143 on PKCε was confirmed by luciferase reporter and miRNA-masking tests. In conclusion, MI-mediated upregulation of miR-143 inhibits PKCε expression and consequently interference with the cardioprotection of PKCε to mitochondrial, and leads to mitochondrial membrane potential dissipation and myocardial death eventually.


Assuntos
Regulação da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Isquemia Miocárdica/metabolismo , Proteína Quinase C-épsilon/biossíntese , Animais , Apoptose/fisiologia , Camundongos , Mitocôndrias/metabolismo , Isquemia Miocárdica/patologia , Ratos , Ratos Sprague-Dawley
20.
Mol Cell Biochem ; 416(1-2): 63-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27048505

RESUMO

Atopic dermatitis is a chronic inflammatory skin disease characterized by the dysregulation of the epidermal barrier and the immune system. Interleukin (IL)-13, a key T helper 2 cytokine, has been shown to impair the epidermal barrier function via downregulating epidermal barrier proteins. MicroRNAs are small noncoding RNAs of approximately 22 nucleotides that act as negative regulators of gene expression at posttranscriptional levels. MicroRNA-143 is known to be a tumor suppressor in various tumors; however, its role in the regulation of allergic diseases including atopic dermatitis remains elusive. In this study, we investigated whether IL-13Rα1 was a microRNA-143 target to regulate the effects of IL-13 on epidermal barrier function. After the stimulation of IL-13 in human epidermal keratinocytes, the level of microRNA-143 was decreased. The luciferase activity of the vector containing 3'UTR of IL-13Rα1 was decreased in keratinocytes transfected with microRNA-143 mimic compared to those of the corresponding controls. The forced expression of microRNA-143 mimic blocked the IL-13-induced downregulation of filaggrin, loricrin, and involucrin in epidermal keratinocytes. Collectively, these data suggest that microRNA-143 suppresses IL-13 activity and inflammation through targeting of IL-13Rα1 in epidermal keratinocytes. MicroRNA-143 may serve as a potential preventive and therapeutic target in atopic dermatitis.


Assuntos
Dermatite Atópica/metabolismo , Epiderme/metabolismo , Subunidade alfa1 de Receptor de Interleucina-13/biossíntese , Interleucina-13/biossíntese , Queratinócitos/metabolismo , MicroRNAs/biossíntese , Células Cultivadas , Dermatite Atópica/genética , Dermatite Atópica/patologia , Epiderme/patologia , Proteínas Filagrinas , Humanos , Interleucina-13/genética , Subunidade alfa1 de Receptor de Interleucina-13/genética , Proteínas de Filamentos Intermediários/biossíntese , Proteínas de Filamentos Intermediários/genética , Queratinócitos/patologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , MicroRNAs/genética , Precursores de Proteínas/biossíntese , Precursores de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA