Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Dermatol ; 33(1): e14926, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702410

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease in which defective T cells, immune complex deposition and other immune system alterations contribute to pathological changes of multiple organ systems. The vitamin D metabolite c is a critical immunomodulator playing pivotal roles in the immune system. Epidemiological evidence indicates that vitamin D deficiency is correlated with the severity of SLE. Our aim is to investigate the effects of 1,25(OH)2D3 (VitD3) on the activation of myeloid dendritic cells (mDCs) by autologous DNA-containing immune complex (DNA-ICs), and the effects of VitD3 on immune system balance during SLE. We purified DNA-ICs from the serum of SLE patients and isolated mDCs from normal subjects. In vitro studies showed that DNA-ICs were internalized and consumed by mDCs. VitD3 blocked the effects of DNA-ICs on RelB, IL-10 and TNF-α in mDCs. Further analysis indicated that DNA-ICs stimulated histone acetylation in the RelB promoter region, which was inhibited by VitD3. Knockdown of the histone deacetylase 3 gene (HDAC3) blocked these VitD3-mediated effects. Co-culture of mDCs and CD4+ T cells showed that VitD3 inhibited multiple processes mediated by DNA-ICs, including proliferation, downregulation of IL-10, TGF-ß and upregulation of TNF-α. Moreover, VitD3 could also reverse the effects of DNA-IC-induced imbalance of CD4+ CD127- Foxp3+ T cells and CD4+ IL17+ T cells. Taken together, our results indicated that autologous DNA-ICs stimulate the activation of mDCs in the pathogenesis of SLE, and VitD3 inhibits this stimulatory effects of DNA-ICs by negative transcriptional regulation of RelB gene and maintaining the Treg/Th17 immune cell balance. These results suggest that vitamin D may have therapeutic value for the treatment of SLE.


Assuntos
Colecalciferol , Lúpus Eritematoso Sistêmico , Humanos , Colecalciferol/farmacologia , Interleucina-10 , Complexo Antígeno-Anticorpo , Fator de Necrose Tumoral alfa , Inflamação , Vitamina D/farmacologia , Células Dendríticas/metabolismo , DNA
2.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175706

RESUMO

The purpose of this study was to examine whether myeloid dendritic cells (mDCs) from patients with multiple sclerosis (MS) and healthy controls (HCs) become similarly tolerogenic when exposed to IL-27 as this may represent a potential mechanism of autoimmune dysregulation. Our study focused on natural mDCs that were isolated from HCs and MS patient peripheral blood mononuclear cells (PBMCs). After a 24-h treatment with IL-27 ± lipopolysaccharide (LPS), the mDCs were either harvested to identify IL-27-regulated gene expression or co-cultured with naive T-cells to measure how the treated DC affected T-cell proliferation and cytokine secretion. mDCs isolated from HCs but not untreated MS patients became functionally tolerogenic after IL-27 treatment. Although IL-27 induced both HC and untreated MS mDCs to produce similar amounts of IL-10, the tolerogenic HC mDCs expressed PD-L2, IDO1, and SOCS1, while the non-tolerogenic untreated MS mDCs expressed IDO1 and IL-6R. Cytokine and RNA analyses identified two signature blocks: the first identified genes associated with mDC tolerizing responses to IL-27, while the second was associated with the presence of MS. In contrast to mDCs from untreated MS patients, mDCs from HCs and IFNb-treated MS patients became tolerogenic in response to IL-27. The genes differentially expressed in the different donor IL-27-treated mDCs may contain targets that regulate mDC tolerogenic responses.


Assuntos
Interleucina-27 , Esclerose Múltipla , Humanos , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas , Interleucina-27/metabolismo , Leucócitos Mononucleares/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Linfócitos T/metabolismo
3.
Immunol Cell Biol ; 100(1): 61-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582592

RESUMO

Recent studies have highlighted multiple immune perturbations related to severe acute respiratory syndrome coronavirus 2 infection-associated respiratory disease [coronavirus disease 2019 (COVID-19)]. Some of them were associated with immunopathogenesis of severe COVID-19. However, reports on immunological indicators of severe COVID-19 in the early phase of infection in patients with comorbidities such as cancer are scarce. We prospectively studied about 200 immune response parameters, including a comprehensive immune-cell profile, inflammatory cytokines and other parameters, in 95 patients with COVID-19 (37 cancer patients without active disease and intensive chemo/immunotherapy, 58 patients without cancer) and 21 healthy donors. Of 95 patients, 41 had severe disease, and the remaining 54 were categorized as having a nonsevere disease. We evaluated the association of immune response parameters with severe COVID-19. By principal component analysis, three immune signatures defining characteristic immune responses in COVID-19 patients were found. Immune cell perturbations, in particular, decreased levels of circulating dendritic cells (DCs) along with reduced levels of CD4 T-cell subsets such as regulatory T cells (Tregs ), type 1 T helper (Th1) and Th9; additionally, relative expansion of effector natural killer (NK) cells were significantly associated with severe COVID-19. Compared with patients without cancer, the levels of terminal effector CD4 T cells, Tregs , Th9, effector NK cells, B cells, intermediate-type monocytes and myeloid DCs were significantly lower in cancer patients with mild and severe COVID-19. We concluded that severely depleted circulating myeloid DCs and helper T subsets in the initial phase of infection were strongly associated with severe COVID-19 independent of age, type of comorbidity and other parameters. Thus, our study describes the early immune response associated with severe COVID-19 in cancer patients without intensive chemo/immunotherapy.


Assuntos
COVID-19 , Neoplasias , Humanos , Imunidade , Neoplasias/terapia , SARS-CoV-2 , Subpopulações de Linfócitos T
4.
Clin Exp Immunol ; 208(3): 361-371, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35536993

RESUMO

Intravenous immunoglobulin (IVIG) is used as an immunomodulatory agent in many inflammatory conditions including Multisystem Inflammatory Syndrome-Children (MIS-C) and Kawasaki disease (KD). However, the exact mechanisms underlying its anti-inflammatory action are incompletely characterized. Here, we show that in KD, a pediatric acute vasculitis that affects the coronary arteries, IVIG induces a repertoire of natural Treg that recognize immunodominant peptides in the Fc heavy chain constant region. To address which antigen-presenting cell (APC) populations present Fc peptides to Treg, we studied the uptake of IgG by innate cells in subacute KD patients 2 weeks after IVIG and in children 1.6-14 years after KD. Healthy adults served as controls. IgG at high concentrations was internalized predominantly by two myeloid dendritic cell (DC) lineages, CD14+ cDC2 and ILT-4+ CD4+ tmDC mostly through Fcγ receptor (R) II and to a lesser extent FcγRIII. Following IgG internalization, these two DC lineages secreted IL-10 and presented processed Fc peptides to Treg. The validation of IVIG function in expanding Fc-specific Treg presented by CD14+ cDC2 and ILT-4+ CD4+ tmDC was addressed in a small cohort of patients with MIS-C. Taken together, these results suggest a novel immune regulatory function of IgG in activating tolerogenic innate cells and expanding Treg, which reveals an important anti-inflammatory mechanism of action of IVIG.


Assuntos
Imunoglobulinas Intravenosas , Síndrome de Linfonodos Mucocutâneos , Adulto , Anti-Inflamatórios/uso terapêutico , Criança , Células Dendríticas , Humanos , Imunoglobulinas Intravenosas/farmacologia , Imunoglobulinas Intravenosas/uso terapêutico , Interleucina-10 , Linfócitos T Reguladores
5.
Lupus ; 31(4): 472-481, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35258358

RESUMO

BACKGROUND: Antimalarials are first-line systemic therapy for cutaneous lupus erythematosus (CLE). While some patients unresponsive to hydroxychloroquine (HCQ) alone benefit from the addition of quinacrine (QC), a subset of patients is refractory to both antimalarials. METHODS: We classified CLE patients as HCQ-responders, HCQ+QC-responders, or HCQ+QC-nonresponders to compare immune profiles. Immunohistochemistry, immunofluorescence, and qRT-PCR were used to characterize inflammatory cells and cytokines in lesional skin. RESULTS: Immunohistochemistry showed that CD69+ T cells were higher in HCQ+QC-nonresponders compared to HCQ- and HCQ+QC-responders (p < 0.05). Immunofluorescence further identified these cells as CD69+CCR7+ circulating activated T cells. Myeloid dendritic cells were significantly higher in HCQ+QC-responders compared to both HCQ-responders and HCQ+QC-nonresponders. Plasmacytoid dendritic cells were significantly increased in HCQ-responders compared to HCQ- and HCQ+QC-nonresponders. No differences were found in the number of autoreactive T cells, MAC387+ cells, and neutrophils among the groups. CLASI scores of the HCQ+QC-nonresponder group positively correlated with CD69+CCR7+ circulating activated T cells (r = 0.6335, p < 0.05) and MAC387+ cells (r = 0.5726, p < 0.05). IL-17 protein expression was higher in HCQ+QC-responders compared to HCQ-responders or HCQ+QC-nonresponders, while IL-22 protein expression did not differ. mRNA expression demonstrated increased STAT3 expression in a subset of HCQ+QC-nonresponders. CONCLUSION: An increased number of CD69+CCR7+ circulating activated T cells and a strong correlation with CLASI scores in the HCQ+QC-nonresponders suggest these cells are involved in antimalarial-refractory skin disease. STAT3 is also increased in HCQ+QC-nonresponders and may also be a potential target for antimalarial-refractory skin disease.


Assuntos
Lúpus Eritematoso Cutâneo/tratamento farmacológico , Receptores CCR7 , Fator de Transcrição STAT3 , Antígenos CD , Antígenos de Diferenciação de Linfócitos T , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Feminino , Imunofluorescência , Humanos , Hidroxicloroquina/uso terapêutico , Imuno-Histoquímica , Lectinas Tipo C , Lúpus Eritematoso Cutâneo/imunologia , Masculino , Pessoa de Meia-Idade , Quinacrina/uso terapêutico , Receptores CCR7/uso terapêutico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linfócitos T , Resultado do Tratamento
6.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614095

RESUMO

CXCL4 is an important biomarker of systemic sclerosis (SSc), an incurable autoimmune disease characterized by vasculopathy and skin/internal organs fibrosis. CXCL4 contributes to the type I interferon (IFN-I) signature, typical of at least half of SSc patients, and its presence is linked to an unfavorable prognosis. The mechanism implicated is CXCL4 binding to self-DNA, with the formation of complexes amplifying TLR9 stimulation in plasmacytoid dendritic cells (pDCs). Here, we demonstrate that, upon binding to self-RNA, CXCL4 protects the RNA from enzymatic degradation. As a consequence, CXCL4-RNA complexes persist in vivo. Indeed, we show for the first time that CXCL4-RNA complexes circulate in SSc plasma and correlate with both IFN-I and TNF-α. By using monocyte-derived DCs (MDDCs) pretreated with IFN-α as a model system (to mimic the SSc milieu of the IFN-I signature), we demonstrate that CXCL4-RNA complexes induce MDDC maturation and increase, in particular, pro-inflammatory TNF-α as well as IL-12, IL-23, IL-8, and pro-collagen, mainly in a TLR7/8-dependent but CXCR3-independent manner. In contrast, MDDCs produced IL-6 and fibronectin independently in their CXCL4 RNA-binding ability. These findings support a role for CXCL4-RNA complexes, besides CXCL4-DNA complexes, in immune amplification via the modulation of myeloid DC effector functions in SSc and also during normal immune responses.


Assuntos
Fator Plaquetário 4 , RNA , Escleroderma Sistêmico , Humanos , Inibidores da Angiogênese/metabolismo , Células Dendríticas , Fibrose , Fatores Imunológicos/metabolismo , Interferon-alfa/metabolismo , Fator Plaquetário 4/metabolismo , RNA/metabolismo , Escleroderma Sistêmico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34269676

RESUMO

Type I interferons (IFNs) are a first line of defence against viral infections. Upon infection, a first small wave of early type I IFN, mainly IFN-ß and particularly IFN-α4, are induced and bind to the type I IFN receptor (IFNAR) to amplify the IFN response. It was shown for several viruses that robust type I IFN responses require this positive feedback loop via the IFNAR. Recently, we showed that infection of IFNAR knockout mice with the orthomyxovirus Thogoto virus lacking the ML open reading frame (THOV(ML-)) results in the expression of unexpected high amounts of type I IFN. To investigate if IFNAR-independent IFN responses are unique for THOV(ML-), we performed infection experiments with several negative-strand RNA viruses using different routes and dosages for infection. A variety of these viruses induced type I IFN responses IFNAR-independently when using the intraperitoneal (i.p.) route for infection. In vitro studies demonstrated that myeloid dendritic cells (mDC) are capable of producing IFNAR-independent IFN-α responses that are dependent on the expression of the adaptor protein mitochondrial antiviral-signalling protein (MAVS) whereas pDC where entirely depending on the IFNAR feedback loop in vitro. Thus, depending on dose and route of infection, the IFNAR feedback loop is not strictly necessary for robust type I IFN expression and an IFNAR-independent type I IFN production might be the rule rather than the exception for infections with numerous negative-strand RNA viruses.


Assuntos
Interferon-alfa/biossíntese , Vírus de RNA de Sentido Negativo/imunologia , Infecções por Vírus de RNA/imunologia , Receptor de Interferon alfa e beta/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Dendríticas/imunologia , Células Dendríticas/virologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Células Mieloides/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Infecções por Vírus de RNA/virologia , Receptor de Interferon alfa e beta/genética , Thogotovirus , Carga Viral
8.
Cytokine ; 148: 155598, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34103210

RESUMO

BACKGROUND AND AIM: Vitiligo is a progressive, autoimmune, hypomelanotic acquired disorder of skin which is characterized by depigmentation. The initial immunological events of this diseases are still at enigma that includes breach of immune tolerance, and defect in antigen presentation. Hence, we aimed to explore role of Dendritic cells (DCs) and its associated cytokines in the pathogenesis of generalized vitiligo (GV) patients. METHODOLOGY: For this case-control study, 20 active patients and controls were enrolled. Phenotypic characterization of myeloid and plasmacytoid DCs (mDCs, pDCs) were done by flow-cytometry. Primary culture of DCs was done by monocyte differentiation supplemented with rIL-4 and rGM-CSF. Functional analysis DCs related cytokines and co-stimulatory molecules (CD80, CD40) was done by ELISA and qPCR respectively. Tissue localization of DCs was evaluated by immunohistochemistry. RESULT: The frequency of mDCs (0.3715% v/s 0.188%) and pDCs (0.2331% v/s 0.1156%) were elevated in patients as compared to controls. Circulatory level of IL-12, TNF-α were significantly higher whereas IFN-α was decreased in patients than controls. Similar results were obtained in the culture supernatants of patients. Relative mRNA expression profiling of co-stimulatory molecules (CD80, CD40) were found to be up regulated in patient's skin. Tissue localization of Langerhans cells (Langerin, CD1a+) were found to be significantly higher in patients. CONCLUSION: Elevated frequency of mDCs and pDCs along with elevated levels of IL-12, TNF-α and CD80, CD40 may contribute in defective antigen presentation of DCs. Altered pro-inflammatory and anti-inflammatory cytokines along with tissue localization of Langerhans cells might be involved in the pathogenesis of GV. These DCs associated cytokines can be explored as a therapeutic target in future.


Assuntos
Citocinas/metabolismo , Células Dendríticas/metabolismo , Inflamação/patologia , Pele/patologia , Vitiligo/patologia , Antígenos CD/metabolismo , Antígenos CD1/metabolismo , Biomarcadores/metabolismo , Circulação Sanguínea , Citocinas/sangue , Feminino , Humanos , Células de Langerhans/patologia , Lectinas Tipo C/metabolismo , Masculino , Lectinas de Ligação a Manose/metabolismo , Fenótipo
9.
Exp Dermatol ; 30(5): 723-732, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33523560

RESUMO

Alopecia areata (AA) is a multi-factors disease characterized by non-scarring hair loss. AA could be classified into three main clinical phenotypes including patchy type AA (AAP), alopecia totalis (AT) and alopecia universalis (AU) based on the severity and areas of hair loss. Recent studies suggested immunological factor was critical in AA, but the precise aetiology and pathogenesis of AA still need exploration. In the work, we screened two gene expression profiles (GSE45512 and GSE68801) from Gene Expression Omnibus (GEO). Based on the two data sets, 10 upregulated genes and 107 downregulated genes in AA skin biopsies were identified. CCL13, as one of the remarkably upregulated genes, was found to have potential biological functions in aberrant immune response of AA according to the GO and KEGG analyses. The PPI network showed CCL13 was associated with multiple immune-related genes. The expression of CCL13 was increased depending on the severity of disease in AA patients. Cytotoxic lymphocytes, T cells and myeloid dendritic cells accumulated remarkably in scalp tissue depending on the severity of AA, and CCL13 was significantly correlated to cytotoxic lymphocytes, T cells and myeloid dendritic cells in AA patients. Our RT-PCR and ELISA results found CCL13 was upregulated in skin biopsy and serum of AA patients, and the immunohistochemistry (IHC) detection showed CCL13 was expressed by both the hair follicle epithelium and infiltrating immune cells. In conclusion, the upregulated of CCL13 and subsequent immune cell infiltration was related to AA, which could be a promising target for diagnosis and therapy in AA patients.


Assuntos
Alopecia em Áreas/imunologia , Alopecia/imunologia , Proteínas Quimioatraentes de Monócitos/imunologia , Alopecia/patologia , Alopecia em Áreas/patologia , Autoimunidade , Progressão da Doença , Folículo Piloso/imunologia , Histocitoquímica , Humanos
10.
Malar J ; 20(1): 9, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407502

RESUMO

BACKGROUND: Plasmodium falciparum causes the majority of malaria cases worldwide and children in sub-Saharan Africa are the most vulnerable group affected. Non-sterile clinical immunity that protects from symptoms develops slowly and is relatively short-lived. Moreover, current malaria vaccine candidates fail to induce durable high-level protection in endemic settings, possibly due to the immunomodulatory effects of the malaria parasite itself. Because dendritic cells play a crucial role in initiating immune responses, the aim of this study was to better understand the impact of cumulative malaria exposure as well as concurrent P. falciparum infection on dendritic cell phenotype and function. METHODS: In this cross-sectional study, the phenotype and function of dendritic cells freshly isolated from peripheral blood samples of Malian adults with a lifelong history of malaria exposure who were either uninfected (n = 27) or asymptomatically infected with P. falciparum (n = 8) was assessed. Additionally, plasma cytokine and chemokine levels were measured in these adults and in Malian children (n = 19) with acute symptomatic malaria. RESULTS: With the exception of lower plasmacytoid dendritic cell frequencies in asymptomatically infected Malian adults, peripheral blood dendritic cell subset frequencies and HLA-DR surface expression did not differ by infection status. Peripheral blood myeloid dendritic cells of uninfected Malian adults responded to in vitro stimulation with P. falciparum blood-stage parasites by up-regulating the costimulatory molecules HLA-DR, CD80, CD86 and CD40 and secreting IL-10, CXCL9 and CXCL10. In contrast, myeloid dendritic cells of asymptomatically infected Malian adults exhibited no significant responses above the uninfected red blood cell control. IL-10 and CXCL9 plasma levels were elevated in both asymptomatic adults and children with acute malaria. CONCLUSIONS: The findings of this study indicate that myeloid dendritic cells of uninfected adults with a lifelong history of malaria exposure are able to up-regulate co-stimulatory molecules and produce cytokines. Whether mDCs of malaria-exposed individuals are efficient antigen-presenting cells capable of mounting an appropriate immune response remains to be determined. The data also highlights IL-10 and CXCL9 as important factors in both asymptomatic and acute malaria and add to the understanding of asymptomatic P. falciparum infections in malaria-endemic areas.


Assuntos
Citocinas/sangue , Células Dendríticas/parasitologia , Malária Falciparum/sangue , Adulto , Infecções Assintomáticas , Quimiocinas/sangue , Criança , Pré-Escolar , Estudos Transversais , Eritrócitos/parasitologia , Feminino , Humanos , Malária/sangue , Masculino , Mali , Pessoa de Meia-Idade , Fenótipo , Plasmodium falciparum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA