Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lipids Health Dis ; 22(1): 127, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563740

RESUMO

OBJECTIVE: This study aimed to investigate the role of cholesterol metabolism-related genes in nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs) invading the cavernous sinus and analyze the differences in immune cell infiltration between invasive and noninvasive NF-PitNETs. METHODS: First, a retrospective analysis of single-center clinical data was performed. Second, the immune cell infiltration between invasive and noninvasive NF-PitNETs in the GSE169498 dataset was further analyzed, and statistically different cholesterol metabolism-related gene expression matrices were obtained from the dataset. The hub cholesterol metabolism-related genes in NF-PitNETs were screened by constructing machine learning models. In accordance with the hub gene, 73 cases of NF-PitNETs were clustered into two subtypes, and the functional differences and immune cell infiltration between the two subtypes were further analyzed. RESULTS: The clinical data of 146 NF-PitNETs were evaluated, and the results showed that the cholesterol (P = 0.034) between invasive and noninvasive NF-PitNETs significantly differed. After binary logistic analysis, cholesterol was found to be an independent risk factor for cavernous sinus invasion (CSI) in NF-PitNETs. Bioinformatics analysis found three immune cells between invasive and noninvasive NF-PitNETs were statistically significant in the GSE169498 dataset, and 34 cholesterol metabolism-related genes with differences between the two groups were obtained 12 hub genes were selected by crossing the two machine learning algorithm results. Subsequently, cholesterol metabolism-related subgroups, A and B, were obtained by unsupervised hierarchical clustering analysis. The results showed that 12 immune cells infiltrated differentially between the two subgroups. The chi-square test revealed that the two subgroups had statistically significance in the invasive and noninvasive samples (P = 0.001). KEGG enrichment analysis showed that the differentially expressed genes were mainly enriched in the neural ligand-receptor pathway. GSVA analysis showed that the mTORC signaling pathway was upregulated and played an important role in the two-cluster comparison. CONCLUSION: By clinical data and bioinformatics analysis, cholesterol metabolism-related genes may promote the infiltration abundance of immune cells in NF-PitNETs and the invasion of cavernous sinuses by NF-PitNETs through the mTOR signaling pathway. This study provides a new perspective to explore the pathogenesis of cavernous sinus invasion by NF-PitNETs and determine potential therapeutic targets for this disease.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Tumores Neuroendócrinos/genética , Estudos Retrospectivos , Metabolismo dos Lipídeos/genética , Neoplasias Hipofisárias/genética , Transdução de Sinais
2.
Front Endocrinol (Lausanne) ; 11: 566761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362712

RESUMO

Background: Nonfunctioning pituitary neuroendocrine tumor (NF-PitNET) is difficult to resect. Except for surgery, there is no effective treatment for NF-PitNET. MicroRNA-134 (miR-134) has been reported to inhibit proliferation and invasion ability of tumor cells. Herein, the mechanism underlying the effect of miR-134 on alleviating NF-PitNET tumor cells growth is explored. Methods: Mouse pituitary αT3-1 cells were transfected with miR-134 mimics and inhibitor, followed by treatment with stromal cell-derived factor-1α (SDF-1α) in vitro. MiR-134 expression level: we used quantitative real-time PCR (qRT-PCR) to detect the expression of miR-134. Cell behavior level: cell viability and invasion ability were assessed using a cell counting kit-8 (CCK8) assay and Transwell invasion assay respectively. Cytomolecular level: tumor cell proliferation was evaluated by Ki-67 staining; propidium iodide (PI) staining analyzed the effect of miR-134 on cell cycle arrest; western blot analysis and immunofluorescence staining evaluated tumor migration and invasive ability. Additionally, we collected 27 NF-PitNET tumor specimens and related clinical data. The specimens were subjected to qRT-PCR to obtain the relative miR-134 expression level of each specimen; linear regression analysis was used to analyze the miR-134 expression level in tumor specimens and the age of the NF-PitNET population, gender, tumor invasion, prognosis, and other indicators. Results: In vitro experiment, miR-134 was observed to significantly inhibit αT3-1 cells proliferation characterized by inhibited cell viability and expressions of vascular endothelial growth factor A (VEGFA) and cell cycle transition from G1 to S phase (P < 0.01). VEGFA was verified as a target of miR-134. Additionally, miR-134-induced inhibition of αT3-1 cell proliferation and invasion was attenuated by SDF-1α and VEGFA overexpression (P < 0.01). In primary NF-PitNET tumor analysis, miR-134 expression level was negatively correlated with tumor invasion (P = 0.003). Conclusion: The regulation of the SDF-1α/miR-134/VEGFA axis represents a novel mechanism in the pathogenesis of NF-PitNETs and may serve as a potential therapeutic target for the treatment of NF-PitNETs.


Assuntos
Adenoma/metabolismo , Quimiocina CXCL12/biossíntese , MicroRNAs/biossíntese , Tumores Neuroendócrinos/metabolismo , Neoplasias Hipofisárias/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Adenoma/genética , Adenoma/patologia , Adulto , Animais , Linhagem Celular Tumoral , Quimiocina CXCL12/genética , Feminino , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Camundongos , MicroRNAs/genética , Pessoa de Meia-Idade , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Hipófise/citologia , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA