Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Exp Dermatol ; 33(1): e15007, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284195

RESUMO

Human amniotic epithelial stem cells (hAESCs) are regarded as potential alternatives to keratinocytes (KCs) used for skin wound healing. Light is an alternative approach for inducing stem cell differentiation. Opsins (OPNs), a family of light-sensitive, G protein-coupled receptors, play a multitude of light-dependent and light-independent functions in extraocular tissues. However, it remains unclear whether the light sensitivity and function of OPNs are involved in light-induced differentiation of hAESCs to KCs. Herein, we determine the role of OPNs in differentiation of hAESCs into KCs through cell and molecular biology approaches in vitro. It is shown that mRNA expression of OPN3 in the amniotic membrane and hAESCs was higher than the other four primary OPNs by RT-qPCR analysis. Changes in OPN3 gene expression had a significant impact on cell proliferation, stemness and differentiation capability of hAESCs. Furthermore, we found a significant upregulation of OPN3, KRT5 and KRT14 with hAESCs treated at 3 × 33 J/cm2 irradiation from blue-light LED. Taken together, these results suggest that OPN3 acts as a positive regulator of differentiation of hAESCs into KCs. This study provides a novel insight into photosensitive OPNs associated with photobiomodulation(PBM)-induced differentiation in stem cells.


Assuntos
Queratinócitos , Receptores Acoplados a Proteínas G , Opsinas de Bastonetes , Humanos , Diferenciação Celular , Proliferação de Células , Queratinócitos/metabolismo , Receptores Acoplados a Proteínas G/genética , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Células-Tronco/metabolismo
2.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396801

RESUMO

It is unclear whether normal human skin tissue or abnormal scarring are photoreceptive. Therefore, this study investigated photosensitivity in normal skin tissue and hypertrophic scars. The expression of opsins, which are photoreceptor proteins, in normal dermal fibroblasts (NDFs) and hypertrophic scar fibroblasts (HSFs) was examined. After exposure to blue light (BL), changes in the expression levels of αSMA and clock-related genes, specifically PER2 and BMAL1, were examined in both fibroblast types. Opsins were expressed in both fibroblast types, with OPN3 exhibiting the highest expression levels. After peripheral circadian rhythm disruption, BL induced rhythm formation in NDFs. In contrast, although HSFs showed changes in clock-related gene expression levels, no distinct rhythm formation was observed. The expression level of αSMA was significantly higher in HSFs and decreased to the same level as that in NDFs upon BL exposure. When OPN3 knocked-down HSFs were exposed to BL, the reduction in αSMA expression was inhibited. This study showed that BL exposure directly triggers peripheral circadian synchronization in NDFs but not in HSFs. OPN3-mediated BL exposure inhibited HSFs. Although the current results did not elucidate the relationship between peripheral circadian rhythms and hypertrophic scars, they show that BL can be applied for the prevention and treatment of hypertrophic scars and keloids.


Assuntos
Cicatriz Hipertrófica , Queloide , Humanos , Cicatriz Hipertrófica/metabolismo , Pele/metabolismo , Queloide/metabolismo , Fibroblastos/metabolismo , Opsinas/metabolismo , Opsinas de Bastonetes/metabolismo
3.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959738

RESUMO

Leontopodium alpinum is a source of raw material for food additives and skin health. The purpose of this study was to investigate the application of Leontopodium alpinum callus culture extract (LACCE) to prevent blue light damage to the skin. We screened and identified the blue light-damage-protecting activities and mechanisms of ten components of LACCE, including chlorogenic acid (A), isoquercitrin (B), isochlorogenic acid A (C), cynaroside (D), syringin (E), isochlorogenic acid (F), cynarin (G), rutin (H), leontopodic acid A (I), and leontopodic acid B (J), using a novel blue light-induced human foreskin fibroblast (HFF-1) cell injury model. The study examined the cytotoxicity of ten ingredients using the cell counting kit-8 (CCK-8) assay, and selecting concentrations of 5, 10, and 20 µM for experiments with a cell viability above 65%. We explored the effects and mechanisms of action of these LACCE components in response to blue light injury using Western blotting and an enzyme-linked immunosorbent assay. We also measured ROS secretion and Ca2+ influx. Our study revealed that leontopodic acid A effectively boosted COI-1 expression, hindered MMP-1 expression, curbed ROS and Ca2+ endocytosis, and reduced OPN3 expression. These results provide theoretical support for the development of new raw materials for the pharmaceutical and skincare industries.


Assuntos
Prepúcio do Pênis , Luz , Humanos , Masculino , Espécies Reativas de Oxigênio , Extratos Vegetais/farmacologia , Fibroblastos , Opsinas de Bastonetes
4.
Exp Dermatol ; 31(12): 1932-1938, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36017595

RESUMO

Opsin 3 (OPN3), a member of the light-sensitive, retinal-dependent opsin family, is widely expressed in a variety of human tissues and plays a multitude of light-dependent and light-independent roles. We recently identified five missense variants of OPN3, including p. I51T, p. V134A, p. V183I, p. M256I and p. C331Y, in human melanocytic tumours. However, it remains unclear how these OPN3 variants affect OPN3 protein structure and function. Herein, we conducted structural and functional studies of these variant proteins in OPN3 by molecular docking and molecular dynamics simulations. Moreover, we performed in vitro fluorescence calcium imaging to assess the functional properties of five single-nucleotide variant (SNV) proteins using a site-directed mutagenesis method. Notably, the p. I51T variant was not able to effectively dock with 11-cis-retinal. Additionally, in vitro, the p. I51T SNVs failed to induce any detectable changes in intracellular Ca2+ concentration at room temperature. Taken together, these results reveal that five SNVs in the OPN3 gene have deleterious effects on protein structure and function, suggesting that these mutations, especially the p. I51T variant, significantly disrupt the canonical function of the OPN3 protein. Our findings provide new insight into the role of OPN3 variants in the loss of protein function.


Assuntos
Melanócitos , Opsinas de Bastonetes , Humanos , Simulação de Acoplamento Molecular , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Melanócitos/metabolismo , Opsinas/genética , Mutação de Sentido Incorreto
5.
BMC Cancer ; 22(1): 187, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35180853

RESUMO

BACKGROUND: Emerging cell- or tissue-based evidence has demonstrated that opsin 3 (OPN3) mediates a variety of pathological processes affecting tumorigenesis, clinical prognosis, and treatment resistance in some cancers. However, a comprehensive analysis of OPN3 across human cancers is unavailable. Therefore, a pancancer analysis of OPN3 expression was performed and its potential oncogenic roles were explored. METHODS: The expression and characterization of OPN3 were evaluated among 33 tumour types using The Cancer Genome Atlas (TCGA) dataset. Additionally, the OPN3 RNA level and overall survival (OS) in relation to its expression level in 33 cancer types were estimated. Based on the analysis above, 347 samples from 5 types of tumours were collected and detected for the protein expression of OPN3 by immunohistochemical assay. Furthermore, the biological role of OPN3 in cancers was evaluated via gene set enrichment analysis (GSEA). RESULTS: The OPN3 expression level was heterogeneous across cancers, yet a remarkable difference existed between OPN3 expression and patient overall survival among the 7 types of these 33 cancers. Consistently, a high immunohistochemical score of OPN3 was significantly associated with a poor prognosis among patients with 5 types of tumours. Additionally, OPN3 expression was involved in cancer-associated fibroblast infiltration in 5 types of tumours, and promoter hypomethylation of OPN3 was observed in 3 tumour types. Additionally, OPN3 protein phosphorylation sites of Tyr140 and Ser380 were identified via posttranscriptional modification analysis, suggesting the potential function of Tyr140 and Ser380 phosphorylation in tumorigenesis. Furthermore, the enrichment analysis was mainly concentrated in C7orf70, C7orf25 and the "ribosome" pathway by GSEA in 5 types of cancers, indicating that OPN3 might affect tumorigenesis and progression by regulating gene expression and ribosome biogenesis. CONCLUSIONS: High expression of OPN3 was significantly associated with a poor clinical prognosis in five types of cancers. Its molecular function was closely associated with the ribosomal pathway.


Assuntos
Carcinogênese/genética , Neoplasias/genética , Opsinas de Bastonetes/genética , Bases de Dados Genéticas , Humanos , Neoplasias/mortalidade , Prognóstico
6.
Am J Respir Cell Mol Biol ; 64(1): 59-68, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058732

RESUMO

Recently, we characterized blue light-mediated relaxation (photorelaxation) of airway smooth muscle (ASM) and implicated the involvement of opsin 3 (OPN3), an atypical opsin. In the present study, we characterized the cellular signaling mechanisms of photorelaxation. We confirmed the functional role of OPN3 in blue light photorelaxation using trachea from OPN3 null mice (maximal relaxation 52 ± 13% compared with wild-type mice 90 ± 4.3%, P < 0.05). We then demonstrated colocalization of OPN3 and Gαs using co-IP and proximity ligation assays in primary human ASM cells, which was further supported by an increase in cAMP in mouse trachea treated with blue light compared with dark controls (23 ± 3.6 vs. 14 ± 2.6 pmol cAMP/ring, P < 0.05). Downstream PKA (protein kinase A) involvement was shown by inhibiting photorelaxation using Rp-cAMPS (P < 0.0001). Moreover, we observed converging mechanisms of desensitization by chronic ß2-agonist exposure in mouse trachea and correlated this finding with colocalization of OPN3 and GRK2 (G protein receptor kinase) in primary human ASM cells. Finally, an overexpression model of OPN1LW (a red light photoreceptor in the same opsin family) in human ASM cells showed an increase in intracellular cAMP levels following red light exposure compared with nontransfected cells (48 ± 13 vs. 13 ± 2.1 pmol cAMP/mg protein, P < 0.01), suggesting a conserved photorelaxation mechanism for wavelengths of light that are more tissue penetrant. Together, these results demonstrate that blue light photorelaxation in ASM is mediated by the OPN3 receptor interacting with Gαs, which increases cAMP levels, activating PKA and modulated by GRK2.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Relaxamento Muscular/fisiologia , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Opsinas de Bastonetes/metabolismo , Traqueia/metabolismo , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Opsinas/metabolismo , Transdução de Sinais/fisiologia
7.
Lasers Surg Med ; 51(4): 370-382, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30168605

RESUMO

BACKGROUND AND OBJECTIVE: Visible light has beneficial effects on cutaneous wound healing, but the role of potential photoreceptors in human skin is unknown. In addition, inconsistency in the parameters of blue and red light-based therapies for skin conditions makes interpretation difficult. Red light can activate cytochrome c oxidase and has been proposed as a wound healing therapy. UV-blue light can activate Opsin 1-SW, Opsin 2, Opsin 3, Opsin 4, and Opsin 5 receptors, triggering biological responses, but their role in human skin physiology is unclear. MATERIALS AND METHODS: Localization of Opsins was analyzed in situ in human skin derived from face and abdomen by immunohistochemistry. An ex vivo human skin wound healing model was established and expression of Opsins confirmed by immunohistochemistry. The rate of wound closure was quantitated after irradiation with blue and red light and mRNA was extracted from the regenerating epithelial tongue by laser micro-dissection to detect changes in Opsin 3 (OPN3) expression. Retention of the expression of Opsins in primary cultures of human epidermal keratinocytes and dermal fibroblasts was confirmed by qRT-PCR and immunocytochemistry. Modulation of metabolic activity by visible light was studied. Furthermore, migration in a scratch-wound assay, DNA synthesis and differentiation of epidermal keratinocytes was established following irradiation with blue light. A role for OPN3 in keratinocytes was investigated by gene silencing. RESULTS: Opsin receptors (OPN1-SW, 3 and 5) were similarly localized in the epidermis of human facial and abdominal skin in situ. Corresponding expression was confirmed in the regenerating epithelial tongue of ex vivo wounds after 2 days in culture, and irradiation with blue light stimulated wound closure, with a corresponding increase in OPN3 expression. Expression of Opsins was retained in primary cultures of epidermal keratinocytes and dermal fibroblasts. Both blue and red light stimulated the metabolic activity of cultured keratinocytes. Low levels of blue light reduced DNA synthesis and stimulated differentiation of keratinocytes. While low levels of blue light did not alter keratinocyte migration in a scratch wound assay, higher levels inhibited migration. Gene silencing of OPN3 in keratinocytes was effective (87% reduction). The rate of DNA synthesis in OPN3 knockdown keratinocytes did not change following irradiation with blue light, however, the level of differentiation was decreased. CONCLUSIONS: Opsins are expressed in the epidermis and dermis of human skin and in the newly regenerating epidermis following wounding. An increase in OPN3 expression in the epithelial tongue may be a potential mechanism for the stimulation of wound closure by blue light. Since keratinocytes and fibroblasts retain their expression of Opsins in culture, they provide a good model to investigate the mechanism of blue light in wound healing responses. Knockdown of OPN3 led to a reduction in early differentiation of keratinocytes following irradiation with blue light, suggesting OPN3 is required for restoration of the barrier function. Understanding the function and relationship of different photoreceptors and their response to specific light parameters will lead to the development of reliable light-based therapies for cutaneous wound healing. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.


Assuntos
Luz , Terapia com Luz de Baixa Intensidade/métodos , Opsinas/metabolismo , Pele/efeitos da radiação , Lesões dos Tecidos Moles/terapia , Cicatrização/efeitos da radiação , Biomarcadores/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Pele/lesões , Pele/metabolismo , Lesões dos Tecidos Moles/metabolismo
8.
Exp Brain Res ; 236(4): 955-961, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29379995

RESUMO

In this study, we examined the cellular distribution of encephalopsin (opsin 3; OPN3) expression in the striatum of non-human primates. In addition, because of our long standing interest in Parkinson's disease and neuroprotection, we examined whether parkinsonian (MPTP; 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) insult and/or photobiomodulation (670 nm) had any impact on encephalopsin expression in this key area of the basal ganglia. Striatal sections of control naïve monkeys, together with those that were either MPTP- and/or photobiomodulation-treated were processed for immunohistochemistry. Our results revealed two populations of striatal interneurones that expressed encephalopsin, one of which was the giant, choline acetyltransferase-containing, cholinergic interneurones. The other population had smaller somata and was not cholinergic. Neither cell group expressed the calcium-binding protein, parvalbumin. There was also rich encephalopsin expression in a set of terminals forming striosome-like patches across the striatum. Finally, we found that neither parkinsonian (MPTP) insult nor photobiomodulation had any effect on encephalopsin expression in the striatum. In summary, our results revealed an extensive network of encephalopsin containing structures throughout the striatum, indicating that external light is in a position to influence a range of striatal activities at both the interneurone and striosome level.


Assuntos
Corpo Estriado/metabolismo , Interneurônios/metabolismo , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Imuno-Histoquímica , Intoxicação por MPTP/terapia , Macaca fascicularis
9.
J Exp Biol ; 218(Pt 10): 1521-6, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25805701

RESUMO

Encephalopsin (OPN3) belongs to the light-sensitive transmembrane receptor family mainly expressed in the brain and retina. It is believed that light affects mammalian circadian rhythmicity only through the retinohypothalamic tract, which transmits light information to the suprachiasmatic nucleus in the hypothalamus. However, it has been shown that light penetrates the skull. Here, we present the effect of transcranial light treatment on OPN3 expression and monoamine concentrations in mouse brain and other tissues. Mice were randomly assigned to control group, morning-light group and evening-light group, and animals were illuminated transcranially five times a week for 8 min for a total of 4 weeks. The concentrations of OPN3 and monoamines were analysed using western blotting and HPLC, respectively. We report that transcranial light treatment affects OPN3 expression in different brain areas and plasma/adrenal gland monoamine concentrations. In addition, when light was administered at a different time of the day, the response varied in different tissues. These results provide new information on the effects of light on transmitters mediating mammalian rhythmicity.


Assuntos
Monoaminas Biogênicas/sangue , Encéfalo/efeitos da radiação , Luz , Opsinas de Bastonetes/metabolismo , Animais , Encéfalo/metabolismo , Ritmo Circadiano , Masculino , Camundongos , Camundongos Mutantes , Especificidade de Órgãos , Distribuição Aleatória , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/efeitos da radiação , Fatores de Tempo
10.
Zoolog Sci ; 31(10): 653-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25284384

RESUMO

Many animals have developed systems for sensing environmental conditions during evolution. In sensory cells, receptor molecules are responsible for their sensing abilities. In light sensing, most animals capture light information via rhodopsin-like photoreceptive proteins known as opsin-based pigments. A body of evidence from comparisons of amino acid sequences and in vitro experiments demonstrates that opsins have phylogenetically and functionally diversified during evolution and suggests that the phylogenetic diversity in opsins correlates with the variety of molecular properties of opsin-based pigments. In this review, we discuss the various molecular properties of opsin-based pigments and their contribution to light-sensing ability by providing two examples: i) contribution of photoregeneration ability and Chromophore retinal binding property of an Opn3 homolog to non-visual photoreception, and ii) contribution of an absorption characteristic of a visual pigment to depth perception in jumping spiders.


Assuntos
Luz , Opsinas/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Animais
11.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34417283

RESUMO

Opsin 3 (Opn3) is highly expressed in the adult brain, however, information for spatial and temporal expression patterns during embryogenesis is significantly lacking. Here, an Opn3-eGFP reporter mouse line was used to monitor cell body expression and axonal projections during embryonic and early postnatal to adult stages. By applying 2D and 3D fluorescence imaging techniques, we have identified the onset of Opn3 expression, which predominantly occurred during embryonic stages, in various structures during brain/head development. In addition, this study defines over twenty Opn3-eGFP-positive neural structures never reported before. Opn3-eGFP was first observed at E9.5 in neural regions, including the ganglia that will ultimately form the trigeminal, facial and vestibulocochlear cranial nerves (CNs). As development proceeds, expanded Opn3-eGFP expression coincided with the formation and maturation of critical components of the central and peripheral nervous systems (CNS, PNS), including various motor-sensory tracts, such as the dorsal column-medial lemniscus (DCML) sensory tract, and olfactory, acoustic, and optic tracts. The widespread, yet distinct, detection of Opn3-eGFP already at early embryonic stages suggests that Opn3 might play important functional roles in the developing brain and spinal cord to regulate multiple motor and sensory circuitry systems, including proprioception, nociception, ocular movement, and olfaction, as well as memory, mood, and emotion. This study presents a crucial blueprint from which to investigate autonomic and cognitive opsin-dependent neural development and resultant behaviors under physiological and pathophysiological conditions.


Assuntos
Opsinas , Opsinas de Bastonetes , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário , Camundongos , Medula Espinal
12.
Immun Inflamm Dis ; 9(3): 840-850, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33955704

RESUMO

BACKGROUND: OPN3 upregulation associated with metastasis was recently described in two subtypes of lung cancers. And OPN3 identified in light-independent functions in epidermal melanocytes has already shown promise. However, in malignant melanocytic tissues, the expression and characterization of OPN3 remain uncharacterized. OBJECTIVES: We investigated the clinico-histopathologic features in relation to OPN3 expression of acral lentiginous melanoma (ALM), which is a rare cutaneous melanoma subtype and not associated with prior sunlight exposure. METHODS: In all, 84 samples of junctional melanocytic nevi (JMN, n = 12), primary ALMs (n = 39) and inguinal lymph node metastasis (ILNM, n = 23) from ALMs were evaluated for the immunohistochemical expression of OPN3. OPN3 messenger RNA and protein level were further determined in melanocytic tumors using quantitative real-time PCR, multiimmunofluorescence and Western blot assays. We also estimated the associations OPN3 expression between clinicopathological features and prognosis. RESULTS: ILNMs, in contrast to JMN and ALMs, had higher OPN3 expression scores (p < .001) by immunohistochemistry analysis. High OPN3 score was associated with presence of ulceration, increased Breslow depth and Clark level (p = .025, p = .042, and p = .012, respectively). Furthermore, a remarkable difference (p = .037) of patient overall survival was found when comparing the OPN3 expression of immunohistochemical score between equal to or larger than 100 and below 100 groups. Also, Cox regression models showed that high OPN3 scores were associated with worse melanoma survival. CONCLUSION: High OPN3 expression is significantly associated with ALMs and metastatic phenotype as well as a poor prognosis.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/diagnóstico , Melanoma/genética , Prognóstico , Opsinas de Bastonetes , Neoplasias Cutâneas/genética
13.
J Comp Neurol ; 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33427299

RESUMO

The photoreceptor protein, opsin, is one of the major components for vision and photoreceptive function in animals. Although many opsins have been discovered from animal genomes, only a few non-image-forming functions mediated by opsins have been identified. Understanding the mRNA distribution of photoreceptor proteins is one crucial step in uncovering their photoreceptive function in animals. Here we focus on the medaka fish (Oryzias latipes) Opsin 3 (Opn3)/Teleost multiple opsin (Tmt) system, which constitutes a separate phylogenetic group, having putative blue light photoreceptors for non-image-forming functions. In medaka, there is one opn3 and five tmt-opsin orthologs. The expression pattern of the opn3/tmt-opsins in the retina and brain was investigated by in situ hybridization. mRNAs for opn3/tmt-opsins were distributed in the retinal ganglion cells as well as interneurons and specific brain nuclei. Specifically, hybridization signals were observed in the glutamate decarboxylase 1 (gad1)-expressing amacrine cells for opn3, tmt1a, tmt1b, and tmt2, in the caudal lobe of the cerebellum for tmt1b and tmt2, in the cranial nerve nuclei for opn3, tmt1a, tmt1b, tmt2, and in the rostral pars distalis (adenohypophysis) for opn3. These expression patterns suggest that blue light sensing in the fish retina and brain may be involved in the integration of visual inputs, vestibular function, somatosensation, motor outputs, and pituitary endocrine regulation. This article is protected by copyright. All rights reserved.

14.
Thorac Cancer ; 11(2): 286-294, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31802643

RESUMO

BACKGROUND: Lung adenocarcinoma is the most common pathological lung cancer and an important cause of cancer-related death. Metastasis is a major underlying reason for poor prognosis of lung adenocarcinoma. Opsin3 (OPN3), a member of the guanine nucleotide-binding protein-coupled receptor superfamily, has been identified to affect the apoptosis of hepatoma cells by modulating the phosphorylation of Akt and Bcl2/Bax. However, the expression and role of OPN3 in lung adenocarcinoma remains unclear. METHODS: Opsin3 expression in lung adenocarcinoma tissues was detected by western blot, qPCR, and immunohistochemistry. Changes in cell migration and invasion ability resulting from the change of OPN3 expression level were detected by wound healing and transwell migration assays. Changes in the markers of epithelial-mesenchymal transformation were detected by western blot and qPCR. RESULTS: Opsin3 expression in lung adenocarcinoma tissues was higher than that in normal lung tissues. Patients with high expression of OPN3 had lower survival rates. Owing to overexpression of OPN3, the HCC827 cells showed enhanced invasion and migration ability in vitro. Upon decreasing the expression of OPN3, the invasion and migration ability of the A549 cells decreased. CONCLUSION: Our study demonstrated for the first time that OPN3 gene enhanced the metastasis in lung adenocarcinoma, and its overexpression promoted epithelial-mesenchymal transition. KEY POINTS: A significant finding of the study was that OPN3 acted an oncogene in promoting lung adenocarcinoma metastasis. Our study complemented the research on the expression and function of OPN3 in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/secundário , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Opsinas de Bastonetes/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Idoso , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Opsinas de Bastonetes/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
15.
eNeuro ; 7(5)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32737180

RESUMO

The opsins have been studied extensively for their functions in visual phototransduction; however, the mechanisms underlying extraocular opsin signaling remain poorly understood. The first mammalian extraocular opsin to be discovered, opsin 3 (OPN3), was found in the brain more than two decades ago, yet its function remains unknown. A significant hindrance to studying OPN3 has been a lack of specific antibodies against mammalian OPN3, resulting in an incomplete understanding of its expression in the brain. Although Opn3 promoter-driven reporter mice have been generated to examine general OPN3 localization, they lack the regulated expression of the endogenous protein and the ability to study its subcellular localization. To circumvent these issues, we have created a knock-in OPN3-mCherry mouse model in which the fusion protein OPN3-mCherry is expressed under the endogenous Opn3 promoter. Viable and fertile homozygotes for the OPN3-mCherry allele were used to create an extensive map of OPN3-mCherry expression across the adult mouse brain. OPN3-mCherry was readily visualized in distinct layers of the cerebral cortex (CTX), the hippocampal formation (HCF), distinct nuclei of the thalamus, as well as many other regions in both neuronal and non-neuronal cells. Our mouse model offers a new platform to investigate the function of OPN3 in the brain.


Assuntos
Opsinas , Opsinas de Bastonetes , Animais , Encéfalo/metabolismo , Camundongos , Opsinas/genética , Opsinas de Bastonetes/metabolismo , Transdução de Sinais
16.
Cell Rep ; 30(3): 672-686.e8, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968245

RESUMO

Almost all life forms can detect and decode light information for adaptive advantage. Examples include the visual system, in which photoreceptor signals are processed into virtual images, and the circadian system, in which light entrains a physiological clock. Here we describe a light response pathway in mice that employs encephalopsin (OPN3, a 480 nm, blue-light-responsive opsin) to regulate the function of adipocytes. Germline null and adipocyte-specific conditional null mice show a light- and Opn3-dependent deficit in thermogenesis and become hypothermic upon cold exposure. We show that stimulating mouse adipocytes with blue light enhances the lipolysis response and, in particular, phosphorylation of hormone-sensitive lipase. This response is Opn3 dependent. These data establish a key mechanism in which light-dependent, local regulation of the lipolysis response in white adipocytes regulates energy metabolism.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Marrons/efeitos da radiação , Adipócitos Brancos/metabolismo , Adipócitos Brancos/efeitos da radiação , Luz , Opsinas de Bastonetes/metabolismo , Termogênese/efeitos da radiação , Animais , Temperatura Baixa , Metabolismo Energético/efeitos da radiação , Perfilação da Expressão Gênica , Lipólise/efeitos da radiação , Camundongos Endogâmicos C57BL , Fenótipo , Fótons , Termogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA