Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Glia ; 72(12): 2247-2267, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39215540

RESUMO

Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long-term myelin maintenance and axon health, they may also be present at the Schwann cell-axon interface during development. Here, we expand on this, showing that drug-mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell-specific ablation of prohibitin 2 (Phb2) in vivo results in severe defects in radial sorting and myelination. We show in vivo that Phb2-null Schwann cells cannot effectively proliferate and the transcription factors EGR2 (KROX20), POU3F1 (OCT6), and POU3F2 (BRN2), necessary for proper Schwann cell maturation, are dysregulated. Schwann cell-specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the developmental defect seen in mice lacking Schwann cell Phb2. Finally, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on neuronal signals, and thus are potential mediators of PHB2-associated developmental defects. This work develops our understanding of Schwann cell biology, revealing that Phb2 may modulate the timely expression of transcription factors necessary for proper PNS development, and proposing candidates that may play a role in PHB2-mediated integration of axon signals in the Schwann cell.


Assuntos
Bainha de Mielina , Proibitinas , Proteínas Repressoras , Células de Schwann , Células de Schwann/metabolismo , Animais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Bainha de Mielina/metabolismo , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células Cultivadas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
2.
Pestic Biochem Physiol ; 194: 105485, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532315

RESUMO

The widespread use of pyrethroid pesticides has brought serious economic losses in sericulture, but there is still no viable solution. The key to solving the problem is to improve silkworm resistance to pesticides, which depends on understanding the resistance mechanism of silkworms to pesticides. This study aimed to use transcriptomes to understand the underlying mechanism of silkworm resistance to fenpropathrin, which will provide a theoretical molecular reference for breeding pesticide-resistant silkworm varieties. In this study, the fat bodies of two strains with differential resistance after 12 h of fenpropathrin feeding were analyzed using RNA-Seq. After feeding fenpropathrin, 760 differentially expressed genes (DEGs) were obtained in the p50(r) strain and 671 DEGs in the 8y strain. The DEGs involved in resistance to fenpropathrin were further identified by comparing the two strains, including 207 upregulated DEGs in p50(r) and 175 downregulated DEGs in 8y. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these fenpropathrin-related DEGs are mainly enriched in the metabolism and transporter pathways. Moreover, 28 DEGs involved in the metabolic pathway and 18 in the transporter pathway were identified. Furthermore, organic cation transporter protein 6 (BmOCT6), a transporter pathway member, was crucial in enhancing the tolerance of BmN cells to fenpropathrin. Finally, the knockdown of the expression of the homologs of BmOCT6 in Glyphodes pyloalis (G. pyloalis) significantly decreased the resistant level of larvae to fenpropathrin. The findings showed that the metabolism and transporter pathways are associated with resistance to fenpropathrin in silkworm, and OCT6 is an effective and potential target not only for silkworm breeding but also for pest biocontrol.


Assuntos
Bombyx , Lepidópteros , Praguicidas , Piretrinas , Animais , Bombyx/genética , Bombyx/metabolismo , Transcriptoma , Lepidópteros/genética , Corpo Adiposo , Perfilação da Expressão Gênica , Piretrinas/toxicidade , Piretrinas/metabolismo , Praguicidas/metabolismo
3.
Chem Rec ; 22(3): e202100286, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34894063

RESUMO

The compounds containing chiral centers and different functional groups serve as magnificent building blocks for the preparation of various natural products that are having immense biological activity. "Dimethyl-8-oxa-bicyclo[3.2.1]oct-6-en-3-ol" is one of the wonderful synthons to construct multiple stereo centers at a time during the asymmetric synthesis. In this account, we discuss our research efforts toward the synthesis of various simple and complex natural products from the past three decades (1995-2020) by using dimethyl-8-oxa-bicyclo[3.2.1]oct-6-en-3-ol as a synthon. Moreover, the synthetic utility of this starting material was investigated and well demonstrated. Further, we executed the desymmetrization of dimethyl-8-oxa-bicyclo[3.2.1]oct-6-en-3-ol by hydroboration to get different chiral centers. After obtaining the stereocenters, we could manage either the fragment, formal or total synthesis of natural products, by simple protection and deprotection sequence followed by C-C bond formation steps.


Assuntos
Produtos Biológicos , Estereoisomerismo
4.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562812

RESUMO

Schwann cells are critical for the proper development and function of the peripheral nervous system, where they form a mutually beneficial relationship with axons. Past studies have highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long-term myelin maintenance and axon health, they may also be present at the Schwann cell-axon interface during development. Here, we expand on this work, showing that drug-mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell-specific ablation of prohibitin 2 (Phb2) in vivo results in early and severe defects in peripheral nerve development. Using a proteomic approach in vitro, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on the presence of axonal signals. Furthermore, we show in vivo that loss of Phb2 in mouse Schwann cells causes ineffective proliferation and dysregulation of transcription factors EGR2 (KROX20), POU3F1 (OCT6) and POU3F2 (BRN2) that are necessary for proper Schwann cell maturation. Schwann cell-specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the development defect seen in mice lacking Schwann cell Phb2. This work develops our understanding of Schwann cell biology, revealing that Phb2 may directly or indirectly modulate the timely expression of transcription factors necessary for proper peripheral nervous system development, and proposing candidates that may play a role in PHB2-mediated integration of axon signals in the Schwann cell.

5.
Zool Res ; 43(6): 911-922, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36052561

RESUMO

As a transcription factor of the Pit-Oct-Unc (POU) domain family, octamer-binding transcription factor 6 ( OCT6) participates in various aspects of stem cell development and differentiation. At present, however, its role in porcine-induced pluripotent stem cells (piPSCs) remains unclear. Here, we explored the function of OCT6 in piPSCs. We found that piPSCs overexpressing OCT6 maintained colony morphology and pluripotency under differentiation conditions, with a similar gene expression pattern to that of non-differentiated piPSCs. Functional analysis revealed that OCT6 attenuated the adverse effects of extracellular signal-regulated kinase (ERK) signaling pathway inhibition on piPSC pluripotency by activating phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling activity. Our research sheds new light on the mechanism by which OCT6 promotes PSC maintenance.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Transdução de Sinais , Suínos , Fatores de Transcrição/metabolismo
6.
Diagn Microbiol Infect Dis ; 99(2): 115232, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33130505

RESUMO

Leprosy is an infectious disease caused by Mycobacterium leprae that affects the skin and nerves. The nerve damage in leprosy may be related to alterations in transcriptional factors, such as Krox-20, Oct-6, Sox-10. Thirty skin biopsies in leprosy patients and 15 non-leprosy skin biopsies were evaluated using RT-qPCR to assess Krox-20, Oct-6, and Sox-10 and these data was related with S-100 immunohistochemistry. Changes in gene expression were observed in the skin and dermal nerves of leprosy patients in Oct-6 and Sox-10. When comparing Oct-6 with S-100 IHC as diagnostic tests for leprosy, Oct-6 showed a sensitivity of 73.3%, and specificity of 100%, while S-100 IHC showed a sensitivity of 96.6% and specificity of 100%. Our data suggest Oct-6 could be an auxiliary biomarker specific to detecting changes in dermal nerves in leprosy and thus useful to health workers and pathologists with no expertise to observe nerve injuries in leprosy.


Assuntos
Hanseníase/diagnóstico , Fator 6 de Transcrição de Octâmero/genética , Adulto , Idoso , Anticorpos Antibacterianos/sangue , Carga Bacteriana , Biomarcadores/metabolismo , Biópsia , Estudos Transversais , Proteína 2 de Resposta de Crescimento Precoce/genética , Feminino , Humanos , Imunoglobulina G/sangue , Imuno-Histoquímica , Hanseníase/genética , Hanseníase/metabolismo , Hanseníase/patologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/imunologia , Proteínas S100/metabolismo , Fatores de Transcrição SOXE/genética , Sensibilidade e Especificidade , Pele/inervação , Pele/metabolismo , Pele/patologia , Transcrição Gênica
7.
Cancers (Basel) ; 11(6)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212703

RESUMO

DNA damage and the generation of reactive oxygen species (ROS) are key mechanisms of apoptotic cell death by commonly used genotoxic drugs. However, the complex cellular response to these pharmacologic agents remains yet to be fully characterized. Several studies have described the role of transcription factor octamer-1 (Oct-1)/Pit-1, Oct-1/2, and Unc-86 shared domain class 2 homeobox 1 (POU2F1) in the regulation of the genes important for cellular response to genotoxic stress. Evaluating the possible involvement of other POU family transcription factors in these pathways, we revealed the inducible expression of Oct-6/POU3F1, a regulator of neural morphogenesis and epidermal differentiation, in cancer cells by genotoxic drugs. The induction of Oct-6 occurs at the transcriptional level via reactive oxygen species (ROS) and ataxia telangiectasia mutated- and Rad3-related (ATR)-dependent mechanisms, but in a p53 independent manner. Moreover, we provide evidence that Oct-6 may play a role in the regulation of cellular response to DNA damaging agents. Indeed, by using the shRNA approach, we demonstrate that in doxorubicin-treated H460 non-small-cell lung carcinoma (NSCLC) cells, Oct-6 depletion leads to a reduced G2-cell cycle arrest and senescence, but also to increased levels of intracellular ROS and DNA damage. In addition, we could identify p21 and catalase as Oct-6 target genes possibly mediating these effects. These results demonstrate that Oct-6 is expressed in cancer cells after genotoxic stress, and suggests its possible role in the control of ROS, DNA damage response (DDR), and senescence.

8.
Genes Dis ; 5(2): 130-136, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30258942

RESUMO

Insulin signal is one of the vital signaling cascade required for Schwann cells to myelinate the axons of peripheral nervous system (PNS). Myelin formation of peripheral nerve is a complex molecular event controlled by different neurotrophic and transcription factors. The altered or failure in this signaling progression is one of the reasons behind the demyelination of peripheral neurons in diabetic peripheral neuropathy (DPN). The Schwann cell in PNS includes POU domain transcription factor OCT-6 expression. This factor is considered as crucial for the initiation and enhancement of myelination during nerve regeneration. To know the importance of OCT-6 gene, here we studied the long term expression of OCT-6 nuclear protein in sciatic nerve of normal and diabetic neuropathic rats. Also for the first time we elucidated the role of insulin in controlling the expression of OCT-6 in hyperglycemic Schwann cells and sciatic nerve of diabetic neuropathic rats. The results shows that, there will be long term OCT-6 expression in sciatic nerve of adult rats and also their significant decrease is observed in the diabetic condition. But, addition of Insulin for primary Schwann cells and diabetic rats shows the increased OCT-6 expression in both in vivo and in vitro. Together these results indicate the failure of OCT-6 support in neuropathy and also the importance of insulin signaling cascade in the expression of OCT-6 transcription factor.

9.
Stem Cell Reports ; 8(5): 1270-1286, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28434941

RESUMO

Environmental stresses are increasingly acknowledged as core causes of abnormal neural induction leading to neural tube defects (NTDs). However, the mechanism responsible for environmental stress-triggered neural induction defects remains unknown. Here, we report that a spectrum of environmental stresses, including oxidative stress, starvation, and DNA damage, profoundly activate SIRT1, an NAD+-dependent lysine deacetylase. Both mouse embryos and in vitro differentiated embryonic stem cells (ESCs) demonstrated a negative correlation between the expression of SIRT1 and that of OCT6, a key neural fate inducer. Activated SIRT1 radically deacetylates OCT6, triggers an OCT6 ubiquitination/degradation cascade, and consequently increases the incidence of NTD-like phenotypes in mice or hinders neural induction in both human and mouse ESCs. Together, our results suggest that early exposure to environmental stresses results in the dysregulation of the SIRT1/OCT6 axis and increases the risk of NTDs.


Assuntos
Exposição Ambiental , Defeitos do Tubo Neural/metabolismo , Fator 6 de Transcrição de Octâmero/metabolismo , Estresse Oxidativo , Sirtuína 1/metabolismo , Animais , Células Cultivadas , Dano ao DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Defeitos do Tubo Neural/etiologia , Defeitos do Tubo Neural/genética , Fator 6 de Transcrição de Octâmero/genética , Proteólise , Sirtuína 1/genética , Ubiquitinação
10.
J Comp Neurol ; 522(18): 4057-73, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25048219

RESUMO

Among sodium channel isoforms, Nav 1.6 is selectively expressed at nodes of Ranvier in both the CNS and the PNS. However, non-Nav 1.6 isoforms such as Nav 1.2 are also present at the CNS nodes in early development but gradually diminish later. It has been proposed that myelination is part of a glia-neuron signaling mechanism that produces this change in nodal isoform expression. The present study used isoform-specific antibodies to demonstrate that, in the PNS, four other neuronal sodium channel isoforms were also clustered at nodes in early development but eventually disappeared during maturation. To study possible roles of myelination in such transitions, we investigated the nodal expression of selected isoforms in the sciatic nerve of the transgenic mouse Oct6(ΔSCE/ßgeo) , whose PNS myelination is delayed in the first postnatal week but eventually resumes. We found that delayed myelination retarded the formation of nodal channel clusters and altered the expression-elimination patterns of sodium channel isoforms, resulting in significantly reduced expression levels of non-Nav 1.6 isoforms in such delayed nodes. However, delayed myelination did not significantly affect the gene expression, protein synthesis, or axonal trafficking of any isoform studied. Rather, we found evidence for a developmentally programmed increase in neuronal Nav 1.6 expression with constant or decreasing neuronal expression of other isoforms that were unaffected by delayed myelination. Thus our results suggest that, in the developmental isoform switch of the PNS, myelination does not play a signaling role as that proposed for the CNS but rather serves only to form nodal clusters from existing isoform pools.


Assuntos
Nós Neurofibrosos/metabolismo , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/metabolismo , Canais de Sódio/metabolismo , Animais , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/metabolismo , Immunoblotting , Imuno-Histoquímica , Vértebras Lombares , Camundongos Transgênicos , Análise em Microsséries , Mutação , Bainha de Mielina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neurônios/metabolismo , Fator 6 de Transcrição de Octâmero/genética , Fator 6 de Transcrição de Octâmero/metabolismo , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA