Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.629
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 171(7): 1692-1706.e18, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29153837

RESUMO

Methods for the targeted disruption of protein function have revolutionized science and greatly expedited the systematic characterization of genes. Two main approaches are currently used to disrupt protein function: DNA knockout and RNA interference, which act at the genome and mRNA level, respectively. A method that directly alters endogenous protein levels is currently not available. Here, we present Trim-Away, a technique to degrade endogenous proteins acutely in mammalian cells without prior modification of the genome or mRNA. Trim-Away harnesses the cellular protein degradation machinery to remove unmodified native proteins within minutes of application. This rapidity minimizes the risk that phenotypes are compensated and that secondary, non-specific defects accumulate over time. Because Trim-Away utilizes antibodies, it can be applied to a wide range of target proteins using off-the-shelf reagents. Trim-Away allows the study of protein function in diverse cell types, including non-dividing primary cells where genome- and RNA-targeting methods are limited.


Assuntos
Anticorpos/química , Bioquímica/métodos , Transporte Proteico , Proteólise , Animais
2.
Annu Rev Cell Dev Biol ; 34: 381-403, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30028643

RESUMO

Fertilizable eggs develop from diploid precursor cells termed oocytes. Once every menstrual cycle, an oocyte matures into a fertilizable egg in the ovary. To this end, the oocyte eliminates half of its chromosomes into a small cell termed a polar body. The egg is then released into the Fallopian tube, where it can be fertilized. Upon fertilization, the egg completes the second meiotic division, and the mitotic division of the embryo starts. This review highlights recent work that has shed light on the cytoskeletal structures that drive the meiotic divisions of the oocyte in mammals. In particular, we focus on how mammalian oocytes assemble a microtubule spindle in the absence of centrosomes, how they position the spindle in preparation for polar body extrusion, and how the spindle segregates the chromosomes. We primarily focus on mouse oocytes as a model system but also highlight recent insights from human oocytes.


Assuntos
Meiose/genética , Oócitos/crescimento & desenvolvimento , Fuso Acromático/genética , Zigoto/crescimento & desenvolvimento , Animais , Centrossomo , Cromossomos/genética , Feminino , Fertilização/genética , Humanos , Camundongos , Microtúbulos/genética
3.
Mol Cell ; 77(4): 825-839.e7, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31837995

RESUMO

In mammals, chromatin organization undergoes drastic reorganization during oocyte development. However, the dynamics of three-dimensional chromatin structure in this process is poorly characterized. Using low-input Hi-C (genome-wide chromatin conformation capture), we found that a unique chromatin organization gradually appears during mouse oocyte growth. Oocytes at late stages show self-interacting, cohesin-independent compartmental domains marked by H3K27me3, therefore termed Polycomb-associating domains (PADs). PADs and inter-PAD (iPAD) regions form compartment-like structures with strong inter-domain interactions among nearby PADs. PADs disassemble upon meiotic resumption from diplotene arrest but briefly reappear on the maternal genome after fertilization. Upon maternal depletion of Eed, PADs are largely intact in oocytes, but their reestablishment after fertilization is compromised. By contrast, depletion of Polycomb repressive complex 1 (PRC1) proteins attenuates PADs in oocytes, which is associated with substantial gene de-repression in PADs. These data reveal a critical role of Polycomb in regulating chromatin architecture during mammalian oocyte growth and early development.


Assuntos
Cromatina/química , Oócitos/crescimento & desenvolvimento , Oogênese/genética , Proteínas do Grupo Polycomb/fisiologia , Animais , Blastocisto/química , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Embrião de Mamíferos/química , Inativação Gênica , Código das Histonas , Camundongos , Oócitos/química , Transcrição Gênica , Coesinas
4.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38546043

RESUMO

The timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins. Ubiquitin-conjugating enzyme E2 S (UBE2S), an E2 ubiquitin-conjugating enzyme, delivers ubiquitin to APC/C. APC/C has been extensively studied, but the functions of UBE2S in oocyte maturation and mouse fertility are not clear. In this study, we used Ube2s knockout mice to explore the role of UBE2S in mouse oocytes. Ube2s-deleted oocytes were characterized by meiosis I arrest with normal spindle assembly and spindle assembly checkpoint dynamics. However, the absence of UBE2S affected the activity of APC/C. Cyclin B1 and securin are two substrates of APC/C, and their levels were consistently high, resulting in the failure of homologous chromosome separation. Unexpectedly, the oocytes arrested in meiosis I could be fertilized and the embryos could become implanted normally, but died before embryonic day 10.5. In conclusion, our findings reveal an indispensable regulatory role of UBE2S in mouse oocyte meiosis and female fertility.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Animais , Feminino , Camundongos , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Oócitos/metabolismo , Ubiquitinas/metabolismo
5.
EMBO J ; 41(18): e110815, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35912849

RESUMO

In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.


Assuntos
Meiose , Oogênese , Animais , Feminino , Humanos , Macaca fascicularis , Camundongos , Oócitos , Oogênese/fisiologia , Ovário
6.
Semin Cell Dev Biol ; 138: 94-103, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35450766

RESUMO

Mitochondria are vital organelles with a central role in all aspects of cellular metabolism. As a means to support the ever-changing demands of the cell, mitochondria produce energy, drive biosynthetic processes, maintain redox homeostasis, and function as a hub for cell signaling. While mitochondria have been widely studied for their role in disease and metabolic dysfunction, this organelle has a continually evolving role in the regulation of development, wound repair, and regeneration. Mitochondrial metabolism dynamically changes as tissues transition through distinct phases of development. These organelles support the energetic and biosynthetic demands of developing cells and function as key structures that coordinate the nutrient status of the organism with developmental progression. This review will examine the mechanisms that link mitochondria to developmental processes. We will also examine the process of mitochondrial respiratory quiescence (MRQ), a novel mechanism for regulating cellular metabolism through the biochemical and physiological remodeling of mitochondria. Lastly, we will examine MRQ as a system to discover the mechanisms that drive mitochondrial remodeling during development.


Assuntos
Mitocôndrias , Organelas , Mitocôndrias/metabolismo , Homeostase , Organelas/metabolismo , Transdução de Sinais , Metabolismo Energético
7.
Artigo em Inglês | MEDLINE | ID: mdl-39109673

RESUMO

Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membrane-less compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.

8.
Trends Genet ; 38(5): 422-425, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34772523

RESUMO

Germ cells reflect the evolutionary history and future potential of a species. Understanding how the genome is organised in gametocytes is fundamental to understanding fertility and its impact on genetic diversity and evolution of species. Here, we explore principles of chromatin remodelling during the formation of germ cells and how these are affected by genome reshuffling.


Assuntos
Montagem e Desmontagem da Cromatina , Células Germinativas , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Fertilidade/genética , Genoma
9.
EMBO J ; 40(7): e106797, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33644892

RESUMO

Partitioning of the genome in meiosis occurs through two highly specialized cell divisions, named meiosis I and meiosis II. Step-wise cohesin removal is required for chromosome segregation in meiosis I, and sister chromatid segregation in meiosis II. In meiosis I, mono-oriented sister kinetochores appear as fused together when examined by high-resolution confocal microscopy, whereas they are clearly separated in meiosis II, when attachments are bipolar. It has been proposed that bipolar tension applied by the spindle is responsible for the physical separation of sister kinetochores, removal of cohesin protection, and chromatid separation in meiosis II. We show here that this is not the case, and initial separation of sister kinetochores occurs already in anaphase I independently of bipolar spindle forces applied on sister kinetochores, in mouse oocytes. This kinetochore individualization depends on separase cleavage activity. Crucially, without kinetochore individualization in meiosis I, bivalents when present in meiosis II oocytes separate into chromosomes and not sister chromatids. This shows that whether centromeric cohesin is removed or not is determined by the kinetochore structure prior to meiosis II.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Meiose , Animais , Células Cultivadas , Cromátides/genética , Cromátides/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Coesinas
10.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37589342

RESUMO

Cellular quiescence is a dormant, non-dividing cell state characterized by significant shifts in physiology and metabolism. Quiescence plays essential roles in a wide variety of biological processes, ranging from microbial sporulation to human reproduction and wound repair. Moreover, when the regulation of quiescence is disrupted, it can drive cancer growth and compromise tissue regeneration after injury. In this Review, we examine the dynamic changes in metabolism that drive and support dormant and transiently quiescent cells, including spores, oocytes and adult stem cells. We begin by defining quiescent cells and discussing their roles in key biological processes. We then examine metabolic factors that influence cellular quiescence in both healthy and disease contexts, and how these could be leveraged in the treatment of cancer.


Assuntos
Oócitos , Cicatrização , Adulto , Humanos , Divisão Celular
11.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35043944

RESUMO

Establishment of a healthy ovarian reserve is contingent upon numerous regulatory pathways during embryogenesis. Previously, mice lacking TBP-associated factor 4b (Taf4b) were shown to exhibit a diminished ovarian reserve. However, potential oocyte-intrinsic functions of TAF4b have not been examined. Here, we use a combination of gene expression profiling and chromatin mapping to characterize TAF4b-dependent gene regulatory networks in mouse oocytes. We find that Taf4b-deficient oocytes display inappropriate expression of meiotic, chromatin modification/organization, and X-linked genes. Furthermore, dysregulated genes in Taf4b-deficient oocytes exhibit an unexpected amount of overlap with dysregulated genes in oocytes from XO female mice, a mouse model of Turner Syndrome. Using Cleavage Under Targets and Release Using Nuclease (CUT&RUN), we observed TAF4b enrichment at genes involved in chromatin remodeling and DNA repair, some of which are differentially expressed in Taf4b-deficient oocytes. Interestingly, TAF4b target genes were enriched for Sp/Klf family and NFY target motifs rather than TATA-box motifs, suggesting an alternative mode of promoter interaction. Together, our data connect several gene regulatory nodes that contribute to the precise development of the mammalian ovarian reserve.


Assuntos
Redes Reguladoras de Genes/genética , Oogênese , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Animais , Reparo do DNA , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Células Germinativas/citologia , Células Germinativas/metabolismo , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/citologia , Oócitos/metabolismo , Regiões Promotoras Genéticas , Fatores Associados à Proteína de Ligação a TATA/deficiência , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/deficiência , Fator de Transcrição TFIID/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo
12.
FASEB J ; 38(1): e23361, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085152

RESUMO

Oocyte meiotic prophase I (MI) is an important event in female reproduction. Breast cancer amplified sequence 2 (BCAS2) is a component of the spliceosome. Previous reports have shown that BCAS2 is critical in male germ cell meiosis, oocyte development, and early embryo genome integrity. However, the role of BCAS2 in oocyte meiosis has not been reported. We used Stra8-GFPCre mice to knock out Bcas2 in oocytes during the pachytene phase. The results of fertility tests showed that Bcas2 conditional knockout (cKO) in oocytes results in infertility in female mice. Morphological analysis showed that the number of primordial follicles in the ovaries of 2-month-old (M) mice was significantly reduced and that follicle development was blocked. Further analysis showed that the number of primordial follicles decreased and that follicle development was slowed in 7-day postpartum (dpp) ovaries. Moreover, primordial follicles undergo apoptosis, and DNA damage cannot be repaired in primary follicle oocytes. Meiosis was abnormal; some oocytes could not reach the diplotene stage, and more oocytes could not develop to the dictyotene stage. Alternative splicing (AS) analysis revealed abnormal AS of deleted in azoospermia like (Dazl) and diaphanous related formin 2 (Diaph2) oogenesis-related genes in cKO mouse ovaries, and the process of AS was involved by CDC5L and PRP19.


Assuntos
Meiose , Prófase Meiótica I , Masculino , Feminino , Camundongos , Animais , Meiose/genética , Processamento Alternativo , RNA Mensageiro/metabolismo , Oócitos/metabolismo , Proteínas de Neoplasias/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(15): e2118740119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394879

RESUMO

Mutations in mitochondrial DNA (mtDNA) contribute to multiple diseases. However, how new mtDNA mutations arise and accumulate with age remains understudied because of the high error rates of current sequencing technologies. Duplex sequencing reduces error rates by several orders of magnitude via independently tagging and analyzing each of the two template DNA strands. Here, using duplex sequencing, we obtained high-quality mtDNA sequences for somatic tissues (liver and skeletal muscle) and single oocytes of 30 unrelated rhesus macaques, from 1 to 23 y of age. Sequencing single oocytes minimized effects of natural selection on germline mutations. In total, we identified 17,637 tissue-specific de novo mutations. Their frequency increased ∼3.5-fold in liver and ∼2.8-fold in muscle over the ∼20 y assessed. Mutation frequency in oocytes increased ∼2.5-fold until the age of 9 y, but did not increase after that, suggesting that oocytes of older animals maintain the quality of their mtDNA. We found the light-strand origin of replication (OriL) to be a hotspot for mutation accumulation with aging in liver. Indeed, the 33-nucleotide-long OriL harbored 12 variant hotspots, 10 of which likely disrupt its hairpin structure and affect replication efficiency. Moreover, in somatic tissues, protein-coding variants were subject to positive selection (potentially mitigating toxic effects of mitochondrial activity), the strength of which increased with the number of macaques harboring variants. Our work illuminates the origins and accumulation of somatic and germline mtDNA mutations with aging in primates and has implications for delayed reproduction in modern human societies.


Assuntos
Envelhecimento , Mitocôndrias , Mutação , Oócitos , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Macaca mulatta/genética , Mitocôndrias/genética , Oócitos/metabolismo
14.
J Biol Chem ; 299(8): 104950, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354972

RESUMO

Xenopus oocytes are encompassed by a layer of follicular cells that contribute to oocyte growth and meiosis in relation to oocyte maturation. However, the effects of the interaction between follicular cells and the oocyte surface on meiotic processes are unclear. Here, we investigated Xenopus follicular cell function using oocyte signaling and heterologous-expressing capabilities. We found that oocytes deprotected from their surrounding layer of follicular cells and expressing the epidermal growth factor (EGF) receptor (EGFR) and the Grb7 adaptor undergo accelerated prophase I to metaphase II meiosis progression upon stimulation by EGF. This unusual maturation unravels atypical spindle formation but is rescued by inhibiting integrin ß1 or Grb7 binding to the EGFR. In addition, we determined that oocytes surrounded by their follicular cells expressing EGFR-Grb7 exhibit normal meiotic resumption. These oocytes are protected from abnormal meiotic spindle formation through the recruitment of O-GlcNAcylated Grb7, and OGT (O-GlcNAc transferase), the enzyme responsible for O-GlcNAcylation processes, in the integrin ß1-EGFR complex. Folliculated oocytes can be forced to adopt an abnormal phenotype and exclusive Grb7 Y338 and Y188 phosphorylation instead of O-GlcNAcylation under integrin activation. Furthermore, an O-GlcNAcylation increase (by inhibition of O-GlcNAcase), the glycosidase that removes O-GlcNAc moieties, or decrease (by inhibition of OGT) amplifies oocyte spindle defects when follicular cells are absent highlighting a control of the meiotic spindle by the OGT-O-GlcNAcase duo. In summary, our study provides further insight into the role of the follicular cell layer in oocyte meiosis progression.


Assuntos
Fator de Crescimento Epidérmico , Integrina beta1 , Oócitos , Xenopus laevis , Animais , Acilação , Regulação para Baixo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Proteína Adaptadora GRB7/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Meiose , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Fuso Acromático/metabolismo , Xenopus laevis/metabolismo
15.
Pflugers Arch ; 476(5): 861-869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507112

RESUMO

Phosphate (Pi) is an essential nutrient, and its plasma levels are under tight hormonal control. Uphill transport of Pi into cells is mediated by the two Na-dependent Pi transporter families SLC34 and SLC20. The molecular identity of a potential Pi export pathway is controversial, though XPR1 has recently been suggested by Giovannini and coworkers to mediate Pi export. We expressed XPR1 in Xenopus oocytes to determine its functional characteristics. Xenopus isoforms of proteins were used to avoid species incompatibility. Protein tagging confirmed the localization of XPR1 at the plasma membrane. Efflux experiments, however, failed to detect translocation of Pi attributable to XPR1. We tested various counter ions and export medium compositions (pH, plasma) as well as potential protein co-factors that could stimulate the activity of XPR1, though without success. Expression of truncated XPR1 constructs and individual domains of XPR1 (SPX, transmembrane core, C-terminus) demonstrated downregulation of the uptake of Pi mediated by the C-terminal domain of XPR1. Tethering the C-terminus to the transmembrane core changed the kinetics of the inhibition and the presence of the SPX domain blunted the inhibitory effect. Our observations suggest a regulatory role of XPR1 in cellular Pi handling rather than a function as Pi exporter. Accordingly, XPR1 senses intracellular Pi levels via its SPX domain and downregulates cellular Pi uptake via the C-terminal domain. The molecular identity of a potential Pi export protein remains therefore elusive.


Assuntos
Homeostase , Fosfatos , Animais , Humanos , Membrana Celular/metabolismo , Homeostase/fisiologia , Oócitos/metabolismo , Fosfatos/metabolismo , Xenopus laevis , Receptor do Retrovírus Politrópico e Xenotrópico
16.
Chromosoma ; 132(1): 1-18, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36648541

RESUMO

In prophase of the first meiotic division, chromatin forms a compact spherical cluster called the karyosome within the enlarged oocyte nucleus in Drosophila melanogaster. Similar clustering of chromatin has been widely observed in oocytes in many species including humans. It was previously shown that the proper karyosome formation is required for faithful chromosome segregation, but knowledge about its formation and maintenance is limited. To identify genes involved in karyosome formation, we carried out a large-scale cytological screen using Drosophila melanogaster oocytes. This screen comprised 3916 genes expressed in ovaries, of which 106 genes triggered reproducible karyosome defects upon knockdown. The karyosome defects in 24 out of these 106 genes resulted from activation of the meiotic recombination checkpoint, suggesting possible roles in DNA repair or piRNA processing. The other genes identified in this screen include genes with functions linked to chromatin, nuclear envelope, and actin. We also found that silencing of genes with mitochondrial functions, including electron transport chain components, induced a distinct karyosome defect typically with de-clustered chromosomes located close to the nuclear envelope. Furthermore, mitochondrial dysfunction not only impairs karyosome formation and maintenance, but also delays synaptonemal complex disassembly in cells not destined to become the oocyte. These karyosome defects do not appear to be mediated by apoptosis. This large-scale unbiased study uncovered a set of genes required for karyosome formation and revealed a new link between mitochondrial dysfunction and chromatin organization in oocytes.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Humanos , Animais , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Interferência de RNA , Oócitos/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Meiose , Cromatina/genética , Cromatina/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Segregação de Cromossomos
17.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35237831

RESUMO

Mammalian oocytes are arrested at meiotic prophase I. The dual-specificity phosphatase CDC25B is essential for cyclin-dependent kinase 1 (CDK1) activation that drives resumption of meiosis. CDC25B reverses the inhibitory effect of the protein kinases WEE1 and MYT1 on CDK1 activation. Cdc25b-/- female mice are infertile because oocytes cannot activate CDK1. To identify a role for CDC25B following resumption of meiosis, we restored CDK1 activation in Cdc25b-/- oocytes by inhibiting WEE1 and MYT1, or expressing EGFP-CDC25A or constitutively active EGFP-CDK1 from microinjected complementary RNAs. Forced CDK1 activation in Cdc25b-/- oocytes allowed resumption of meiosis, but oocytes mostly arrested at metaphase I (MI) with intact spindles. Similarly, approximately a third of Cdc25b+/- oocytes with a reduced amount of CDC25B arrested in MI. MI-arrested Cdc25b-/- oocytes also displayed a transient decrease in CDK1 activity similar to Cdc25b+/+ oocytes during the MI-MII transition, whereas Cdc25b+/- oocytes exhibited only a partial anaphase-promoting complex/cyclosome activation and anaphase I entry. Thus, CDC25B is necessary for the resumption of meiosis and the MI-MII transition.


Assuntos
Meiose , Oócitos , Anáfase , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Feminino , Mamíferos , Metáfase , Camundongos , Oócitos/metabolismo , Fosfatases cdc25
18.
Development ; 148(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33914868

RESUMO

In mammalian ovaries, immature oocytes are reserved in primordial follicles until their activation for potential ovulation. Precise control of primordial follicle activation (PFA) is essential for reproduction, but how this is achieved is unclear. Here, we show that canonical wingless-type MMTV integration site family (WNT) signaling is pivotal for pre-granulosa cell (pre-GC) activation during PFA. We identified several WNT ligands expressed in pre-GCs that act in an autocrine manner. Inhibition of WNT secretion from pre-GCs/GCs by conditional knockout (cKO) of the wntless (Wls) gene led to female infertility. In Wls cKO mice, GC layer thickness was greatly reduced in growing follicles, which resulted in impaired oocyte growth with both an abnormal, sustained nuclear localization of forkhead box O3 (FOXO3) and reduced phosphorylation of ribosomal protein S6 (RPS6). Constitutive stabilization of ß-catenin (CTNNB1) in pre-GCs/GCs induced morphological changes of pre-GCs from a squamous into a cuboidal form, though it did not influence oocyte activation. Our results reveal that canonical WNT signaling plays a permissive role in the transition of pre-GCs to GCs, which is an essential step to support oocyte growth.


Assuntos
Fertilidade , Células da Granulosa/metabolismo , Infertilidade Feminina/metabolismo , Ovário/metabolismo , Via de Sinalização Wnt , Animais , Feminino , Camundongos , Camundongos Knockout , Oócitos/metabolismo , Oogênese , Folículo Ovariano/metabolismo , Ovulação , Transcriptoma , Proteínas WT1/genética , beta Catenina/genética
19.
Mol Hum Reprod ; 30(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870523

RESUMO

Advanced maternal age is associated with a decline in oocyte quality, which often leads to reproductive failure in humans. However, the mechanisms behind this age-related decline remain unclear. To gain insights into this phenomenon, we applied plexDIA, a multiplexed data-independent acquisition, single-cell mass spectrometry method, to analyze the proteome of oocytes from both young women and women of advanced maternal age. Our findings primarily revealed distinct proteomic profiles between immature fully grown germinal vesicle and mature metaphase II oocytes. Importantly, we further show that a woman's age is associated with changes in her oocyte proteome. Specifically, when compared to oocytes obtained from young women, advanced maternal age oocytes exhibited lower levels of the proteasome and TRiC complex, as well as other key regulators of proteostasis and meiosis. This suggests that aging adversely affects the proteostasis and meiosis networks in human oocytes. The proteins identified in this study hold potential as targets for improving oocyte quality and may guide future studies into the molecular processes underlying oocyte aging.


Assuntos
Idade Materna , Meiose , Oócitos , Proteoma , Proteômica , Proteostase , Análise de Célula Única , Humanos , Oócitos/metabolismo , Oócitos/citologia , Feminino , Meiose/fisiologia , Adulto , Proteômica/métodos , Análise de Célula Única/métodos , Proteoma/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Pessoa de Meia-Idade
20.
Hum Reprod ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775331

RESUMO

STUDY QUESTION: Does the use of preimplantation genetic testing for aneuploidies (PGT-A), personalized embryo transfer with endometrial receptivity assay (pET-ERA), or the use of donated oocytes modify the incidence of biochemical pregnancy loss (BPL) in frozen single embryo transfer (FSET)? SUMMARY ANSWER: Following FSET, BPL incidence does not differ between own and donated oocytes, and the use of PGT-A with euploid embryo transfer or pET-ERA results in a similar incidence of BPL compared to cycles without embryo or endometrial analysis. WHAT IS KNOWN ALREADY: BPL occurs frequently after IVF, and many factors have been associated with its incidence. The etiology of BPL is not well known, but the most probable cause seems to be either a low-quality embryo or impaired endometrial maintenance. The impact of techniques diagnosing embryonic ploidy or endometrial receptivity on BPL incidence and the BPL incidence between own and donated oocytes have not been analyzed. STUDY DESIGN, SIZE, DURATION: This is a retrospective cohort study analyzing the incidence of BPL over 3741 cycles of FSET derived from own (2399 cycles) and donated (1342 cycles) oocytes between January 2013 and January 2022 in 1736 of which PGT-A, pET-ERA, or both were applied. PARTICIPANTS/MATERIALS, SETTING, METHODS: We defined BPL as a pregnancy diagnosed only by serum ß-hCG > 10 UI/l followed by a decrease that does not result in a clinical pregnancy. Clinical pregnancy was defined as the presence of gestational sac on transvaginal ultrasound. We compared BPL rates among patients undergoing 2399 FSETs from own oocytes, which comprised 1310 cycles of embryos analyzed by PGT-A, 950 cycles of untested embryos, 30 cycles of untested embryos with pET-ERA, and a subgroup of 109 cycles analyzed by both PGT-A and pET-ERA. We also included a total of 1342 FSET cycles from donated oocytes comprising 132, 1055, 140, and 15 cycles in the same groups, respectively. MAIN RESULTS AND THE ROLE OF CHANCE: In FSET from own oocytes, the overall BPL rate per embryo transfer was 8.2% (95% CI [7.09-9.33]). In untested embryo transfers, the BPL rate was 7.5% [5.91-9.37]. In the PGT-A group, the BPL rate was 8.8% [7.32-10.47]. In the pET-ERA group, the rate was 6.7% [0.82-22.07]. In the PGT-A+ERA group, the rate was 6.5% [2.65-12.90]. No significant differences were found (P = 0.626). A multivariate analysis considering clinically meaningful variables that were significantly different among groups, taking the untested embryos/endometrium group as a reference, showed comparable incidences among groups. For PGT-A, the adjusted odds ratio (AdjOR) was 1.154 [0.768-1.735] (P = 0.49) and for PGT-A+ERA 0.885 [0.330-2.375] (P = 0.808). Because of a low number of registered cases in the pET-ERA group, and to prevent statistical errors and convergence issues, this group was excluded from further analysis. In FSET of donated oocytes, the overall BPL rate per embryo transfer was 4.9% [3.76-6.14]. In the PGT-A group, the BPL rate was 6.8% [3.16-12.55]. In the pET-ERA group, the rate was 5.0% [2.03-10.03]. In untested embryo transfers, the rate was 4.7% [3.46-6.10]. No cases occurred in the PGT-A+ERA group, and no significant differences were found (P = 0.578). The multivariate analysis showed comparable incidences among groups. For PGT-A the AdjOR was 1.669 [0.702-3.972] (P = 0.247) and for pET-ERA 1.189 [0.433-3.265] (P = 0.737). The PGT-A+ERA group was eliminated from the model to prevent statistical errors and convergence issues because no BPL cases were registered in this group. In the multivariate analysis, when the sources of oocytes were compared, own versus donated, no significant differences were found in the incidence of BPL. LIMITATIONS, REASONS FOR CAUTION: This was a retrospective cohort study with potential biases. In addition, we were unable to control differences among groups due to modifications in medical or laboratory protocols during this long time period, which may modify the relationships being addressed. Factors previously associated with BPL, such as immunological conditions other than thyroid autoimmunity, were not considered in this study. Limited sample sizes of some groups may limit the statistical power for finding differences that can be present in the general population. WIDER IMPLICATIONS OF THE FINDINGS: BPL may be related to a mechanism not associated with the chromosomal constitution of the embryo or the transcriptome of the endometrium. More studies are needed to explore the factors associated with this reproductive issue. STUDY FUNDING/COMPETING INTEREST(S): No specific funding was available for this study. None of the authors have a conflict of interest to declare with regard to this study. TRIAL REGISTRATION NUMBER: This trial was registered at clinicaltrials.gov (NCT04549909).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA