Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Hum Brain Mapp ; 45(1): e26571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224544

RESUMO

The ability to detect and assess world-relative object-motion is a critical computation performed by the visual system. This computation, however, is greatly complicated by the observer's movements, which generate a global pattern of motion on the observer's retina. How the visual system implements this computation is poorly understood. Since we are potentially able to detect a moving object if its motion differs in velocity (or direction) from the expected optic flow generated by our own motion, here we manipulated the relative motion velocity between the observer and the object within a stationary scene as a strategy to test how the brain accomplishes object-motion detection. Specifically, we tested the neural sensitivity of brain regions that are known to respond to egomotion-compatible visual motion (i.e., egomotion areas: cingulate sulcus visual area, posterior cingulate sulcus area, posterior insular cortex [PIC], V6+, V3A, IPSmot/VIP, and MT+) to a combination of different velocities of visually induced translational self- and object-motion within a virtual scene while participants were instructed to detect object-motion. To this aim, we combined individual surface-based brain mapping, task-evoked activity by functional magnetic resonance imaging, and parametric and representational similarity analyses. We found that all the egomotion regions (except area PIC) responded to all the possible combinations of self- and object-motion and were modulated by the self-motion velocity. Interestingly, we found that, among all the egomotion areas, only MT+, V6+, and V3A were further modulated by object-motion velocities, hence reflecting their possible role in discriminating between distinct velocities of self- and object-motion. We suggest that these egomotion regions may be involved in the complex computation required for detecting scene-relative object-motion during self-motion.


Assuntos
Percepção de Movimento , Neocórtex , Humanos , Percepção de Movimento/fisiologia , Mapeamento Encefálico , Movimento (Física) , Giro do Cíngulo , Estimulação Luminosa/métodos
2.
Exp Brain Res ; 242(8): 2023-2031, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38953973

RESUMO

The influence of travel time on perceived traveled distance has often been studied, but the results are inconsistent regarding the relationship between the two magnitudes. We argue that this is due to differences in the lengths of investigated travel distances and hypothesize that the influence of travel time differs for rather short compared to rather long traveled distances. We tested this hypothesis in a virtual environment presented on a desktop as well as through a head-mounted display. Our results show that, for longer distances, more travel time leads to longer perceived distance, while we do not find an influence of travel time on shorter distances. The presentation through an HMD vs. desktop only influenced distance judgments in the short distance condition. These results are in line with the idea that the influence of travel time varies by the length of the traveled distance, and provide insights on the question of how distance perception in path integration studies is affected by travel time, thereby resolving inconsistencies reported in previous studies.


Assuntos
Percepção de Distância , Humanos , Percepção de Distância/fisiologia , Feminino , Masculino , Adulto Jovem , Adulto , Fatores de Tempo , Percepção Espacial/fisiologia , Realidade Virtual , Julgamento/fisiologia
3.
Adv Exp Med Biol ; 1437: 23-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38270851

RESUMO

Organisms live in a dynamic environment in which sensory information from multiple sources is ever changing. A conceptually complex task for the organisms is to accumulate evidence across sensory modalities and over time, a process known as multisensory decision-making. This is a new concept, in terms of that previous researches have been largely conducted in parallel disciplines. That is, much efforts have been put either in sensory integration across modalities using activity summed over a duration of time, or in decision-making with only one sensory modality that evolves over time. Recently, a few studies with neurophysiological measurements emerge to study how different sensory modality information is processed, accumulated, and integrated over time in decision-related areas such as the parietal or frontal lobes in mammals. In this review, we summarize and comment on these studies that combine the long-existed two parallel fields of multisensory integration and decision-making. We show how the new findings provide insight into our understanding about neural mechanisms mediating multisensory information processing in a more complete way.


Assuntos
Cognição , Lobo Frontal , Animais , Mamíferos
4.
Psychon Bull Rev ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286911

RESUMO

Optic flow provides information on movement direction and speed during locomotion. Changing the relationship between optic flow and walking speed via training has been shown to influence subsequent distance and hill steepness estimations. Previous research has shown that experience with slow optic flow at a given walking speed was associated with increased effort and distance overestimation in comparison to experiencing with fast optic flow at the same walking speed. Here, we investigated whether exposure to different optic flow speeds relative to gait influences perceptions of leaping and jumping ability. Participants estimated their maximum leaping and jumping ability after exposure to either fast or moderate optic flow at the same walking speed. Those calibrated to fast optic flow estimated farther leaping and jumping abilities than those calibrated to moderate optic flow. Findings suggest that recalibration between optic flow and walking speed may specify an action boundary when calibrated or scaled to actions such as leaping, and possibly, the manipulation of optic flow speed has resulted in a change in the associated anticipated effort for walking a prescribed distance, which in turn influence one's perceived action capabilities for jumping and leaping.

5.
J Biomed Opt ; 29(7): 076501, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38912214

RESUMO

Significance: Information about the spatial organization of fibers within a nerve is crucial to our understanding of nerve anatomy and its response to neuromodulation therapies. A serial block-face microscopy method [three-dimensional microscopy with ultraviolet surface excitation (3D-MUSE)] has been developed to image nerves over extended depths ex vivo. To routinely visualize and track nerve fibers in these datasets, a dedicated and customizable software tool is required. Aim: Our objective was to develop custom software that includes image processing and visualization methods to perform microscopic tractography along the length of a peripheral nerve sample. Approach: We modified common computer vision algorithms (optic flow and structure tensor) to track groups of peripheral nerve fibers along the length of the nerve. Interactive streamline visualization and manual editing tools are provided. Optionally, deep learning segmentation of fascicles (fiber bundles) can be applied to constrain the tracts from inadvertently crossing into the epineurium. As an example, we performed tractography on vagus and tibial nerve datasets and assessed accuracy by comparing the resulting nerve tracts with segmentations of fascicles as they split and merge with each other in the nerve sample stack. Results: We found that a normalized Dice overlap ( Dice norm ) metric had a mean value above 0.75 across several millimeters along the nerve. We also found that the tractograms were robust to changes in certain image properties (e.g., downsampling in-plane and out-of-plane), which resulted in only a 2% to 9% change to the mean Dice norm values. In a vagus nerve sample, tractography allowed us to readily identify that subsets of fibers from four distinct fascicles merge into a single fascicle as we move ∼ 5 mm along the nerve's length. Conclusions: Overall, we demonstrated the feasibility of performing automated microscopic tractography on 3D-MUSE datasets of peripheral nerves. The software should be applicable to other imaging approaches. The code is available at https://github.com/ckolluru/NerveTracker.


Assuntos
Fibras Nervosas , Software , Imageamento Tridimensional/métodos , Algoritmos , Animais , Processamento de Imagem Assistida por Computador/métodos , Nervo Tibial/diagnóstico por imagem , Nervo Vago/diagnóstico por imagem , Microscopia Ultravioleta/métodos , Microscopia/métodos
6.
Brain Struct Funct ; 229(5): 1021-1045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38592557

RESUMO

Optic flow provides useful information in service of spatial navigation. However, whether brain networks supporting these two functions overlap is still unclear. Here we used Activation Likelihood Estimation (ALE) to assess the correspondence between brain correlates of optic flow processing and spatial navigation and their specific neural activations. Since computational and connectivity evidence suggests that visual input from optic flow provides information mainly during egocentric navigation, we further tested the correspondence between brain correlates of optic flow processing and that of both egocentric and allocentric navigation. Optic flow processing shared activation with egocentric (but not allocentric) navigation in the anterior precuneus, suggesting its role in providing information about self-motion, as derived from the analysis of optic flow, in service of egocentric navigation. We further documented that optic flow perception and navigation are partially segregated into two functional and anatomical networks, i.e., the dorsal and the ventromedial networks. Present results point to a dynamic interplay between the dorsal and ventral visual pathways aimed at coordinating visually guided navigation in the environment.


Assuntos
Mapeamento Encefálico , Encéfalo , Fluxo Óptico , Navegação Espacial , Humanos , Fluxo Óptico/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Navegação Espacial/fisiologia , Mapeamento Encefálico/métodos , Neuroimagem/métodos , Vias Visuais/fisiologia , Vias Visuais/diagnóstico por imagem , Percepção Visual/fisiologia
7.
Hum Mov Sci ; 93: 103181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301342

RESUMO

Human balance control relies on various sensory modalities, and conflict of sensory input may result in postural instability. Virtual reality (VR) technology allows to train balance under conflicting sensory information by decoupling visual from somatosensory and vestibular systems, creating additional demands on sensory reweighting for balance control. However, there is no metric for the design of visual input manipulations that can induce persistent sensory conflicts to perturb balance. This limits the possibilities to generate sustained sensory reweighting processes and design well-defined training approaches. This study aimed to investigate the effects that different onset characteristics, amplitudes and velocities of visual input manipulations may have on balance control and their ability to create persistent balance responses. Twenty-four young adults were recruited for the study. The VR was provided using a state-of-the-art head-mounted display and balance was challenged in two experiments by rotations of the visual scene in the frontal plane with scaled constellations of trajectories, amplitudes and velocities. Mean center of pressure speed was recorded and revealed to be greater when the visual input manipulation had an abrupt onset compared to a smooth onset. Furthermore, the balance response was greatest and most persistent when stimulus velocity was low and stimulus amplitude was large. These findings show clear dissociation in the state of the postural system for abrupt and smooth visual manipulation onsets with no indication of short-term adaption to abrupt manipulations with slow stimulus velocity. This augments our understanding of how conflicting visual information affect balance responses and could help to optimize the conceptualization of training and rehabilitation interventions.


Assuntos
Transtornos dos Movimentos , Equilíbrio Postural , Adulto Jovem , Humanos , Equilíbrio Postural/fisiologia
8.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352563

RESUMO

The placenta is a transient organ critical for fetal development. Disruptions of normal placental functions can impact health throughout an individual's entire life. Although being recognized by the NIH Human Placenta Project as an important organ, the placenta remains understudied, partly because of a lack of non-invasive tools for longitudinally evaluation for key aspects of placental functionalities. Non-invasive imaging that can longitudinally probe murine placental health in vivo are critical to understanding placental development throughout pregnancy. We developed advanced imaging processing schemes to establish functional biomarkers for non-invasive longitudinal evaluation of placental development. We developed a dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) pipeline combined with advanced image process methods to model uterine contraction and placental perfusion dynamics. Our novel imaging pipeline uses subcutaneous administration of gadolinium for steepest-slope based perfusion evaluation. This enables non-invasive longitudinal monitoring. Additionally, we advance the placental perfusion chamber paradigm with a novel physiologically-based threshold model for chamber localization and demonstrate spatially varying placental chambers using multiple functional metrics that assess mouse placental development and continuing remodeling throughout gestation. Lastly, using optic flow to quantify placental motions arisen from uterine contractions in conjunction with time-frequency analysis, we demonstrated that the placenta exhibited asymmetric contractile motion.

9.
Elife ; 132024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436656

RESUMO

A map showing how neurons that process motion are wired together in the visual system of fruit flies provides new insights into how animals navigate and remain stable when flying.


Assuntos
Drosophila , Neurônios , Animais , Movimento (Física)
10.
Neuropsychologia ; 196: 108820, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336207

RESUMO

Stable visual perception, while we are moving, depends on complex interactions between multiple brain regions. We report a patient with damage to the right occipital and temporal lobes who presented with a visual disturbance of inward movement of roadside buildings towards the centre of his visual field, that occurred only when he moved forward on his motorbike. We describe this phenomenon as "self-motion induced environmental kinetopsia". Additionally, he was identified to have another illusion, in which objects displayed on the screen, appeared to pop out of the background. Here, we describe the clinical phenomena and the behavioural tasks specifically designed to document and measure this altered visual experience. Using the methods of lesion mapping and lesion network mapping we were able to demonstrate disrupted functional connectivity in the areas that process flow-parsing such as V3A and V6 that may underpin self-motion induced environmental kinetopsia. Moreover, we suggest that altered connectivity to the regions that process environmental frames of reference such as retrosplenial cortex (RSC) might explain the pop-out illusion. Our case adds novel and convergent lesion-based evidence to the role of these brain regions in visual processing.


Assuntos
Ilusões , Percepção de Movimento , Masculino , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa
11.
Iperception ; 14(6): 20416695231214439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38680843

RESUMO

Determining the velocities of target objects as we navigate complex environments is made more difficult by the fact that our own motion adds systematic motion signals to the visual scene. The flow-parsing hypothesis asserts that the background motion is subtracted from visual scenes in such cases as a way for the visual system to determine target motions relative to the scene. Here, we address the question of why backgrounds are only partially subtracted in lab settings. At the same time, we probe a much-neglected aspect of scene perception in flow-parsing studies, that is, the perception of the background itself. Here, we present results from three experienced psychophysical participants and one inexperienced participant who took part in three continuous psychophysics experiments. We show that, when the background optic flow pattern is composed of local elements whose motions are congruent with the global optic flow pattern, the incompleteness of the background subtraction can be entirely accounted for by a misperception of the background. When the local velocities comprising the background are randomly dispersed around the average global velocity, an additional factor is needed to explain the subtraction incompleteness. We show that a model where background perception is a result of the brain attempting to infer scene motion due to self-motion can account for these results.

12.
Iperception ; 14(5): 20416695231202726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38812612

RESUMO

The aims of this paper are twofold: first, to discuss and analyze the concept of binocular disparity and second, to contrast the traditional "air theory" of three-dimensional vision with the much older "ground theory," first suggested by Ibn al-Haytham more than a thousand years ago. The origins of an "air theory" of perception can be traced back to Descartes and subsequently to the philosopher George Berkeley, who claimed that distance "could not be seen" because points lying along the same line of sight (in an empty space) would all project to the same location on the retina. However, Descartes was also aware that the angle of convergence of the two eyes could solve the problem of the "missing" information for the monocular observer and, since then, most visual scientists have assumed that eye vergence plays an important role both in judging absolute distance and for scaling retinal size and binocular disparities. In contrast, al-Haytham's and Gibson's "ground theories," which are based on the geometry of the textured ground plane surface that has surrounded us throughout evolution and during our lifetimes, are not just more ecologically based but they also obviate the need for disparity scaling.

13.
Res. Biomed. Eng. (Online) ; 32(3): 274-282, July-Sept. 2016. graf
Artigo em Inglês | LILACS | ID: biblio-829480

RESUMO

Abstract Introduction In this work, the effect of a dynamic visual stimulation (DS) protocol was used to induce egomotion, the center of pressure (COP) displacement response. Methods DS was developed concerning the scenario structure (chessboard-pattern floor and furniture) and luminance. To move the scenario in a discrete forward (or backward) direction, the furniture is expanded (or reduced) and the black and white background is reversed during floor translation while the luminance is increased (or reduced) by steps of 2 cd/m2. This protocol was evaluated using COP signals from 29 healthy volunteers: standing on a force platform observing the virtual scene (1.72 × 1.16 m) projected 1 m ahead (visual incidence angle: θl = 81.4° and θv = 60.2°), which moves with constant velocity (2 m/s) during 250 ms. A set of 100 DS was applied in random order, interspersed by a 10 s of static scene. Results The Tukey post-hoc test (p < 0.001) indicated egomotion in the same direction of DS. COP displacement increased over stimulation (8.4 ± 1.7 to 22.6 ±5.3 mm), as well as time to recover stability (4.1 ± 0.4 to 7.2 ± 0.6 s). The peak of egomotion during DSF occurred 200 ms after DSB (Wilcoxon, p = 0.002). Conclusion The dynamic configuration of this protocol establishes virtual flow effects of linear egomotion dependent on the direction of the dynamic visual stimulation. This finding indicates the potential application of the proposed virtual dynamic stimulation protocol to investigate the cortical visual evoked response in postural control studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA