Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 337: 117749, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940603

RESUMO

Opal (SiO2·nH2O, amorphous silica), the by-product of alumina extraction from coal fly ash (CFA), has a strong adsorption capacity and is also an important component of clay minerals in soils. The combining of opal with sand to form artificial soils is an effective disposal strategy for large-scale CFA stockpiles and reduction of environmental risk. Nevertheless, its poor physical condition limits plant growth. Organic matter (OM) amendments have broad potential applications for water-holding and improving soil aggregation. Effects of OMs (vermicompost (VC), bagasse (BA), biochar (BC) and humic acid (HA)) on the formation, stability and pore characteristics of opal/sand aggregates were evaluated through 60-day laboratory incubation experiments. Results demonstrated that four OMs could reduce pH, with BC having the most significant effect, VC significantly increasing the electrical conductivity (EC) and TOC content of the aggregates. Except for HA, other OMs could improve the aggregates' water-holding capacity. The mean weight diameter (MWD) and percentage of >0.25 mm aggregates (R0.25) of BA-treated aggregates were the largest, and BA had the most noticeable contribution to macro-aggregate's formation. The best aggregate stability was obtained with HA treatment, meanwhile the percentage of aggregate destruction (PAD0.25) decreased with the addition of HA. After amendments, the proportion of organic functional groups increased, which favored aggregate's formation and stability; the surface pore characteristics were improved, with the porosity ranging from 70% to 75%, reaching the level of well-structured soil. Overall, the addition of VC and HA can effectively promote aggregates' formation and stabilization. This research may play a key role in converting CFA or opal into artificial soil. The combining of opal with sand to form artificial soil will not only solve the environmental problems caused by large-scale CFA stockpiles but will also enable the comprehensive utilization of siliceous materials in agriculture.


Assuntos
Areia , Dióxido de Silício , Solo/química , Água
2.
Chemosphere ; 271: 129536, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33445027

RESUMO

Dissolved organic matter (DOM) release from Cd contaminated soils been linked to mobilisation of the metal as Cd-DOM complexes and this may be exacerbated by organic matter-rich soil amendments. The quantity and quality of the DOM can determine the proportion of dissolved Cd that partitions to mobile complexes and their stability and, thus, the potential for Cd transport from contaminated soils. The aim of this work was to examine differences in Cd mobilisation from soils to which different types of soil amendments/conditioners have been applied and the importance of DOM characteristics in determining the extent to which this can happen. Three soils were spiked with Cd to 2 mg kg-1, allowed to equilibrate and then treated with compost and peat. These soils and an untreated subsample of each soil were then adjusted to three different pHs: 5.6, 6.4 and 7.4, using lime. The amount of Cd mobilised from each soil was tested using a column leaching experiment. Ultrafiltration and speciation modelling were used to determine amounts of Cd as DOM-complexed, "truly" dissolved (<5 kDa) and colloidal species, while DOM quality was assessed using UV-Vis and fluorescence spectroscopy. Most colloidal Cd was mobilised from the compost treated soils (50%-60%), followed by the peat treated soils (20-44%). The relationships between colloidal Cd, DOC concentration and soil pH, together with the spectroscopic and modelling results showed that structural properties of DOM are an important factor in mobilising Cd from contaminated soils.


Assuntos
Poluentes do Solo , Solo , Cádmio/análise , Poluição Ambiental , Metais , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA