Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(25): 6119-6137.e26, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34890551

RESUMO

Prognostically relevant RNA expression states exist in pancreatic ductal adenocarcinoma (PDAC), but our understanding of their drivers, stability, and relationship to therapeutic response is limited. To examine these attributes systematically, we profiled metastatic biopsies and matched organoid models at single-cell resolution. In vivo, we identify a new intermediate PDAC transcriptional cell state and uncover distinct site- and state-specific tumor microenvironments (TMEs). Benchmarking models against this reference map, we reveal strong culture-specific biases in cancer cell transcriptional state representation driven by altered TME signals. We restore expression state heterogeneity by adding back in vivo-relevant factors and show plasticity in culture models. Further, we prove that non-genetic modulation of cell state can strongly influence drug responses, uncovering state-specific vulnerabilities. This work provides a broadly applicable framework for aligning cell states across in vivo and ex vivo settings, identifying drivers of transcriptional plasticity and manipulating cell state to target associated vulnerabilities.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Célula Única
2.
Proc Natl Acad Sci U S A ; 119(30): e2122236119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858406

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. Neurological symptoms, which range in severity, accompany as many as one-third of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized stem-cell-derived cortical organoids as well as primary human cortical tissue, both from developmental and adult stages. We find significant and predominant infection in cortical astrocytes in both primary tissue and organoid cultures, with minimal infection of other cortical populations. Infected and bystander astrocytes have a corresponding increase in inflammatory gene expression, reactivity characteristics, increased cytokine and growth factor signaling, and cellular stress. Although human cortical cells, particularly astrocytes, have no observable ACE2 expression, we find high levels of coronavirus coreceptors in infected astrocytes, including CD147 and DPP4. Decreasing coreceptor abundance and activity reduces overall infection rate, and increasing expression is sufficient to promote infection. Thus, we find tropism of SARS-CoV-2 for human astrocytes resulting in inflammatory gliosis-type injury that is dependent on coronavirus coreceptors.


Assuntos
Astrócitos , Córtex Cerebral , SARS-CoV-2 , Tropismo Viral , Enzima de Conversão de Angiotensina 2/metabolismo , Astrócitos/enzimologia , Astrócitos/virologia , Córtex Cerebral/virologia , Humanos , Organoides/virologia , Cultura Primária de Células , SARS-CoV-2/fisiologia
3.
Development ; 148(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34142711

RESUMO

Axial elongation of the neural tube is crucial during mammalian embryogenesis for anterior-posterior body axis establishment and subsequent spinal cord development, but these processes cannot be interrogated directly in humans as they occur post-implantation. Here, we report an organoid model of neural tube extension derived from human pluripotent stem cell (hPSC) aggregates that have been caudalized with Wnt agonism, enabling them to recapitulate aspects of the morphological and temporal gene expression patterns of neural tube development. Elongating organoids consist largely of neuroepithelial compartments and contain TBXT+SOX2+ neuro-mesodermal progenitors in addition to PAX6+NES+ neural progenitors. A critical threshold of Wnt agonism stimulated singular axial extensions while maintaining multiple cell lineages, such that organoids displayed regionalized anterior-to-posterior HOX gene expression with hindbrain (HOXB1) regions spatially distinct from brachial (HOXC6) and thoracic (HOXB9) regions. CRISPR interference-mediated silencing of TBXT, a Wnt pathway target, increased neuroepithelial compartmentalization, abrogated HOX expression and disrupted uniaxial elongation. Together, these results demonstrate the potent capacity of caudalized hPSC organoids to undergo axial elongation in a manner that can be used to dissect the cellular organization and patterning decisions that dictate early human nervous system development.


Assuntos
Padronização Corporal , Tubo Neural/embriologia , Organogênese , Organoides , Padronização Corporal/efeitos dos fármacos , Diferenciação Celular , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mesoderma/embriologia , Mesoderma/metabolismo , Neurogênese/efeitos dos fármacos , Organogênese/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
4.
J Transl Med ; 22(1): 754, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135062

RESUMO

BACKGROUND: Organoids are approved by the US FDA as an alternative to animal experiments to guide drug development and for sensitivity screening. Stable organoids models of gastric cancer are desirable for personalized medicine and drug screening. METHODS: Tumor tissues from a primary cancer of the stomach and metastatic cancer of the lymph node were collected for 3D culture. By long-term culture for over 50 generations in vitro, we obtained stably growing organoid lines. We analyzed short tandem repeats (STRs) and karyotypes of cancer cells, and tumorigenesis of the organoids in nude mice, as well as multi-omics profiles of the organoids. A CCK8 method was used to determine the drugs sensitivity to fluorouracil (5-Fu), platinum and paclitaxel. RESULTS: Paired organoid lines from primary cancer (SPDO1P) and metastatic lymph node (SPDO1LM) were established with unique STRs and karyotypes. The organoid lines resulted in tumorigenesis in vivo and had clear genetic profiles. Compared to SPDO1P from primary cancer, upregulated genes of SPDO1LM from the metastatic lymph node were enriched in pathways of epithelial-mesenchymal transition and angiogenesis with stronger abilities of cell migration, invasion, and pro-angiogenesis. Based on drug sensitivity analysis, the SOX regimen (5-Fu plus oxaliplatin) was used for chemotherapy with an optimal clinical outcome. CONCLUSIONS: The organoid lines recapitulate the drug sensitivity of the parental tissues. The paired organoid lines present a step-change toward living biobanks for further translational usage.


Assuntos
Metástase Linfática , Camundongos Nus , Organoides , Medicina de Precisão , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Organoides/efeitos dos fármacos , Organoides/patologia , Humanos , Animais , Metástase Linfática/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Carcinogênese/patologia , Carcinogênese/genética , Carcinogênese/efeitos dos fármacos , Camundongos , Repetições de Microssatélites/genética
5.
Bioorg Chem ; 143: 107094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199139

RESUMO

Microtubule dynamics are critical for spindle assembly and chromosome segregation during cell division. Pharmacological inhibition of microtubule dynamics in cells causes prolonged mitotic arrest, resulting in apoptosis, an approach extensively employed in treating different types of cancers. The present study reports the synthesis of thirty-two novel bis-amides (SSE1901-SSE1932) and the evaluation of their antiproliferative activities. N-(1-oxo-3-phenyl-1-(phenylamino)propan-2-yl)benzamide (SSE1917) exhibited the most potent activity with GI50 values of 0.331 ± 0.01 µM in HCT116 colorectal and 0.48 ± 0.27 µM in BT-549 breast cancer cells. SSE1917 stabilized microtubules in biochemical and cellular assays, bound to taxol site in docking studies, and caused aberrant mitosis and G2/M arrest in cells. Prolonged treatment of cells with the compound increased p53 expression and triggered apoptotic cell death. Furthermore, SSE1917 suppressed the growth of both mouse and patient-derived human colon cancer organoids, highlighting its potential therapeutic value as an anticancer agent.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Tubulina (Proteína) , Animais , Humanos , Camundongos , Amidas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Microtúbulos/metabolismo , Mitose , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
6.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163210

RESUMO

Doxorubicin is widely used in the treatment of different cancers, and its side effects can be severe in many tissues, including the intestines. Symptoms such as diarrhoea and abdominal pain caused by intestinal inflammation lead to the interruption of chemotherapy. Nevertheless, the molecular mechanisms associated with doxorubicin intestinal toxicity have been poorly explored. This study aims to investigate such mechanisms by exposing 3D small intestine and colon organoids to doxorubicin and to evaluate transcriptomic responses in relation to viability and apoptosis as physiological endpoints. The in vitro concentrations and dosing regimens of doxorubicin were selected based on physiologically based pharmacokinetic model simulations of treatment regimens recommended for cancer patients. Cytotoxicity and cell morphology were evaluated as well as gene expression and biological pathways affected by doxorubicin. In both types of organoids, cell cycle, the p53 signalling pathway, and oxidative stress were the most affected pathways. However, significant differences between colon and SI organoids were evident, particularly in essential metabolic pathways. Short time-series expression miner was used to further explore temporal changes in gene profiles, which identified distinct tissue responses. Finally, in silico proteomics revealed important proteins involved in doxorubicin metabolism and cellular processes that were in line with the transcriptomic responses, including cell cycle and senescence, transport of molecules, and mitochondria impairment. This study provides new insight into doxorubicin-induced effects on the gene expression levels in the intestines. Currently, we are exploring the potential use of these data in establishing quantitative systems toxicology models for the prediction of drug-induced gastrointestinal toxicity.


Assuntos
Doxorrubicina/toxicidade , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Colo/efeitos dos fármacos , Doxorrubicina/farmacologia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Intestino Delgado/efeitos dos fármacos , Modelos Biológicos , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Proteômica , Transcriptoma/genética
7.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614047

RESUMO

Neurodegenerative diseases have acquired the status of one of the leading causes of death in developed countries, which requires creating new model systems capable of accurately reproducing the mechanisms underlying these pathologies. Here we analyzed modern model systems and their contribution to the solution of unexplored manifestations of neuropathological processes. Each model has unique properties that make it the optimal tool for modeling certain aspects of neurodegenerative disorders. We concluded that to optimize research, it is necessary to combine models into complexes that include organisms and artificial systems of different organizational levels. Such complexes can be organized in two ways. The first method can be described as "step by step", where each model for studying a certain characteristic is a separate step that allows using the information obtained in the modeling process for the gradual study of increasingly complex processes in subsequent models. The second way is a 'network' approach. Studies are carried out with several types of models simultaneously, and experiments with each specific type are adjusted in conformity with the data obtained from other models. In our opinion, the 'network' approach to combining individual model systems seems more promising for fundamental biology as well as diagnostics and therapy.


Assuntos
Doenças Neurodegenerativas , Humanos , Modelos Biológicos
8.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361956

RESUMO

In vitro models of corticogenesis from pluripotent stem cells (PSCs) have greatly improved our understanding of human brain development and disease. Among these, 3D cortical organoid systems are able to recapitulate some aspects of in vivo cytoarchitecture of the developing cortex. Here, we tested three cortical organoid protocols for brain regional identity, cell type specificity and neuronal maturation. Overall, all protocols gave rise to organoids that displayed a time-dependent expression of neuronal maturation genes such as those involved in the establishment of synapses and neuronal function. Comparatively, guided differentiation methods without WNT activation generated the highest degree of cortical regional identity, whereas default conditions produced the broadest range of cell types such as neurons, astrocytes and hematopoietic-lineage-derived microglia cells. These results suggest that cortical organoid models produce diverse outcomes of brain regional identity and cell type specificity and emphasize the importance of selecting the correct model for the right application.


Assuntos
Organoides , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Neurônios/metabolismo , Encéfalo
9.
Arch Toxicol ; 95(8): 2691-2718, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34151400

RESUMO

5-Fluorouracil (5-FU) is a widely used chemotherapeutical that induces acute toxicity in the small and large intestine of patients. Symptoms can be severe and lead to the interruption of cancer treatments. However, there is limited understanding of the molecular mechanisms underlying 5-FU-induced intestinal toxicity. In this study, well-established 3D organoid models of human colon and small intestine (SI) were used to characterize 5-FU transcriptomic and metabolomic responses. Clinically relevant 5-FU concentrations for in vitro testing in organoids were established using physiologically based pharmacokinetic simulation of dosing regimens recommended for cancer patients, resulting in exposures to 10, 100 and 1000 µM. After treatment, different measurements were performed: cell viability and apoptosis; image analysis of cell morphological changes; RNA sequencing; and metabolome analysis of supernatant from organoids cultures. Based on analysis of the differentially expressed genes, the most prominent molecular pathways affected by 5-FU included cell cycle, p53 signalling, mitochondrial ATP synthesis and apoptosis. Short time-series expression miner demonstrated tissue-specific mechanisms affected by 5-FU, namely biosynthesis and transport of small molecules, and mRNA translation for colon; cell signalling mediated by Rho GTPases and fork-head box transcription factors for SI. Metabolomic analysis showed that in addition to the effects on TCA cycle and oxidative stress in both organoids, tissue-specific metabolic alterations were also induced by 5-FU. Multi-omics integration identified transcription factor E2F1, a regulator of cell cycle and apoptosis, as the best key node across all samples. These results provide new insights into 5-FU toxicity mechanisms and underline the relevance of human organoid models in the safety assessment in drug development.


Assuntos
Colo/efeitos dos fármacos , Fluoruracila/toxicidade , Intestino Delgado/efeitos dos fármacos , Modelos Biológicos , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colo/patologia , Relação Dose-Resposta a Droga , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/farmacocinética , Humanos , Intestino Delgado/patologia , Masculino , Metabolômica , Organoides/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transcriptoma
10.
Gut ; 69(12): 2165-2179, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32217638

RESUMO

OBJECTIVE: Sporadic early-onset colorectal cancer (EOCRC) has bad prognosis, yet is poorly represented by cell line models. We examine the key mutational and transcriptomic alterations in an organoid biobank enriched in EOCRCs. DESIGN: We established paired cancer (n=32) and normal organoids (n=18) from 20 patients enriched in microsatellite-stable EOCRC. Exome and transcriptome analysis was performed. RESULTS: We observed a striking diversity of molecular phenotypes, including PTPRK-RSPO3 fusions. Transcriptionally, RSPO fusion organoids resembled normal colon organoids and were distinct from APC mutant organoids, with high BMP2 and low PTK7 expression. Single cell transcriptome analysis confirmed the similarity between RSPO fusion organoids and normal organoids, with a propensity for maturation on Wnt withdrawal, whereas the APC mutant organoids were locked in progenitor stages. CRISPR/Cas9 engineered mutation of APC in normal human colon organoids led to upregulation of PTK7 protein and suppression of BMP2, but less so with an engineered RNF43 mutation. The frequent co-occurrence of RSPO fusions with SMAD4 or BMPR1A mutation was confirmed in TCGA database searches. RNF43 mutation was found in organoid from a leukaemia survivor with a novel mutational signature; and organoids with POLE proofreading mutation displayed ultramutation. The cancer organoid genomes were stable over long culture periods, while normal human colon organoids tended to be subject to clonal dominance over time. CONCLUSIONS: These organoid models enriched in EOCRCs with linked genomic data fill a gap in existing CRC models and reveal distinct genetic profiles and novel pathway cooperativity.


Assuntos
Neoplasias Colorretais/genética , Perfil Genético , Organoides/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Proteína Morfogenética Óssea 2/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Sistemas CRISPR-Cas , Moléculas de Adesão Celular/genética , Perfilação da Expressão Gênica , Fusão Gênica , Humanos , Modelos Genéticos , Mutação , Receptores Proteína Tirosina Quinases/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteína Smad4/genética , Trombospondinas/genética , Bancos de Tecidos , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Sequenciamento do Exoma
11.
Gynecol Oncol ; 157(3): 783-792, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32253045

RESUMO

OBJECTIVE: Cancer patient-derived organoids (PDOs) grow as three dimensional (3D) structures in the presence of extracellular matrix and have been found to represent the original tumor's genetic complexity. In addition, PDOs can be grown and subjected to drug sensitivity testing in a shorter time course and with lesser expense than patient-derived xenograft models. Many patients with recurrent ovarian cancer develop malignant effusions that become refractory to chemotherapy. Since these same patients often present for palliative aspiration of ascites or pleural effusions, there is a potential opportunity to obtain tumor specimens in the form of multicellular spheroids (MCS) present in malignant effusion fluids. Our objective was to develop a short duration culture of MCS from ovarian cancer malignant effusions in conditions selected to support organoid growth and use them as a platform for empirical drug sensitivity testing. METHODS: In this study, malignant effusion specimens were collected from patients with high-grade serous ovarian carcinoma (HGSOC). MCS were recovered and subjected to culture conditions designed to support organoid growth. In a subset of specimens, RNA-sequencing was performed at two time points during the short-term culture to determine changes in transcriptome in response to culture conditions. Organoid induction was also characterized in these specimens using Ki67 staining and histologic analysis. Drug sensitivity testing was performed on all specimens. RESULTS: Our model describes organoids formed within days of primary culture, which can recapitulate the histological features of malignant ascites fluid and can be expanded for at least 6 days. RNA-seq analysis of four patient specimens showed that within 6 days of culture, there was significant up-regulation of genes related to cellular proliferation, epithelial-mesenchymal transition, and KRAS signaling pathways. Drug sensitivity testing identified several agents with therapeutic potential. CONCLUSIONS: Short duration organoid culture of MCS from HGSOC malignant effusions can be used as a platform for empiric drug sensitivity testing. These ex vivo models may be helpful in screening new or existing therapeutic agents prior to individualized treatment options.


Assuntos
Cistadenoma Seroso/patologia , Técnicas de Cultura de Órgãos/métodos , Organoides/fisiopatologia , Idoso , Cistadenoma Seroso/tratamento farmacológico , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
12.
Water Res ; 249: 121007, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096726

RESUMO

Polybrominated diphenyl ethers (PBDEs) serve as brominated flame retardants which continue to receive considerable attention because of their persistence, bioaccumulation, and potential toxicity. Although PBDEs have been restricted and phased out, large amounts of commercial products containing PBDEs are still in use and discarded annually. Consequently, PBDEs added to products can be released into our surrounding environments, particularly in aquatic systems, thus posing great risks to human health. Many studies and reviews have described the possible toxic effects of PBDEs, while few studies have comprehensively summarized and analyzed the global trends of their toxicity assessment. Therefore, this study utilizes bibliometrics to evaluate the worldwide scientific output of PBDE toxicity and analyze the hotspots and future trends of this field. Firstly, the basic information including the most contributing countries/institutions, journals, co-citations, influential authors, and keywords involved in PBDE toxicity assessment will be visualized. Subsequently, the potential toxicity of PBDE exposure to diverse systems, such as endocrine, reproductive, neural, and gastrointestinal tract systems, and related toxic mechanisms will be discussed. Finally, we conclude this review by outlining the current challenges and future perspectives in environmentally relevant PBDE exposure, potential carriers for PBDE transport, the fate of PBDEs in the environment and human bodies, advanced stem cell-derived organoid models for toxicity assessment, and promising omics technologies for obtaining toxic mechanisms. This review is expected to offer systematical insights into PBDE toxicity assessments and facilitate the development of PBDE-based research.


Assuntos
Retardadores de Chama , Éteres Difenil Halogenados , Humanos , Éteres Difenil Halogenados/toxicidade , Retardadores de Chama/toxicidade
13.
Stem Cell Rev Rep ; 20(6): 1441-1458, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38758462

RESUMO

Organoid models have recently been utilized to study 3D human-derived tissue systems to uncover tissue architecture and adult stem cell biology. Patient-derived organoids unambiguously provide the most suitable in vitro system to study disease biology with the actual genetic background. With the advent of much improved and innovative approaches, patient-derived organoids can potentially be used in regenerative medicine. Various human tissues were explored to develop organoids due to their multifold advantage over the conventional in vitro cell line culture approach and in vivo models. Gastrointestinal (GI) tissues have been widely studied to establish organoids and organ-on-chip for screening drugs, nutraceuticals, and other small molecules having therapeutic potential. The function of channel proteins, transporters, and transmembrane proteins was also explained. The successful application of genome editing in organoids using the CRISPR-Cas approach has been reported recently. GI diseases such as Celiac disease (CeD), Inflammatory bowel disease (IBD), and common GI cancers have been investigated using several patient-derived organoid models. Recent advancements on organoid bio-banking and 3D bio-printing contributed significantly in personalized disease management and therapeutics. This article reviews the available literature on investigations and translational applications of patient-derived GI organoid models, notably on elucidating gut-microbial interaction and epigenetic modifications.


Assuntos
Gastroenteropatias , Organoides , Humanos , Organoides/metabolismo , Gastroenteropatias/patologia , Gastroenteropatias/terapia , Gastroenteropatias/metabolismo , Pesquisa Translacional Biomédica , Animais , Pesquisa Biomédica , Edição de Genes/métodos , Modelos Biológicos
14.
Life Sci ; 352: 122873, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950643

RESUMO

Sepsis-induced acute kidney injury (S-AKI) is one of the most serious life-threatening complications of sepsis. The pathogenesis of S-AKI is complex and there is no effective specific treatment. Therefore, it is crucial to choose suitable preclinical models that are highly similar to human S-AKI to study the pathogenesis and drug treatment. In this review, we summarized recent advances in the development models of S-AKI, providing reference for the reasonable selection of experimental models as basic research and drug development of S-AKI.


Assuntos
Injúria Renal Aguda , Modelos Animais de Doenças , Sepse , Injúria Renal Aguda/etiologia , Sepse/complicações , Animais , Humanos
15.
Cell Rep Methods ; 4(1): 100686, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38218190

RESUMO

Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.


Assuntos
Córtex Cerebral , Neurônios , Neurônios/fisiologia , Organoides/fisiologia , Encéfalo , Neurotransmissores
16.
Pathogens ; 13(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39057782

RESUMO

Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.

17.
Biomater Res ; 27(1): 18, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36855173

RESUMO

BACKGROUND: Natural products can serve as one of the alternatives, exhibiting high potential for the treatment and prevention of COVID-19, caused by SARS-CoV-2. Herein, we report a screening platform to test the antiviral efficacy of a natural product library against SARS-CoV-2 and verify their activity using lung organoids. METHODS: Since SARS-CoV-2 is classified as a risk group 3 pathogen, the drug screening assay must be performed in a biosafety level 3 (BSL-3) laboratory. To circumvent this limitation, pseudotyped viruses (PVs) have been developed as replacements for the live SARS-CoV-2. We developed PVs containing spikes from Delta and Omicron variants of SARS-CoV-2 and improved the infection in an angiotensin-converting enzyme 2 (ACE2)-dependent manner. Human induced pluripotent stem cells (hiPSCs) derived lung organoids were generated to test the SARS-CoV-2 therapeutic efficacy of natural products. RESULTS: Flavonoids from our natural product library had strong antiviral activity against the Delta- or Omicron-spike-containing PVs without affecting cell viability. We aimed to develop strategies to discover the dual function of either inhibiting infection at the beginning of the infection cycle or reducing spike stability following SARS-CoV-2 infection. When lung cells are already infected with the virus, the active flavonoids induced the degradation of the spike protein and exerted anti-inflammatory effects. Further experiments confirmed that the active flavonoids had strong antiviral activity in lung organoid models. CONCLUSION: This screening platform will open new paths by providing a promising standard system for discovering novel drug leads against SARS-CoV-2 and help develop promising candidates for clinical investigation as potential therapeutics for COVID-19.

18.
bioRxiv ; 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37333351

RESUMO

Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.

19.
Int J Pharm ; 644: 123313, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37579828

RESUMO

Rapid development of tissue engineering in recent years has increased the importance of three-dimensional (3D) bioprinting technology as novel strategy for fabrication functional 3D tissue and organoid models for pharmaceutical research. 3D bioprinting technology gives hope for eliminating many problems associated with traditional cell culture methods during drug screening. However, there is a still long way to wider clinical application of this technology due to the numerous difficulties associated with development of bioinks, advanced printers and in-depth understanding of human tissue architecture. In this review, the work associated with relatively well-known extrusion-based bioprinting (EBB), jetting-based bioprinting (JBB), and vat photopolymerization bioprinting (VPB) is presented and discussed with the latest advances and limitations in this field. Next we discuss state-of-the-art research of 3D bioprinted in vitro models including liver, kidney, lung, heart, intestines, eye, skin as well as neural and bone tissue that have potential applications in the development of new drugs.


Assuntos
Bioimpressão , Pesquisa Farmacêutica , Humanos , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Tecnologia , Organoides , Alicerces Teciduais
20.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188913, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182666

RESUMO

Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Transdução de Sinais , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA