Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Photosynth Res ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37751034

RESUMO

Flash-induced absorption changes in the Soret region arising from the [PD1PD2]+ state, the chlorophyll cation radical formed upon light excitation of Photosystem II (PSII), were measured in Mn-depleted PSII cores at pH 8.6. Under these conditions, TyrD is i) reduced before the first flash, and ii) oxidized before subsequent flashes. In wild-type PSII, when TyrD● is present, an additional signal in the [PD1PD2]+-minus-[PD1PD2] difference spectrum was observed when compared to the first flash when TyrD is not oxidized. The additional feature was "W-shaped" with troughs at 434 nm and 446 nm. This feature was absent when TyrD was reduced, but was present (i) when TyrD was physically absent (and replaced by phenylalanine) or (ii) when its H-bonding histidine (D2-His189) was physically absent (replaced by a Leucine). Thus, the simple difference spectrum without the double trough feature at 434 nm and 446 nm, seemed to require the native structural environment around the reduced TyrD and its H bonding partners to be present. We found no evidence of involvement of PD1, ChlD1, PheD1, PheD2, TyrZ, and the Cytb559 heme in the W-shaped difference spectrum. However, the use of a mutant of the PD2 axial His ligand, the D2-His197Ala, shows that the PD2 environment seems involved in the formation of "W-shaped" signal.

2.
Proc Natl Acad Sci U S A ; 117(28): 16373-16382, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601233

RESUMO

In photosynthetic reaction centers from purple bacteria (PbRC) and the water-oxidizing enzyme, photosystem II (PSII), charge separation occurs along one of the two symmetrical electron-transfer branches. Here we report the microscopic origin of the unidirectional charge separation, fully considering electron-hole interaction, electronic coupling of the pigments, and electrostatic interaction with the polarizable entire protein environments. The electronic coupling between the pair of bacteriochlorophylls is large in PbRC, forming a delocalized excited state with the lowest excitation energy (i.e., the special pair). The charge-separated state in the active branch is stabilized by uncharged polar residues in the transmembrane region and charged residues on the cytochrome c2 binding surface. In contrast, the accessory chlorophyll in the D1 protein (ChlD1) has the lowest excitation energy in PSII. The charge-separated state involves ChlD1•+ and is stabilized predominantly by charged residues near the Mn4CaO5 cluster and the proceeding proton-transfer pathway. It seems likely that the acquirement of water-splitting ability makes ChlD1 the initial electron donor in PSII.


Assuntos
Elétrons , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Água/metabolismo , Aminoácidos , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Transporte de Elétrons , Oxigênio/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteobactérias/metabolismo , Água/química
3.
Photosynth Res ; 152(2): 213-234, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35290567

RESUMO

The photoexcited triplet state of the "primary donors" in the two photosystems of oxygenic photosynthesis has been investigated by means of electron-nuclear double resonance (ENDOR) at Q-band (34 GHz). The data obtained represent the first set of 1H hyperfine coupling tensors of the 3P700 triplet state in PSI and expand the existing data set for 3P680. We achieved an extensive assignment of the observed electron-nuclear hyperfine coupling constants (hfcs) corresponding to the methine α-protons and the methyl group ß-protons of the chlorophyll (Chl) macrocycle. The data clearly confirm that in both photosystems the primary donor triplet is located on one specific monomeric Chl at cryogenic temperature. In comparison to previous transient ENDOR and pulse ENDOR experiments at standard X-band (9-10 GHz), the pulse Q-band ENDOR spectra demonstrate both improved signal-to-noise ratio and increased resolution. The observed ENDOR spectra for 3P700 and 3P680 differ in terms of the intensity loss of lines from specific methyl group protons, which is explained by hindered methyl group rotation produced by binding site effects. Contact analysis of the methyl groups in the PSI crystal structure in combination with the ENDOR analysis of 3P700 suggests that the triplet is located on the Chl a' (PA) in PSI. The results also provide additional evidence for the localization of 3P680 on the accessory ChlD1 in PSII.


Assuntos
Complexo de Proteína do Fotossistema I , Prótons , Clorofila A , Espectroscopia de Ressonância de Spin Eletrônica , Fotossíntese
4.
Photosynth Res ; 142(2): 229-240, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31302832

RESUMO

Mitochondria-targeted antioxidants (also known as 'Skulachev Ions' electrophoretically accumulated by mitochondria) exert anti-ageing and ROS-protecting effects well documented in animal and human cells. However, their effects on chloroplast in photosynthetic cells and corresponding mechanisms are scarcely known. For the first time, we describe a dramatic quenching effect of (10-(6-plastoquinonyl)decyl triphenylphosphonium (SkQ1) on chlorophyll fluorescence, apparently mediated by redox interaction of SkQ1 with Mn cluster in Photosystem II (PSII) of chlorophyte microalga Chlorella vulgaris and disabling the oxygen-evolving complex (OEC). Microalgal cells displayed a vigorous uptake of SkQ1 which internal concentration built up to a very high level. Using optical and EPR spectroscopy, as well as electron donors and in silico molecular simulation techniques, we found that SkQ1 molecule can interact with Mn atoms of the OEC in PSII. This stops water splitting giving rise to potent quencher(s), e.g. oxidized reaction centre of PSII. Other components of the photosynthetic apparatus proved to be mostly intact. This effect of the Skulachev ions might help to develop in vivo models of photosynthetic cells with impaired OEC function but essentially intact otherwise. The observed phenomenon suggests that SkQ1 can be applied to study stress-induced damages to OEC in photosynthetic organisms.


Assuntos
Antioxidantes/metabolismo , Manganês/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Cátions , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/metabolismo , Clorofila/metabolismo , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Cinética , Luz , Simulação de Acoplamento Molecular , Oxigênio/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia
5.
Photosynth Res ; 136(1): 1-16, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28921410

RESUMO

Vyacheslav Vasilevich (V.V.) Klimov (or Slava, as most of us called him) was born on January 12, 1945 and passed away on May 9, 2017. He began his scientific career at the Bach Institute of Biochemistry of the USSR Academy of Sciences (Akademy Nauk (AN) SSSR), Moscow, Russia, and then, he was associated with the Institute of Photosynthesis, Pushchino, Moscow Region, for about 50 years. He worked in the field of biochemistry and biophysics of photosynthesis. He is known for his studies on the molecular organization of photosystem II (PSII). He was an eminent scientist in the field of photobiology, a well-respected professor, and, above all, an outstanding researcher. Further, he was one of the founding members of the Institute of Photosynthesis in Pushchino, Russia. To most, Slava Klimov was a great human being. He was one of the pioneers of research on the understanding of the mechanism of light energy conversion and of water oxidation in photosynthesis. Slava had many collaborations all over the world, and he is (and will be) very much missed by the scientific community and friends in Russia as well as around the World. We present here a brief biography and some comments on his research in photosynthesis. We remember him as a friendly and enthusiastic person who had an unflagging curiosity and energy to conduct outstanding research in many aspects of photosynthesis, especially that related to PSII.


Assuntos
Bioquímica/história , Biofísica/história , História do Século XX , História do Século XXI , Humanos
6.
Biochim Biophys Acta ; 1857(12): 1943-1948, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27705821

RESUMO

Two mutants, D1-H198Q and D1-H198A, have been previously constructed in Thermosynechococcus elongatus with the aim at modifying the redox potential of the P680•+/P680 couple by changing the axial ligand of PD1, one the two chlorophylls of the Photosystem II primary electron donor [Sugiura et al., Biochim. Biophys. Acta 1777 (2008) 331-342]. However, after the publication of this work it was pointed out to us by Dr. Eberhard Schlodder (Technische Universität Berlin) that in both mutants the pheophytin band shift which is observed upon the reduction of QA was centered at 544nm instead of 547nm, clearly showing that the D1 protein corresponded to PsbA1 whereas the mutants were supposedly constructed in the psbA3 gene so that the conclusions in our previous paper were wrong. O2 evolving mutants have been therefore reconstructed and their analyze shows that they are now correct mutants which are suitable for further studies. Indeed, the D1-H198Q mutation downshifted by ≈3nm the P680•+/P680 difference absorption spectrum in the Soret region and increased the redox potential of the P680•+/P680 couple and the D1-H198A mutation decreased the redox potential of the P680•+/P680 couple all these effects being comparable to those which were observed in Synechocystis sp. PCC 6803 [Diner et al., Biochemistry 40 (2001) 9265-9281 and Merry et al. Biochemistry 37 (1998) 17,439-17,447]. We apologize for having presented wrong data and wrong conclusions in our earlier publication.

7.
Biochim Biophys Acta ; 1847(10): 1283-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26188376

RESUMO

The photo-induced oxidation of TyrZ and TyrD by P680(•+), that involves both electron and proton transfer (PCET), has been studied in oxygen-evolving photosystem II from Thermosynechococcus elongatus. We used time-resolved absorption spectroscopy to measure the kinetics of P680(•+) reduction by tyrosine after the first flash given to dark-adapted PS II as a function of temperature and pH. The half-life of TyrZ oxidation by P680(•+) increases from 20ns at 300K to about 4µs at 150K. Analyzing the temperature dependence of the rate, one obtains a reorganization energy of about 770meV. Between 260K and 150K, the reduction of P680(•+) by TyrZ is increasingly replaced by charge recombination between P680(•+) and QA(•-). We propose that the driving force for TyrZ oxidation by P680(•+) decreases upon lowering the temperature. TyrZ oxidation cannot be excluded in a minority of PS II complexes at cryogenic temperatures. TyrD oxidation by P680(•+) with a half-life of about 30ns was observed at high pH. The pH dependence of the yield of TyrD oxidation can be described by a single protonable group with a pK of approximately 8.4. The rate of TyrD oxidation by P680(•+) is virtually identical upon substitution of solvent exchangeable protons with deuterons indicating that the rate is limited by electron transfer. The rate is independent of temperature between 5K and 250K. It is concluded that TyrD donates the electron to P680(•+) via PD2.

8.
Biochim Biophys Acta ; 1837(9): 1384-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24513193

RESUMO

Under physiological conditions (278 K) femtosecond pump-probe laser spectroscopy with 20-fs time resolution was applied to study primary charge separation in spinach photosystem II (PSII) core complexes excited at 710 nm. It was shown that initial formation of anion radical band of pheophytin molecule (Pheo⁻) at 460 nm is observed with rise time of ~11ps. The kinetics of the observed rise was ascribed to charge separation between Chl (chlorophyll a) dimer, primary electron donor in PSII (P680*) and Pheo located in D1 protein subunit (PheoD1) absorbing at 420 nm, 545 nm and 680 nm with formation of the ion-radical pair P680⁺PheoDI⁻. The subsequent electron transfer from Pheo(D1)⁻ to primary plastoquinone electron acceptor (Q(A)) was accompanied by relaxation of the 460-nm band and occurred within ~250 ps in good agreement with previous measurements in Photosystem II-enriched particles and bacterial reaction centers. The subtraction of the P680⁺ spectrum measured at 455 ps delay from the spectra at 23 ps or 44 ps delay reveals the spectrum of Pheo(DI)⁻, which is very similar to that measured earlier by accumulation method. The spectrum of Pheo(DI)⁻ formation includes a bleaching (or red shift) of the 670 nm band indicating that Chl-670 is close to Pheo(D1). According to previous measurements in the femtosecond-picosecond time range this Chl-670 was ascribed to Chl(D1) [Shelaev, Gostev, Vishnev, Shkuropatov, Ptushenko, Mamedov, Sarkisov, Nadtochenko, Semenov and Shuvalov, J. Photochemistry and Photobiology, B: Biology 104 (2011) 45-50]. Stimulated emission at 685 nm was found to have two decaying components with time constants of ~1ps and ~14ps. These components appear to reflect formation of P680⁺Chl(D1)⁻ and P680⁺Pheo(D1)⁻, respectively, as found earlier. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.


Assuntos
Complexo de Proteína do Fotossistema II/química , Clorofila/química , Clorofila A , Radicais Livres
9.
Biochim Biophys Acta ; 1837(1): 139-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24060528

RESUMO

In Photosystem II (PSII) of the cyanobacterium Thermosynechococcus elongatus, glutamate 130 in the high-light variant of the D1-subunit (PsbA3) was changed to glutamine in a strain lacking the two other genes for D1, psbA1 and psbA2. The resulting PSII (PsbA3/Glu130Gln) was compared with those from the "native" high-light (PsbA3-PSII) and low-light (PsbA1-PSII) variants, which differ by 21 amino acid including Glu130Gln. H-bonding from D1-Glu130Gln to the primary electron acceptor, PheophytinD1 (PheoD1), is known to affect the Em of the PheoD1/PheoD1(-) couple. The Gln130 mutation here had little effect on water splitting, charge accumulation and photosensitivity but did slow down S2QA(-) charge recombination and up-shift the thermoluminescence while increasing its yield. These changes were consistent with a ≈-30mV shift of the PheoD1/PheoD1(-)Em, similar to earlier single site-mutation results from other species and double the ≈-17mV shift seen for PsbA1-PSII versus PsbA3-PSII. This is attributed to the influence of the other 20 amino-acids that differ in PsbA3. A computational model for simulating S2QA(-) recombination matched the experimental trend: the S2QA(-) recombination rate in PsbA1-PSII differed only slightly from that in PsbA3-PSII, while in Glu130-PsbA3-PSII there was a more pronounced slowdown of the radical pair decay. The simulation predicted a major effect of the PheoD1/PheoD1(-) potential on (1)O2 yield (~60% in PsbA1-PSII, ~20% in PsbA3-PSII and ~7% in Gln130-PsbA3-PSII), reflecting differential sensitivities to high light.


Assuntos
Cianobactérias/química , Feofitinas/química , Complexo de Proteína do Fotossistema II/química , Cianobactérias/metabolismo , Transporte de Elétrons , Ácido Glutâmico/genética , Glutamina/genética , Luz , Mutação , Oxirredução , Feofitinas/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo
10.
Biochim Biophys Acta ; 1837(1): 14-32, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23978393

RESUMO

Water is clearly important for the functioning of Photosystem II (PSII). Apart from being the very substrate that needs to be transported in this water oxidation enzyme, water is also vital for the transport of protons to and from the catalytic center as well as other important co-factors and key residues in the enzyme. The latest crystal structural data of PSII have enabled detailed analyses of the location and possible function of water molecules in the enzyme. Significant progress has also been made recently in the investigation of channels and pathways through the protein complex. Through these studies, the mechanistic significance of water for PSII is becoming increasingly clear. An overview and discussion of key aspects of the current research on water in PSII is presented here. The role of water in three other systems (aquaporin, bacteriorhodopsin and cytochrome P450) is also outlined to illustrate further points concerning the central significance that water can have, and potential applications of these ideas for continued research on PSII. It is advocated that water be seen as an integral part of the protein and far from a mere solvent.


Assuntos
Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Prótons , Água/química , Transporte de Elétrons , Cinética , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Oxigênio/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA