Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 736: 150503, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39121669

RESUMO

BACKGROUND: Psoriasis is a chronic inflammatory skin disease characterized by a complex pathogenesis involving various types of cells and cytokines. Among those, the pro-inflammatory cytokine IL-23/IL-17A axis plays a crucial role in the development and rapid progression of psoriasis. Phenformin, a derivative of metformin and a member of the biguanide class of drugs, exhibits superior anti-inflammatory and anti-tumor efficacy compared to metformin. However, the potential role of phenformin in anti-psoriatic skin inflammation has not been explored. METHODS: In this study, we utilized a mouse model of psoriasis and an in vitro model using human keratinocytes to investigate whether phenformin can suppress psoriasis-like inflammatory responses. RESULTS: Our results demonstrate that the topical application of phenformin significantly inhibited acute skin inflammatory responses in the psoriasis mouse model induced by imiquimod (IMQ). Additionally, phenformin suppressed the expression of psoriasis-related cytokines IL-17, IL-23, IL-8, and S100A8/S100A9 in an in vitro psoriatic keratinocyte model induced by IMQ. Furthermore, we found that IMQ-induced psoriatic skin and IMQ-treated keratinocytes exhibited high expression of the c-Myc gene, which was downregulated by phenformin. The c-Myc inhibitor JQ1 similarly inhibited the psoriatic inflammatory response and the expression of psoriasis-related cytokines in both in vitro and in vivo models. CONCLUSION: phenformin ameliorates the psoriasis-like inflammatory response by inhibiting c-Myc expression in keratinocytes, suggesting its potential as a topical drug for the treatment of psoriasis.

2.
Invest New Drugs ; 40(3): 576-585, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35015172

RESUMO

BACKGROUND: Myeloproliferative neoplasms (MPN) are disorders characterized by an alteration at the hematopoietic stem cell (HSC) level, where the JAK2 mutation is the most common genetic alteration found in classic MPN (polycythemia vera, essential thrombocythemia, and primary myelofibrosis). We and others previously demonstrated that metformin reduced splenomegaly and platelets counts in peripheral blood in JAK2V617F pre-clinical MPN models, which highlighted the antineoplastic potential of biguanides for MPN treatment. Phenformin is a biguanide that has been used to treat diabetes, but was withdrawn due to its potential to cause lactic acidosis in patients. AIMS: We herein aimed to investigate the effects of phenformin in MPN disease burden and stem cell function in Jak2V617F-knockin MPN mice. RESULTS: In vitro phenformin treatment reduced cell viability and increased apoptosis in SET2 JAK2V67F cells. Long-term treatment with 40 mg/kg phenformin in Jak2V617F knockin mice increased the frequency of LSK, myeloid progenitors (MP), and multipotent progenitors (MPP) in the bone marrow. Phenformin treatment did not affect peripheral blood counts, spleen weight, megakaryocyte count, erythroid precursors frequency, or ex vivo clonogenic capacity. Ex vivo treatment of bone marrow cells from Jak2V617F knockin mice with phenformin did not affect hematologic parameters or engraftment in recipient mice. CONCLUSIONS: Phenformin increased the percentages of LSK, MP, and MPP populations, but did not reduce disease burden in Jak2V617F-knockin mice. Additional studies are necessary to further understand the effects of phenformin on early hematopoietic progenitors.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Animais , Medula Óssea , Modelos Animais de Doenças , Humanos , Janus Quinase 2 , Camundongos , Mutação , Transtornos Mieloproliferativos/tratamento farmacológico , Fenformin/farmacologia , Fenformin/uso terapêutico , Policitemia Vera/genética
3.
Pharmacol Res ; 164: 105390, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33352227

RESUMO

Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.


Assuntos
Hipoglicemiantes/farmacologia , Metformina/farmacologia , MicroRNAs , Neovascularização Patológica/genética , Animais , Reposicionamento de Medicamentos , Humanos
4.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502402

RESUMO

Microglial functioning depends on Ca2+ signaling. By using Ca2+ sensitive fluorescence dye, we studied how inhibition of mitochondrial respiration changed spontaneous Ca2+ signals in soma of microglial cells from 5-7-day-old rats grown under normoxic and mild-hypoxic conditions. In microglia under normoxic conditions, metformin or rotenone elevated the rate and the amplitude of Ca2+ signals 10-15 min after drug application. Addition of cyclosporin A, a blocker of mitochondrial permeability transition pore (mPTP), antioxidant trolox, or inositol 1,4,5-trisphosphate receptor (IP3R) blocker caffeine in the presence of rotenone reduced the elevated rate and the amplitude of the signals implying sensitivity to reactive oxygen species (ROS), and involvement of mitochondrial mPTP together with IP3R. Microglial cells exposed to mild hypoxic conditions for 24 h showed elevated rate and increased amplitude of Ca2+ signals. Application of metformin or rotenone but not phenformin before mild hypoxia reduced this elevated rate. Thus, metformin and rotenone had the opposing fast action in normoxia after 10-15 min and the slow action during 24 h mild-hypoxia implying activation of different signaling pathways. The slow action of metformin through inhibition of complex I could stabilize Ca2+ homeostasis after mild hypoxia and could be important for reduction of ischemia-induced microglial activation.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Metformina/farmacologia , Animais , Cafeína/farmacologia , Sinalização do Cálcio/fisiologia , Cromanos/farmacologia , Ciclosporina/farmacologia , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Hipóxia/genética , Hipóxia/metabolismo , Masculino , Metformina/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Neurônios/metabolismo , Cultura Primária de Células , Ratos , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia
5.
Molecules ; 26(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34771022

RESUMO

The results presented in this paper confirm the beneficial role of an easy-to-use and low-cost thin-layer chromatography (TLC) technique for describing the retention behavior and the experimental lipophilicity parameter of two biguanide derivatives, metformin and phenformin, in both normal-phase (NP) and reversed-phase (RP) TLC systems. The retention parameters (RF, RM) obtained under different chromatographic conditions, i.e., various stationary and mobile phases in the NP-TLC and RP-TLC systems, were used to determine the lipophilicity parameter (RMW) of metformin and phenformin. This study confirms the poor lipophilicity of both metformin and phenformin. It can be stated that the optimization of chromatographic conditions, i.e., the kind of stationary phase and the composition of mobile phase, was needed to obtain the reliable value of the chromatographic lipophilicity parameter (RMW) in this study. The fewer differences in the RMW values of both biguanide derivatives were ensured by the RP-TLC system composed of RP2, RP18, and RP18W plates and the mixture composed of methanol, propan-1-ol, and acetonitrile as an organic modifier compared to the NP-TLC analysis. The new calculation procedures for logP of drugs based on topological indices 0χν, 0χ, 1χν, M, and Mν may be a certain alternative to other algorithms as well as the TLC procedure performed under optimized chromatographic conditions. The knowledge of different lipophilicity parameters of the studied biguanides can be useful in the future design of novel and more therapeutically effective metformin and phenformin formulations for antidiabetic and possible anticancer treatment. Moreover, the topological indices presented in this work may be further used in the QSAR study of the examined biguanides.


Assuntos
Metformina/química , Fenformin/química , Cromatografia de Fase Reversa , Cromatografia em Camada Fina , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular
6.
Drug Dev Res ; 81(4): 390-401, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31916629

RESUMO

Diabetes mellitus is a serious metabolic disorder affecting millions of people worldwide. Phenformin and metformin are biguanide antidiabetic agents that are conveniently synthesized in a single-step chemical reaction. Phenformin was once used to lower blood glucose levels, but later withdrawn from the market in several countries because it was frequently associated with lactic acidosis. Metformin is still a widely prescribed medication for the treatment of type 2 diabetes despite the introduction of several newer antidiabetic agents. Metformin is administered orally and has desirable pharmacokinetics. Incidence of metformin-induced lactic acidosis is serious but very rare. Imeglimin, a novel molecule being investigated by Poxel and Sumitomo Dainippon Pharma in Japan, is currently in clinical trials for the treatment of type 2 diabetes. Unlike metformin, imeglimin is a cyclic molecule containing a triazine ring. However, like metformin, imeglimin is also a basic small molecule. Imeglimin is synthesized from metformin as a precursor via a single step chemical reaction. Recent mechanism of action studies suggests that imeglimin improves mitochondria function, when given in combination with metformin it helps achieve better glycemic control in patients with type 2 diabetes. We herein describe and compare the current status, synthesis, physicochemical properties, pharmacokinetic parameters, mechanism of action, and preclinical/clinical studies of metformin and imeglimin.


Assuntos
Metformina/administração & dosagem , Fenformin/administração & dosagem , Triazinas/administração & dosagem , Acidose Láctica/induzido quimicamente , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/farmacocinética , Metformina/efeitos adversos , Metformina/farmacocinética , Fenformin/efeitos adversos , Fenformin/farmacocinética , Triazinas/efeitos adversos , Triazinas/farmacocinética
7.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093380

RESUMO

Melanin in the epidermis is known to ultimately regulate human skin pigmentation. Recently, we exploited a phenotypic-based screening system composed of ex vivo human skin cultures to search for effective materials to regulate skin pigmentation. Since a previous study reported the potent inhibitory effect of metformin on melanogenesis, we evaluated several biguanide compounds. The unexpected effect of phenformin, once used as an oral anti-diabetic drug, on cutaneous darkening motivated us to investigate its underlying mechanism utilizing a chemical genetics approach, and especially to identify alternatives to phenformin because of its risk of severe lactic acidosis. Chemical pull-down assays with phenformin-immobilized beads were performed on lysates of human epidermal keratinocytes, and subsequent mass spectrometry identified 7-dehydrocholesterol reductase (DHCR7). Consistent with this, AY9944, an inhibitor of DHCR7, was found to decrease autophagic melanosome degradation in keratinocytes and to intensely darken skin in ex vivo cultures, suggesting the involvement of cholesterol biosynthesis in the metabolism of melanosomes. Thus, our results validated the combined utilization of the phenotypic screening system and chemical genetics as a new approach to develop promising materials for brightening/lightening and/or tanning technologies.


Assuntos
Queratinócitos/metabolismo , Melanócitos/metabolismo , Melanossomas/metabolismo , Fenformin/farmacologia , Pigmentação da Pele/efeitos dos fármacos , Colesterol/biossíntese , Feminino , Humanos , Queratinócitos/citologia , Masculino , Melanócitos/citologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano/farmacologia
8.
Cancer Sci ; 110(9): 2834-2845, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31278880

RESUMO

Recurrence and chemoresistance in colorectal cancer remain important issues for patients treated with conventional therapeutics. Metformin and phenformin, previously used in the treatment of diabetes, have been shown to have anticancer effects in various cancers, including breast, lung and prostate cancers. However, their molecular mechanisms are still unclear. In this study, we examined the effects of these drugs in chemoresistant rectal cancer cell lines. We found that SW837 and SW1463 rectal cancer cells were more resistant to ionizing radiation and 5-fluorouracil than HCT116 and LS513 colon cancer cells. In addition, metformin and phenformin increased the sensitivity of these cell lines by inhibiting cell proliferation, suppressing clonogenic ability and increasing apoptotic cell death in rectal cancer cells. Signal transducer and activator of transcription 3 and transforming growth factor-ß/Smad signaling pathways were more activated in rectal cancer cells, and inhibition of signal transducer and activator of transcription 3 expression using an inhibitor or siRNA sensitized rectal cancer cells to chemoresistant by inhibition of the expression of antiapoptotic proteins, such as X-linked inhibitor of apoptosis, survivin and cellular inhibitor of apoptosis protein 1. Moreover, metformin and phenformin inhibited cell migration and invasion by suppression of transforming growth factor ß receptor 2-mediated Snail and Twist expression in rectal cancer cells. Therefore, metformin and phenformin may represent a novel strategy for the treatment of chemoresistant rectal cancer by targeting signal transducer and activator of transcription 3 and transforming growth factor-ß/Smad signaling.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metformina/farmacologia , Fenformin/farmacologia , Neoplasias Retais/terapia , Transdução de Sinais/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Quimiorradioterapia/métodos , Colo/patologia , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Masculino , Metformina/uso terapêutico , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia , Fenformin/uso terapêutico , Neoplasias Retais/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos da radiação , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Intensive Care Med ; 34(11-12): 863-876, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30126348

RESUMO

In the 1920s, guanidine, the active component of Galega officinalis, was shown to lower glucose levels and used to synthesize several antidiabetic compounds. Metformin (1,1 dimethylbiguanide) is the most well-known and currently the only marketed biguanide in the United States, United Kingdom, Canada, and Australia for the treatment of non-insulin-dependent diabetes mellitus. Although phenformin was removed from the US market in the 1970s, it is still available around the world and can be found in unregulated herbal supplements. Adverse events associated with therapeutic use of biguanides include gastrointestinal upset, vitamin B12 deficiency, and hemolytic anemia. Although the incidence is low, metformin toxicity can lead to hyperlactatemia and metabolic acidosis. Since metformin is predominantly eliminated from the body by the kidneys, toxicity can occur when metformin accumulates due to poor clearance from renal insufficiency or in the overdose setting. The dominant source of metabolic acidosis associated with hyperlactatemia in metformin toxicity is the rapid cytosolic adenosine triphosphate (ATP) turnover when complex I is inhibited and oxidative phosphorylation cannot adequately recycle the vast quantity of H+ from ATP hydrolysis. Although metabolic acidosis and hyperlactatemia are markers of metformin toxicity, the degree of hyperlactatemia and severity of acidemia have not been shown to be of prognostic value. Regardless of the etiology of toxicity, treatment should include supportive care and consideration for adjunct therapies such as gastrointestinal decontamination, glucose and insulin, alkalinization, extracorporeal techniques to reduce metformin body burden, and metabolic rescue.


Assuntos
Biguanidas/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Metformina/efeitos adversos , Insuficiência Renal/induzido quimicamente , Acidose/induzido quimicamente , Humanos , Hiperlactatemia/induzido quimicamente , Rim/efeitos dos fármacos
10.
Int J Mol Sci ; 20(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284513

RESUMO

Currently, there is increasing evidence linking diabetes mellitus (especially type 2 diabetes mellitus) with carcinogenesis through various biological processes, such as fat-induced chronic inflammation, hyperglycemia, hyperinsulinemia, and angiogenesis. Chemotherapeutic agents are used in the treatment of cancer, but in most cases, patients develop resistance. Phenformin, an oral biguanide drug used to treat type 2 diabetes mellitus, was removed from the market due to a high risk of fatal lactic acidosis. However, it has been shown that phenformin is, with other biguanides, an authentic tumor disruptor, not only by the production of hypoglycemia due to caloric restriction through AMP-activated protein kinase with energy detection (AMPK) but also as a blocker of the mTOR regulatory complex. Moreover, the addition of phenformin eliminates resistance to antiangiogenic tyrosine kinase inhibitors (TKI), which prevent the uncontrolled metabolism of glucose in tumor cells. In this review, we evidence the great potential of phenformin as an anticancer agent. We thoroughly review its mechanism of action and clinical trial assays, specially focusing on current challenges and future perspectives of this promising drug.


Assuntos
Antineoplásicos/farmacologia , Fenformin/farmacologia , Animais , Diabetes Mellitus Tipo 2/complicações , Humanos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Fenformin/química , Fatores de Risco
11.
Cell Physiol Biochem ; 49(4): 1444-1459, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30205369

RESUMO

BACKGROUND/AIMS: Biguanides are anti-hyperglycaemic agents used to treat diabetes by acting primarily on the liver, inhibiting hepatic gluconeogenesis. However, biguanides may target other key metabolic tissues to exert beneficial actions. As the "master endocrine gland", the pituitary is a true homeostatic sensor that controls whole body homeostasis and metabolism by integrating central and peripheral signals. However, whether the pituitary is a primary site of biguanides action in normal adult humans/primates remains unknown. Therefore, we aimed to elucidate the direct effects of two biguanides (metformin/phenformin) on the expression and secretion of all anterior pituitary hormones in two non-human primate species (Papio anubis and Macaca fascicularis), and the molecular/signalling-mechanisms behind these actions. METHODS: Primary pituitary cell cultures from baboons and macaques were used to determine the direct impact of metformin/phenformin (alone and combined with primary regulators) on the functioning of all pituitary cell-types (i.e. expression/secretion/signaling-pathways, etc). RESULTS: Metformin/phenformin inhibited basal, but not GHRH/ghrelin-stimulated GH/ACTH/ FSH-secretion and GH/POMC-expression, without altering secretion or expression of other pituitary hormones (PRL/LH/TSH), FSH-expression or cell viability in both primate models. These biguanide actions are likely mediated through modulation of: 1) common (mTOR/PI3K/intracellular-Ca2+mobilization) and distinct (MAPK) signaling pathways; and 2) gene expression of key receptors regulating somatotrope/corticotrope/gonadotrope function (i.e. upregulation of SSTR2/SSTR5/INSR/IGF1R/LEPR). CONCLUSION: The pituitary gland is a primary target of biguanide actions wherein they modulate somatotrope/corticotrope/gonadotrope-function through multiple molecular/signaling pathways in non-human primate-models. This suggests that the well-known metabolic effects of biguanides might be, at least in part, influenced by their actions at the pituitary level.


Assuntos
Metformina/farmacologia , Hipófise/efeitos dos fármacos , Hormônio Adrenocorticotrópico/metabolismo , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Hormônio Foliculoestimulante/metabolismo , Grelina/metabolismo , Macaca , Papio , Fenformin/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Hipófise/citologia , Hipófise/metabolismo , Receptores para Leptina/metabolismo , Receptores de Somatostatina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Tireotropina/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
Cell Biol Toxicol ; 34(4): 279-290, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28871429

RESUMO

We recently demonstrated the cytotoxic action of a novel phenformin derivative, 2-(2-chlorophenyl)ethylbiguanide (2-Cl-Phen), on HT-29 cells under a serum- and glucose-deprived condition. In that study, we showed that the ATF6 arm of the ER stress pathway and c-Myc expression were downregulated 12 h after the treatment with 2-Cl-Phen. Through characterization of intracellular events at the early phase of the 2-Cl-Phen treatment before noticeable morphological changes, we found rapid fluctuations in the c-Myc and ATF4 proteins but not in their mRNAs in 2-Cl-Phen-treated HT-29 cells under the serum- and glucose-deprived condition. The 2-Cl-Phen-mediated downregulation of ATF4 protein was not paralleled by the phosphorylation status of PERK and eIF2α. Reduction of c-Myc expression by 2-Cl-Phen was more profound than that of ATF4 expression, and phosphorylated c-Myc was downregulated within 2 h. Pharmacological studies on the expression of c-Myc and ATF4 proteins showed that this decrease was mediated through proteasomal degradation but not by autophagy. Interestingly, treatment with lithium chloride, which is a well-known inhibitor of GSK3ß, partially recovered the expression of ATF4 protein, but its effect on the level of total c-Myc protein was negligible. Treatment with 2-Cl-Phen increased the expression of phosphorylated AMPK, but Compound C, an AMPK inhibitor, did not influence the expression of c-Myc protein in HT-29 cells. Finally, we observed that 2-Cl-Phen partially attenuated the gene expression of integrin subunit α1 (ITGA1), a downstream target of c-Myc. Taken together, these results show that 2-Cl-Phen rapidly downregulated the expression of c-Myc in addition to ER stress responses in a post-translational manner. Further elucidation and improvement of this multi-target-directed compound will provide new insights for developing therapeutic strategies against cancer.


Assuntos
Biguanidas/farmacologia , Glucose/deficiência , Fator 4 Ativador da Transcrição/metabolismo , Adenilato Quinase/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Biguanidas/química , Proteínas de Ciclo Celular/metabolismo , Meios de Cultura Livres de Soro , Regulação para Baixo/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HT29 , Humanos , Integrina alfa1/genética , Integrina alfa1/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/metabolismo
13.
Anal Bioanal Chem ; 410(29): 7599-7609, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30284605

RESUMO

Phenformin hydrochloride (PHE), once used as a traditional anti-diabetic drug, has now been banned due to significant side effects. However, the phenomenon of the illegal addition of PHE to hypoglycemic healthcare products is still rampant. Thus, the detection of illegally added PHE is urgently needed. Surface-enhanced Raman scattering (SERS) is a promising candidate for this purpose, but the weak affinity between PHE and bare metal (Au or Ag) limits direct SERS detection of PHE. In this paper, we prepared Ag nanoparticles coated with ß-cyclodextrin (AgNP@ß-CD), which display the coffee-ring effect, that can be used for PHE sensing. ß-CD-functionalized nanoparticles could capture the analyte and fix the molecular orientation in the hydrophobic cavity. The coffee-ring effect could improve the SERS effect through a higher concentration of the analyte, higher density of nanoparticles, and more hot spots. The SERS performance of the AgNP@ß-CD substrate was characterized by using o-phenylenediamine dihydrochloride as a probe molecule. The excitation wavelength and pH value were optimized. A linear response for PHE detection is in the 7.0 × 10-8-1.0 × 10-6 mol L-1 concentration range, and the limit of detection is as low as 8.0 × 10-9 mol L-1. This AgNP@ß-CD coffee-ring effect substrate was applied to the detection of PHE in healthcare products, with recoveries between 95.3 and 105.0% and relative standard deviations of less than 5.16%. It is anticipated that the AgNP@ß-CD substrate will also have great potential for the monitoring of other aromatic drugs in healthcare products.


Assuntos
Café/química , Corantes Fluorescentes/química , Preparações Farmacêuticas/análise , Fenformin/análise , Análise Espectral Raman/métodos , Contaminação de Medicamentos , Limite de Detecção , Nanopartículas/química , Prata/química , beta-Ciclodextrinas/química
14.
J Transl Med ; 15(1): 198, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28962576

RESUMO

BACKGROUND: The Connectivity Map (CMAP) database, an important public data source for drug repositioning, archives gene expression profiles from cancer cell lines treated with and without bioactive small molecules. However, there are only one or two technical replicates for each cell line under one treatment condition. For such small-scale data, current fold-changes-based methods lack statistical control in identifying differentially expressed genes (DEGs) in treated cells. Especially, one-to-one comparison may result in too many drug-irrelevant DEGs due to random experimental factors. To tackle this problem, CMAP adopts a pattern-matching strategy to build "connection" between disease signatures and gene expression changes associated with drug treatments. However, many drug-irrelevant genes may blur the "connection" if all the genes are used instead of pre-selected DEGs induced by drug treatments. METHODS: We applied OneComp, a customized version of RankComp, to identify DEGs in such small-scale cell line datasets. For a cell line, a list of gene pairs with stable relative expression orderings (REOs) were identified in a large collection of control cell samples measured in different experiments and they formed the background stable REOs. When applying OneComp to a small-scale cell line dataset, the background stable REOs were customized by filtering out the gene pairs with reversal REOs in the control samples of the analyzed dataset. RESULTS: In simulated data, the consistency scores of overlapping genes between DEGs identified by OneComp and SAM were all higher than 99%, while the consistency score of the DEGs solely identified by OneComp was 96.85% according to the observed expression difference method. The usefulness of OneComp was exemplified in drug repositioning by identifying phenformin and metformin related genes using small-scale cell line datasets which helped to support them as a potential anti-tumor drug for non-small-cell lung carcinoma, while the pattern-matching strategy adopted by CMAP missed the two connections. The implementation of OneComp is available at https://github.com/pathint/reoa . CONCLUSIONS: OneComp performed well in both the simulated and real data. It is useful in drug repositioning studies by helping to find hidden "connections" between drugs and diseases.


Assuntos
Bases de Dados Genéticas , Reposicionamento de Medicamentos , Estatística como Assunto , Transcriptoma , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Metformina/farmacologia , Fenformin/farmacologia , Mapas de Interação de Proteínas/genética , Tamanho da Amostra
15.
Metab Eng ; 43(Pt B): 208-217, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28034771

RESUMO

The Liver Kinase B1 (LKB1) tumor suppressor acts as a metabolic energy sensor to regulate AMP-activated protein kinase (AMPK) signaling and is commonly mutated in various cancers, including non-small cell lung cancer (NSCLC). Tumor cells deficient in LKB1 may be uniquely sensitized to metabolic stresses, which may offer a therapeutic window in oncology. To address this question we have explored how functional LKB1 impacts the metabolism of NSCLC cells using 13C metabolic flux analysis. Isogenic NSCLC cells expressing functional LKB1 exhibited higher flux through oxidative mitochondrial pathways compared to those deficient in LKB1. Re-expression of LKB1 also increased the capacity of cells to oxidize major mitochondrial substrates, including pyruvate, fatty acids, and glutamine. Furthermore, LKB1 expression promoted an adaptive response to energy stress induced by anchorage-independent growth. Finally, this diminished adaptability sensitized LKB1-deficient cells to combinatorial inhibition of mitochondrial complex I and glutaminase. Together, our data implicate LKB1 as a major regulator of adaptive metabolic reprogramming and suggest synergistic pharmacological strategies for mitigating LKB1-deficient NSCLC tumor growth.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Metabolismo Energético , Neoplasias Pulmonares/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas de Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética
16.
Mol Cell Biochem ; 419(1-2): 29-40, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27392906

RESUMO

Recently, we developed a variety of phenformin derivatives as selective antitumor agents. Based on previous findings, this study evaluated a promising compound, 2-(2-chlorophenyl)ethylbiguanide (2-Cl-Phen), on the basis of stress responses in the human colon cancer cell line HT-29 under a serum- and glucose-deprived condition. 2-Cl-Phen triggered morphological changes such as shrinkage and plasma membrane disintegration, as well as a decrease in mitochondrial activity and an increase in LDH leakage. To understand intracellular issues relating to 2-Cl-Phen, this study focused on the expression levels of ER stress-inducible genes and several oncogenic genes. Serum and glucose deprivation significantly induced a variety of ER stress-inducible genes, but a 12-h treatment of 2-Cl-Phen down-regulated expression of several ER stress-related genes, with the exception of GADD153. Interestingly, the expression levels of ATF6α, GRP78, MANF, and CRELD2 mRNA were almost completely decreased by 2-Cl-Phen. This study also observed that a 24-h treatment of 2-Cl-Phen attenuated the expression levels of GRP78, GADD153, and c-Myc protein. The decrease in c-Myc protein occurred before the fluctuation of GRP78 protein, while the expression of c-Myc mRNA showed little change with cotreatment of serum and glucose deprivation with 2-Cl-Phen. To further understand the 2-Cl-Phen-induced down-regulation of ATF6-related genes, this study investigated the stability of ATF6α and GRP78 proteins using NanoLuc-tagged constructs. The expression levels of NanoLuc-tagged ATF6α and GRP78 were significantly down-regulated by 2-Cl-Phen in the presence or absence of the translation inhibitor cycloheximide. Taken together, our novel phenformin derivative 2-Cl-Phen has the unique characteristic of diminishing tumor adaptive responses, especially the expression of ATF6-related genes, as well as that of c-Myc protein, in a transcriptional and posttranscriptional manner under a serum- and glucose-deprived condition. Further characterization of cytotoxic mechanisms related to phenformin derivatives may give new insights into developing additional promising anticancer agents.


Assuntos
Neoplasias do Colo/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose , Proteínas de Neoplasias/biossíntese , Fenformin , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Chaperona BiP do Retículo Endoplasmático , Humanos , Fenformin/análogos & derivados , Fenformin/farmacologia
17.
Biochem J ; 471(3): 307-22, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26475449

RESUMO

Improvements in healthcare and nutrition have generated remarkable increases in life expectancy worldwide. This is one of the greatest achievements of the modern world yet it also presents a grave challenge: as more people survive into later life, more also experience the diseases of old age, including type 2 diabetes (T2D), cardiovascular disease (CVD) and cancer. Developing new ways to improve health in the elderly is therefore a top priority for biomedical research. Although our understanding of the molecular basis of these morbidities has advanced rapidly, effective novel treatments are still lacking. Alternative drug development strategies are now being explored, such as the repurposing of existing drugs used to treat other diseases. This can save a considerable amount of time and money since the pharmacokinetics, pharmacodynamics and safety profiles of these drugs are already established, effectively enabling preclinical studies to be bypassed. Metformin is one such drug currently being investigated for novel applications. The present review provides a thorough and detailed account of our current understanding of the molecular pharmacology and signalling mechanisms underlying biguanide-protein interactions. It also focuses on the key role of the microbiota in regulating age-associated morbidities and a potential role for metformin to modulate its function. Research in this area holds the key to solving many of the mysteries of our current understanding of drug action and concerted effects to provide sustained and long-life health.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metformina/uso terapêutico , Neoplasias/tratamento farmacológico , Biguanidas/metabolismo , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Metformina/metabolismo , Neoplasias/metabolismo , Proteínas/metabolismo
18.
Int J Cancer ; 136(6): E534-44, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25196138

RESUMO

The human white adipose tissue (WAT) contains progenitors with cooperative roles in breast cancer (BC) angiogenesis, local and metastatic progression. The biguanide Metformin (Met), commonly used for Type 2 diabetes, might have activity against BC and was found to inhibit angiogenesis in vivo. We studied Met and another biguanide, phenformin (Phe), in vitro and in vivo in BC models. In vitro, biguanides activated AMPK, inhibited Complex 1 of the respiratory chain and induced apoptosis of BC and WAT endothelial cells. In coculture, biguanides inhibited the production of several angiogenic proteins. In vivo, biguanides inhibited local and metastatic growth of triple negative and HER2+ BC in immune-competent and immune-deficient mice orthotopically injected with BC. Biguanides inhibited local and metastatic BC growth in a genetically engineered murine model model of HER2+ BC. In vivo, biguanides increased pimonidazole binding (but not HIF-1 expression) of WAT progenitors, reduced tumor microvessel density and altered the vascular pericyte/endothelial cell ratio, so that cancer vessels displayed a dysplastic phenotype. Phe was significantly more active than Met both in vitro and in vivo. Considering their safety profile, biguanides deserve to be further investigated for BC prevention in high-risk subjects, in combination with chemo and/or targeted therapy and/or as post-therapy consolidation or maintenance therapy for the prevention of BC recurrence.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Metformina/farmacologia , Neovascularização Patológica/prevenção & controle , Fenformin/farmacologia , Microambiente Tumoral , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Feminino , Humanos , Camundongos , Metástase Neoplásica , Fosforilação , Serina-Treonina Quinases TOR/metabolismo
19.
Biochem Biophys Res Commun ; 464(4): 1267-1274, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26225749

RESUMO

The p53 tumor repressor gene is commonly mutated in human cancers. The tumor inhibitory effect of metformin on p53-mutated breast cancer cells remains unclear. Data from the present study demonstrated that p53 knockdown or mutation has a negative effect on metformin or phenformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. We also found that p53 reactivating agent nutlin-3α and CP/31398 promoted metformin-induced growth inhibition, senescence and apoptosis in MCF-7 (wt p53) and MDA-MB-231 (mt p53) cells, respectively. Treatment of MCF-7 cells with metformin or phenformin induced increase in p53 protein levels and the transcription of its downstream target genes, Bax and p21, in a dose-dependent manner. Moreover, we demonstrated that AMPK-mTOR signaling played a role in metformin-induced p53 up-regulation. The present study showed that p53 is required for metformin or phenformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. The combination of metformin with p53 reactivating agents, like nutlin-3α and CP/31398, is a promising strategy for improving metformin-mediated anti-cancer therapy, especially for tumors with p53 mutations.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Metformina/administração & dosagem , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Relação Dose-Resposta a Droga , Humanos , Células MCF-7 , Resultado do Tratamento
20.
Regul Toxicol Pharmacol ; 70(2): 514-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25201010

RESUMO

Lactic acidosis occurs in a number of clinical conditions, e.g. in surgeries, orthotopic liver transplant, and anesthetic agent administration, which has deleterious effects on the patient's survival. The most rational therapy for these patients, the sodium bicarbonate administration, cannot prevent those accompanying deficiencies and may actually be harmful. In addition, tromethamine adjusts the blood pH, it does not affect the lactate accumulation. Therefore, discovery of a therapeutic agent is still a major unsolved problem. In this study, the rats were divided into different groups and lactic acidosis type B was induced in them. Then, the effect of different injection doses of spermidine (0-20nmol) on lactic acidosis was analyzed by measuring the lactate level and pH in the rat blood samples. The results showed that spermidine effectively and simultaneously inhibited the lactate and pyruvate accumulations, and also adjusted the pH of bloodstream. On the other hand, it has been shown (Damuni et al., 1984; Rahmatullah and Roche, 1988) that spermidine increases the activity of phosphatase, leading to prevention of lactate accumulation. The results indicate that administration of only nanomole level of spermidine may be the best treatment in the liver transplant and other patients suffering from lactic acidosis type B.


Assuntos
Acidose Láctica/tratamento farmacológico , Espermidina/administração & dosagem , Acidose Láctica/metabolismo , Animais , Modelos Animais de Doenças , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA