Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(31): e202400433, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568800

RESUMO

Cerium-based Metal-Organic frameworks (Ce-MOFs) are attracting increasing interest due to their similar structural features to zirconium MOFs. The redox behavior of Ce(III/IV) adds a range of properties to the compounds. Recently, perfluorinated linkers have been used in the synthesis of MOFs to introduce new characteristic into the structure. We report the synthesis and structural characterization of Ce(IV)-based MOFs constructed using two perfluorinated alkyl linkers. Their structure, based on hexanuclear Ce6O4(OH)4 12+ clusters linked to each other by the dicarboxylate ions, has been solved ab-initio from X-ray powder diffraction data and refined by the Rietveld method. The crystallization kinetics and the MOF formation mechanism was also invesitigated by Synchrotron radiation with XAS spectroscopies (EXAFS and XANES). The MOFs present the same fcu cubic topology as observed in MOF-801 and UiO-66, and they showed good stability in water at different pH conditions. The electronic structure of these MOFs has been studied by DFT calculations in order to obtain insights into the density of states structure of the reported compounds, resulting in band gaps in the range of 2.8-3.1 eV. Their catalytic properties were tested both thermally and under visible light irradiation for the degradation of methyl orange (MO) dye.

2.
Environ Res ; 242: 117761, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036214

RESUMO

This paper describes a simple phyto-remediation of feather-like silver/copper bi-matrix (BMs) was constructed by employing pommagrant waste peel (PWP) extract as crucial role of reducing agent and chelating agents. Numerous strategies, including UV-Visible, XRD, SEM-EDX, and TEM and BET isotherm were used to analysis the optical, structural, surface area and functional properties. Ag/Cu BPNMs of TEM characterization shows feather-like architectural features with constrained size and shape. The Ag/Cu co-catalytic nanoparticles have a particle size of 34-64 nm. The photocatalytic efficiency of Ag/Cu BMs was investigated using a garment dye, Congo red (CR), at successive time intervals under halogen lamp exposure. For Ag/Cu bimetallic nanoparticles, the photocatalytic degradation rate was recorded to be 100% after 40 min which is caused by adsorption of Congo red dye molecules on Ag/Cu and their degradation by reactive oxygen species (ROS). ROS are free hydroxyl radicals such as •OH and O2• ions that have high oxidizing capacity. The developed Ag/Cu BMs shown effective bacteriostatic action against many infections.


Assuntos
Vermelho Congo , Nanopartículas Metálicas , Animais , Cobre/química , Plumas , Espécies Reativas de Oxigênio , Vestuário , Nanopartículas Metálicas/química
3.
Angew Chem Int Ed Engl ; 63(22): e202404886, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38563659

RESUMO

The ion extraction and electro/photo catalysis are promising methods to address environmental and energy issues. Covalent organic frameworks (COFs) are a class of promising template to construct absorbents and catalysts because of their stable frameworks, high surface areas, controllable pore environments, and well-defined catalytic sites. Among them, ionic COFs as unique class of crystalline porous materials, with charges in the frameworks or along the pore walls, have shown different properties and resulting performance in these applications with those from charge-neutral COFs. In this review, current research progress based on the ionic COFs for ion extraction and energy conversion, including cationic/anionic materials and electro/photo catalysis is reviewed in terms of the synthesis strategy, modification methods, mechanisms of adsorption and catalysis, as well as applications. Finally, we demonstrated the current challenges and future development of ionic COFs in design strategies and applications.

4.
BMC Microbiol ; 23(1): 224, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587432

RESUMO

BACKGROUND: Bimetallic nanoparticles (BNPs) has drawn a lot of attention especially during the last couple of decades. A bimetallic nanoparticle stands for a combination of two different metals that exhibit several new and improved physicochemical properties. Therefore, the green synthesis and design of bimetallic nanoparticles is a field worth exploring. METHODS: In this study, we present a green synthesis of silver nanoparticles (Ag NPs), selenium (Se) NPs, and bimetallic Ag-Se NPs using Gamma irradiation and utilizing a bacterial filtrate of Bacillus paramycoides. Different Techniques such as UV-Vis., XRD, DLS, SEM, EDX, and HR-TEM, were employed for identifying the synthesized NPs. The antimicrobial and antibiofilm activities of both the Ag/Se monometallic and bimetallic Ag-Se NPs were evaluated against some standard microbial strains including, Aspergillus brasiliensis ATCC16404, Candida albicans ATCC10231, Alternaria alternate EUM108, Fusarium oxysporum EUM37, Escherichia coli ATCC11229, Bacillus cereus ATCC15442, Klebsiella pneumoniae ATCC13883, Bacillus subtilis ATCC15442, and Pseudomonas aeruginosa ATCC6538 as a model tested pathogenic microbes. The individual free radical scavenging potentials of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs were determined using the DPPH radical scavenging assay. The degradation of methylene blue (MB) dye in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs was used to assess their photocatalytic behavior. RESULTS: According to the UV-Vis. spectrophotometer, the dose of 20.0 kGy that results in Ag NPs with the highest O.D. = 3.19 at 390 nm is the most effective dose. In a similar vein, the optimal dose for the synthesis of Se NPs was 15.0 kGy dose with O.D. = 1.74 at 460 nm. With a high O.D. of 2.79 at 395 nm, the most potent dose for the formation of bimetallic Ag-Se NPs is 15.0 kGy. The recorded MIC-values for Ag-Se NPs were 62.5 µg mL- 1, and the data clearly demonstrated that C. albicans was the organism that was most susceptible to the three types of NPs. The MIC value was 125 µg mL- 1 for both Ag NPs and Se NPs. In antibiofilm assay, 5 µg mL- 1 Ag-Se NPs inhibited C. albicans with a percentage of 90.88%, E. coli with a percentage of 90.70%, and S. aureus with a percentage of 90.62%. The synthesized NPs can be arranged as follows in decreasing order of antioxidant capacity as an antioxidant result: Ag-Se NPs > Se NPs > Ag NPs. The MB dye degradation in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs was confirmed by the decrease in the measured absorbance (at 664 nm) after 20 min of exposure to sunlight. CONCLUSION: Our study provides insight towards the synthesis of bimetallic NPs through green methodologies, to develop synergistic combinatorial antimicrobials with possible applications in the treatment of infectious diseases caused by clinically and industrial relevant drug-resistant strains.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Selênio , Selênio/farmacologia , Antioxidantes/farmacologia , Prata/farmacologia , Escherichia coli , Raios gama , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Azul de Metileno , Candida albicans , Biofilmes
5.
Chemistry ; 29(27): e202300250, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36958938

RESUMO

In this study, a highly air stable and eco-friendly methyl ammonium bismuth iodide (MA3 Bi2 I9 ) perovskite-like material has been prepared. After physiochemical characterizations, the synthesized MA3 Bi2 I9 was utilized as photo-catalyst towards hydrogen production. It is important to design and synthesize lead (Pb)-free perovskite-like material (MA3 Bi2 I9 ) for photo-catalytic hydrogen-production applications. The synthesized MA3 Bi2 I9 exhibits excellent photo-catalytic hydrogen generation with a production rate of 11.43 µmolg-1 h-1 . In the presence of a platinum co-catalyst, the hydrogen production rate further increases to 172.44 µmolg-1 h-1 . The MA3 Bi2 I9 photo-catalyst also demonstrates excellent cyclic stability.

6.
Chemistry ; 29(58): e202301961, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463071

RESUMO

The prominent role of gold-N-heterocyclic carbene (NHC) complexes in numerous research areas such as homogeneous (photo)catalysis, medicinal chemistry and materials science has prompted organometallic chemists to design gold-based synthons that permit access to target complexes through simple synthetic steps under mild conditions. In this review, the main gold-NHC synthons employed in organometallic synthesis are discussed. Mechanistic aspects involved in their synthesis and reactivity as well as applications of gold-NHC synthons as efficient pre-catalysts, antitumor agents and/or photo-emissive materials are presented.

7.
Photochem Photobiol Sci ; 22(3): 549-566, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36352304

RESUMO

AgBr/NaTaO3 composites, with different molar % of NaTaO3 (Br/NTO(X%)), have been synthesized by simple precipitation methods; bare NaTaO3 was synthesized by hydrothermal procedure, while AgBr was synthesized by a precipitation procedure using cetyl-tri-methyl-ammonium bromide (CTAB) and AgNO3. Samples have been characterized by X-ray diffraction (XRD), N2 adsorption, UV-vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FT-IR), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of the as-prepared photo-catalysts was evaluated through photocatalytic degradation of rhodamine B (RhB), methyl orange (MO) and caffeic acid (CAFA) under UV and visible illumination. Single AgBr material and Br/NTO(X%) composites displayed the ability to absorb light in the visible region, while NaTaO3 is only photoactive under UV irradiation. Based on the position of conduction and valence bands of AgBr and NaTaO3, the heterojunction between these two photo-catalysts corresponds to a type II junction. In the case of photocatalytic degradation of RhB and CAFA, Br/NTO(x%) composites have highest photocatalytic activity than that obtained by both parental materials under the same operational conditions. AgBr and Br/NTO(x%) composites achieve a fast degradation of MO, together with a considerable adsorption capacity, attributed to the presence of a remaining amount of residual CTAB on the AgBr surface. In summary, coupling AgBr with NaTaO3 improves the photocatalytic activity under both UV and visible illumination with respect to the parental components, but the performance of the composites is highly dependent on the type of substrate to be degraded and the illumination conditions.

8.
Environ Res ; 229: 115881, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084947

RESUMO

Tanning and other leather processing methods utilize a large amount of freshwater, dyes, chemicals, and salts and produce toxic waste, raising questions regarding their environmental sensitivity and eco-friendly nature. Total suspended solids, total dissolved solids, chemical oxygen demand, and ions such as chromium, sulfate, and chloride turn tannery wastewater exceedingly toxic for any living species. Therefore, it is imperative to treat tannery effluent, and existing plants must be examined and upgraded to keep up with recent technological developments. Different conventional techniques to treat tannery wastewater have been reported based on their pollutant removal efficiencies, advantages, and disadvantages. Research on photo-assisted catalyst-enhanced deterioration has inferred that both homogeneous and heterogeneous catalysis can be established as green initiatives, the latter being more efficient at degrading organic pollutants. However, the scientific community experiences significant problems developing a feasible treatment technique owing to the long degradation times and low removal efficiency. Hence, there is a chance for an improved solution to the problem of treating tannery wastewater through the development of a hybrid technology that uses flocculation as the primary treatment, a unique integrated photo-catalyst in a precision-designed reactor as the secondary method, and finally, membrane-based tertiary treatment to recover the spent catalyst and reclaimable water. This review gives an understanding of the progressive advancement of a cutting-edge membrane-based system for the management of tanning industrial waste effluents towards the reclamation of clean water. Adaptable routes toward sludge disposal and the reviews on techno-economic assessments have been shown in detail, strengthening the scale-up confidence for implementing such innovative hybrid systems.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Curtume , Água , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise
9.
Environ Res ; 234: 116440, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356527

RESUMO

Oxides of vanadium, titanium and graphitic carbon nitride (g-C3N4) are well known for their catalytic activities. In order to achieve synergic catalytic effects, a novel nanocomposite (NC) i.e. V2O5/TiO2/g-C3N4 has been synthesized by a very simple, ecofriendly and nonhazardous hydrothermal method. The fabricated NC was characterized employing UV-Visible, FTIR, SEM, and XRD techniques. UV-Visible and FTIR analysis indicated the formation of the nanocomposite and XRD analysis confirmed the association of V2O5 and TiO2 with g-C3N4 in nanocomposite. SEM study indicated the hetero-structure of NC having size ranging from 50 to 80 nm and it was found having hexagonal crystallite structure. The synthesized nanocomposite exhibited excellent scavenging of free radicals DPPH● (91%) and ABTS●+ (64%) that are responsible for the oxidation of biomolecules. Therefore, NC can be claimed having biomolecule oxidation protective potential. In addition, photocatalytic ability for the degradation of methylene blue (MB) and methyl orange (MO) was also achieved up to 94% and 89% respectively. The synthesized novel nanocomposite exhibited excellent potential to remove free radicals and dyes from aqueous medium which can be further used for the environmental remediation.


Assuntos
Luz , Nanocompostos , Corantes , Nanocompostos/química , Catálise
10.
Chemistry ; 28(3): e202103346, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34755401

RESUMO

Four photo-catalysts of the general formula [Ir(CO6/ppy)2 (L)]Cl where CO6=coumarin 6 (Ir1-Ir3), ppy=2-phenylpyridine (Ir4), L=4'-(3,5-di-tert-butylphenyl)-2,2' : 6',2''-terpyridine (Ir1), 4'-(3,5-bis(trifluoromethyl)phenyl)-2,2' : 6',2''-terpyridine (Ir2 and Ir4), and 4-([2,2' : 6',2''-terpyridin]-4'-yl)-N,N-dimethylaniline (Ir3) were synthesized and characterized. These photostable photo-catalysts (Ir1-Ir3) showed strong visible light absorption between 400-550 nm. Upon light irradiation (465 and 525 nm), Ir1-Ir3 generated singlet oxygen and induced rapidly photo-catalytic oxidation of cellular coenzymes NAD(P)H. Ir1-Ir3 showed time-dependent cellular uptake with excellent intracellular retention efficiency. Upon green light irradiation (525 nm), Ir2 provided a much higher photo-index (PI=793) than the clinically used photosensitizer, 5-aminolevulinicacid (5-ALA, PI>30) against HeLa cancer cells. The observed necro-apoptotic anticancer activity of Ir2 was due to the Ir2 triggered photo-induced intracellular redox imbalance (by NAD(P)H oxidation and ROS generation) and change in the mitochondrial membrane potential. Remarkably, Ir2 showed in vivo photo-induced catalytic anticancer activity in mouse models.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cumarínicos , Irídio , Camundongos , Oxirredução
11.
Molecules ; 27(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956867

RESUMO

The emergence of metal-organic frameworks (MOFs) in recent years has stimulated the interest of scientists working in this area as one of the most applicable archetypes of three-dimensional structures that can be used as promising materials in several applications including but not limited to (photo-)catalysis, sensing, separation, adsorption, biological and electrochemical efficiencies and so on. Not only do MOFs have their own specific versatile structures, tunable cavities, and remarkably high surface areas, but they also present many alternative procedures to overcome emerging obstacles. Since the discovery of such highly effective materials, they have been employed for multiple uses; additionally, the efforts towards the synthesis of MOFs with specific properties based on planned (template) synthesis have led to the construction of several promising types of MOFs possessing large biological or bioinspired ligands. Specifically, metalloporphyrin-based MOFs have been created where the porphyrin moieties are either incorporated as struts within the framework to form porphyrinic MOFs or encapsulated inside the cavities to construct porphyrin@MOFs which can combine the peerless properties of porphyrins and porous MOFs simultaneously. In this context, the main aim of this review was to highlight their structure, characteristics, and some of their prominent present-day applications.


Assuntos
Estruturas Metalorgânicas , Metaloporfirinas , Porfirinas , Adsorção , Catálise , Estruturas Metalorgânicas/química , Metaloporfirinas/química
12.
J Environ Manage ; 293: 112854, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058449

RESUMO

The photocatalytic activity of pure Mn3O4 and silver (Ag) modified Mn3O4 nanoparticles have been investigated. The nanoparticles were prepared by using co-precipitation technique. The structural analysis showed that the Ag modified Mn3O4 was successfully synthesized. For instance, a slight shift to lower angle of XRD pattern was observed after Ag doping. Morphological analysis revealed that the particles have an average size of 274 nm, 287 nm and 321 nm for pure, 1% and 3% Ag modified Mn3O4 respectively. The UV-Visible analysis indicated that the bandgap of Mn3O4 decreased with increased Ag content and the band gap is 1.4 eV with the 3% of Ag content. The spectra obtained from DRS were also evaluated through inverse logarithmic derivative method (ILD) to counter check the bandgap values. 3% Ag-modified photocatalysts exhibited the enhanced decolorization efficiency compared to pure Mn3O4 nanoparticles. The pseudo first order kinetic model is used to explain the photocatalytic kinetics of the photocatalyst. The rate constant values are 0.01/min, 0.017/min and 0.024/min for pure Mn3O4, 1% Ag and 3% Ag modified Mn3O4 nanoparticles, respectively.


Assuntos
Azul de Metileno , Nanopartículas , Catálise , Luz , Prata
13.
Chem Pharm Bull (Tokyo) ; 68(4): 336-338, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32074521

RESUMO

Ketones are a fundamental functionality found throughout a range of natural and synthetic compounds, making their synthesis essential throughout the chemical disciplines. Herein, we describe a one-pot synthesis of ketones via decatungstate-mediated formal dehydrogenative coupling between aldehydes and non-activated hydrocarbons. A variety of substituted benzaldehydes and cycloalkanes could be used in the optimized reaction to produce the desired ketones in moderate yields. The decatungstate photocatalyst functions in two reactions in this synthesis, catalyzing both the coupling and oxidation steps of the process. Notably, the reaction displays both high atom economy and sustainability, as it uses light and oxygen as key energy sources.


Assuntos
Aldeídos/química , Hidrocarbonetos/química , Cetonas/síntese química , Cetonas/química , Estrutura Molecular
14.
J Environ Manage ; 258: 110032, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31929067

RESUMO

This study focuses on the photocatalytic degradation of quinoline, a recalcitrant heterocyclic nitrogenous aromatic organic compound, using the mixed oxide ZnO-TiO2 photo-catalyst. Photo-catalysts were synthesized by the solid-state reaction method at different calcination temperatures of 400 °C, 600 °C, and 800 °C. Different analytical methods, including Field emission scanning electron microscope, Brunauer-Emmett-Teller surface area, X-ray diffraction, UV-vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy analysis were used for the catalyst characterization. The highest pore surface area of 57.9 m2g-1 was obtained for the photo-catalyst calcined at 400 °C. The effects of calcination temperature, solution pH, initial concentration, catalyst dose as well as irradiation time were studied. At the optimum condition, i.e., calcination temperature of 400 °C, pH ≈8 and catalyst dose of 2.5 gL-1, maximum quinoline degradation and total organic carbon (TOC) removal efficiency of ≈92% and ≈78% were obtained after 240 min for initial quinoline amount of 50 mgL-1. The 1st, 2nd, and nth-order kinetic models were applied to analyze the quinoline degradation rate. The photocatalytic mechanism was studied by drawing energy level diagram with the help of the band-gap structures of the ZnO and TiO2, potential of the free radicals like OH and O2 and HOMO-LUMO energy gap of the quinoline molecule. The proposed pathways of quinoline mineralization were suggested on the basis of the identified intermediates by the gas chromatograph-mass spectrometer analysis and scavenger study.


Assuntos
Quinolinas , Óxido de Zinco , Catálise , Óxidos , Titânio , Difração de Raios X
15.
J Environ Sci (China) ; 92: 52-68, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32430133

RESUMO

Photoactive aluminum doped ZnO (AlZnO) was synthesized by sol-gel method. After that, AlZnO photocatalyst was deposited on five carbon-based materials (CBMs) using ultrasonic route followed by solid-state mixing using ball mill. The CBMs used were polyaniline (PANI), carbon nitride (CN), carbon nanotubes (CNT), graphene (G), and carbon nanofibers (CNF). The crystal phases, elemental compositions, morphological, and optical properties of the AlZnO@CBMs composites were investigated. Experimental results revealed that two of AlZnO@CBMs composites exhibited superior bleaching efficiency (100% removal) and photocatalytic stability (three cycles) for 50 µmol/L Methylene Blue (MB) contaminated water after 60 min irradiation in visible light at pH 6.5, 0.7% H2O2, and 5 g/L inorganic salts. Under optimum conditions, AlZnO@CBMs nanocomposites were employed for the treatment of mixed dyestuffs composed of MB, Methyl Orange (MO), Astrazone Blue FRR (BB 69), and Rhodamine B (RhB) dyes under dark, ultraviolet, visible, and direct sunlight. For mixed dyestuffs, the AlZnO@G achieved the highest dye sorption capacity (60.91 µmol dye stuffs/g) with kinetic rate 8.22 × 10-3 min-1 in 90 min via multi-layer physisorption (Freundlich isotherm) on graphene sheet. In additions, AlZnO@CN offered the highest photo-kinetic rate (Kphoto) of ~54.1 × 10-3 min-1 (93.8% after 60 min) under direct sunlight. Furthermore, the selective radical trapping experiment confirmed that the holes and oxidative superoxide radicals are crucial on dyes photodegradation pathway. Owing to their superior performance, AlZnO@G and AlZnO@CN nanocomposites can offer an effective in-situ solar-assisted adsorption/photocatalytic remediation of textile wastewater effluents.


Assuntos
Nanotubos de Carbono , Águas Residuárias , Catálise , Peróxido de Hidrogênio , Luz Solar , Têxteis
16.
Microb Pathog ; 127: 144-158, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30502518

RESUMO

This study reports the photocatalytic degradation of Methylene Blue (MB) dye (a class of dyestuffs that are resistant to biodegradation) under the influence of UV-light irradiation. Antibacterial and antibiofilm activities of ferrite nanoparticles (FO NPs) were examined against some pathogenic bacteria isolated from the medical operating room surfaces. In the same context, metals-substituted spinel cobalt ferrite nanoparticles with nominal composition [MxCo1-xFe2O4 NPs; (M = Zn, Cu, Mn; x = 0.0, 0.25, 0.5 and 0.75)] were synthesized by citrate sol-gel method. Also, the structures of the synthesized FO NPs were characterized by X-ray diffraction, and Williamson-Hall (WH) method was used to determine the crystallite size. The estimated specific surface area is found in the range from 37.99 to 107.05 m2/g, between the synthesized ferrites, Zn0.5Co0.5Fe2O4 NPs have average pore radius 1.84 nm and the pore volume was 0.136 ml/g. SEM images revealed that, the synthesized FO NPs have an unique pores and uniformly distribution, while EDX spectra shows the elemental composition for the synthesized FO NPs. The elastic properties of FO NPs have been estimated using FTIR data, whereas (M - H) hysteresis loops revealed that, by replacing cobalt ions with Zn, Cu, and Mn ions the magnetic behaviour changed from ferromagnetic to paramagnetic. Results obtained from the photocatalysis indicated that Mn0.75Co0.25Fe2O4 NPs (30.0 mg) were a promising photocatalyst achieving 96.0% removal of MB after 100 min of UV-light exposure in the alkaline solution. Antibacterial results showed that the most effective combination was Zn0.75Co0.25Fe2O4 NPs (20.0 ppm) displaying activity against Staphylococcus aureus, Enterococcus columbae, and Aerococcus viridians by 15.0, 13.0, and 12.0 mm ZOI, respectively. Additionally, Zn0.75Co0.25Fe2O4 NPs were active as antibiofilm factors producing activity by 63.7, 57.9, and 45.5% towards S. aureus, A. viridians, and E. columbae, respectively. Accordingly, Zn0.75Co0.25Fe2O4 and Mn0.75Co0.25Fe2O4 NPs can be utilized in industrial, biological and medical applications.


Assuntos
Óxido de Alumínio/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cobalto/farmacologia , Compostos Férricos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Óxido de Magnésio/farmacologia , Metais/farmacologia , Nanopartículas/química , Óxido de Alumínio/síntese química , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Bactérias Gram-Positivas/crescimento & desenvolvimento , Óxido de Magnésio/síntese química , Azul de Metileno/metabolismo , Análise Espectral , Difração de Raios X
17.
J Environ Manage ; 247: 104-114, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31234045

RESUMO

The BiFeO3/V2O5 has been successfully synthesized by simple annealing of BiFeO3 nanoplates and V2O5 nanoflower. The phase, structural, optical properties and chemical state of the BiFeO3, V2O5 and different composition of BiFeO3/V2O5 samples were comparatively characterized by various spectroscopic and microscopic techniques. The prepared catalyst exhibits unique photo catalytic and post-oxidation/reduction ability for removal of various (MB, Phenol, CV, RhB) water organic pollutants. Compared to pure BiFeO3 and V2O5, the different Wt % of BiFeO3/V2O5 composition exhibited higher photo catalytic activity. The fortunate BiFeO3/V2O5 interface hybrid photo catalyst makes a significant impact in the enhancement of photo catalytic reaction. This remarkable efficiency could be ascribed to the synergistic effect between the V2O5 petals and BiFeO3 plates. The exceptional morphology, increased surface area, uniformity, less-agglomerated spreading could increase the ability of visible light response, which lead the improved electron transport ability and the higher charge separation. The enhanced rate of photo generated charge carriers separations were evinced by the EIS and PL spectrum measurements. The allowed radical trapping experiment divulge that the hole (h+), and super oxide radical (O2-) are the minimized effect in degradation, on the other hand hydroxyl radical (OH) is plays the foremost role and act as the active radicals in the catalytic organism. In relations of above investigation, a probable photo degradation mechanism of the as-synthesized photo catalyst is carefully explicated. This effort delivers an effective approach to design and fabricate the efficient photo catalyst through integrating of materials, which has a potential for industrial waste water purification.


Assuntos
Purificação da Água , Catálise , Luz , Oxirredução , Fenol
18.
Molecules ; 24(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30870984

RESUMO

A new hybrid photo-catalyst based on ZSM-5 zeolite suitable for reduction of carbon dioxide was synthesized. The photo-catalyst was prepared by oxidative polymerization of thiophene with FeCl3 in the presence of ZSM-5 with participation of ultrasound. The synthesized photo-catalyst strongly absorbs light radiation up to approx. 650 nm, with the absorption edge in the NIR region. Reactive radicals were generated by VIS light irradiation in an aqueous suspension consisting of the photo-catalyst with CO2. Formic acid and acetic acid were generated as the main products of the CO2 reduction. EPR spin trapping technique was applied to identify the reactive radical intermediates. In this work, the mechanism of product formation is also discussed.


Assuntos
Dióxido de Carbono/química , Polímeros/química , Tiofenos/química , Zeolitas/química , Catálise , Luz , Oxirredução , Processos Fotoquímicos , Polimerização , Detecção de Spin
19.
Ecotoxicol Environ Saf ; 134(Pt 2): 327-331, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26560434

RESUMO

TiO2 is one of those compounds which are highly used in photocatalytic degradation of substrates using UV radiation. The substrates are degraded oxidatively and hence finds an important position in advanced oxidation for water/wastewater treatment processes. The thrust of this research was to evaluate the effectiveness of Heterogeneous Photocatalysis (HP) technique, for the removal of pesticides from water/wastewater. The photo-catalytic degradation of two pesticides, widely used in India, viz., Endosulfan (ES) and Chlorpyriphos (CPS) was studied in an annular slurry photo reactor under UVillumination at 254nm. Results revealed that the degradation rate is significantly affected by the initial pesticide concentration, pH of the solution and catalyst concentration. Batch degradation studies on Endosulphan and Chlorpyrifos were conducted in the concentration range from 5 to 25mg/L at a pH ranging from 3.5 to 10.5 and at a catalyst loading of 0.5-2g/L. Endosulphan removal efficiency was about 80-99% and chlorpyrifos removal efficiency was about 84-94%. L-H rate constants were determined using L-H kinetics. High removal efficiencies obtained (80-99%) indicate the effectiveness of this process and its potential for practical application.


Assuntos
Clorpirifos/química , Endossulfano/química , Praguicidas/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Catálise , Recuperação e Remediação Ambiental/métodos , Concentração de Íons de Hidrogênio , Índia , Oxirredução , Fotólise , Raios Ultravioleta , Águas Residuárias
20.
Environ Technol ; : 1-20, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955510

RESUMO

To find out the most contaminated street region and protect the pedestrian with the photo-catalytic equipment to decrease the hazard of oxynitride (NOx), Computational Fluid Dynamics (CFD) simulation could be used to research the main factor affecting the statistical characteristics of the oxynitride distribution in the urban street canyon with the photo-catalytic building walls. Additionally, the connection was investigated and focused on the swirling flow and oxynitride concentration to find out the root of the main factor affecting oxynitride distribution. The simulation results showed that there was one three-dimensional swirling flow in the whole canyon and the statistical concentration was straightforwardly related to the swirling or whirling flow structure (such as eddy). The characteristics had been confirmed that the whirling flow structure affected the complex oxynitride distribution in the street canyon with the photo-catalytic building walls. Furthermore, one formula was found which described the oxynitride concentration constrained by the street canyon. This study illustrated that different sections in the canyon had various patterns of the whirling flow structure (swirling flow) and oxynitride. In the symmetrical portion of the street canyon (in the middle of the street length), there is one concise equation to describe the NOx concentration affected by the turbulence intensity. Moreover, the equation was presented as CR = 1.094 + 0.11e-I, where I was the turbulence intensity and CR was the oxynitride relative concentration in the street canyon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA