Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant Cell Rep ; 42(7): 1203-1215, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269373

RESUMO

KEY MESSAGE: PAP-FcK and PSA-FcK prostate cancer antigenic proteins transiently co-expressed in plant induce their specific humoral immune responses in mice. Prostate-specific antigen (PSA) and prostatic acid phosphatase (PAP) have been considered as immunotherapeutic antigens for prostate cancer. The use of a single antigenic agent is unlikely to be effective in eliciting immunotherapeutic responses due to the heterogeneous and multifocal nature of prostate cancer. Thus, multiple antigens have been combined to enhance their anti-cancer effects. In the current study, PSA and PAP were fused to the crystallizable region (Fc region) of immunoglobulin G1 and tagged with KDEL, the endoplasmic reticulum (ER) retention signal motif, to generate PSA-FcK and PAP-FcK, respectively, and were transiently co-expressed in Nicotiana benthamiana. Western blot analysis confirmed the co-expression of PSA-FcK and PAP-FcK (PSA-FcK + PAP-FcK) with a 1:3 ratios in the co-infiltrated plants. PSA-FcK, PAP-FcK, and PSA-FcK + PAP-FcK proteins were successfully purified from N. benthamiana by protein A affinity chromatography. ELISA showed that anti-PAP and anti-PSA antibodies successfully detected PAP-FcK and PSA-FcK, respectively, and both detected PSA-FcK + PAP-FcK. Surface plasmon resonance (SPR) analysis confirmed the binding affinity of the plant-derived Fc fusion proteins to FcγRI/CD64. Furthermore, we also confirmed that mice injected with PSA-FcK + PAP-FcK produced both PSA- and PAP-specific IgGs, demonstrating their immunogenicity. This study suggested that the transient plant expression system can be applied to produce the dual-antigen Fc fusion protein (PSA-FcK + PAP-FcK) for prostate cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Vacinas Anticâncer/uso terapêutico , Imunidade , Próstata/metabolismo , Antígeno Prostático Específico , Neoplasias da Próstata/terapia
2.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362299

RESUMO

The production of therapeutic and industrial recombinant proteins in plants has advantages over established bacterial and mammalian systems in terms of cost, scalability, growth conditions, and product safety. In order to compete with these conventional expression systems, however, plant expression platforms must have additional economic advantages by demonstrating a high protein production yield with consistent quality. Over the past decades, important progress has been made in developing strategies to increase the yield of recombinant proteins in plants by enhancing their expression and reducing their degradation. Unlike bacterial and animal systems, plant expression systems can utilize not only cell cultures but also whole plants for the production of recombinant proteins. The development of viral vectors and chloroplast transformation has opened new strategies to drastically increase the yield of recombinant proteins from plants. The identification of promoters for strong, constitutive, and inducible promoters or the tissue-specific expression of transgenes allows for the production of recombinant proteins at high levels and for special purposes. Advances in the understanding of RNAi have led to effective strategies for reducing gene silencing and increasing recombinant protein production. An increased understanding of protein translation, quality control, trafficking, and degradation has also helped with the development of approaches to enhance the synthesis and stability of recombinant proteins in plants. In this review, we discuss the progress in understanding the processes that control the synthesis and degradation of gene transcripts and proteins, which underlie a variety of developed strategies aimed at maximizing recombinant protein production in plants.


Assuntos
Cloroplastos , Plantas , Animais , Plantas/genética , Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Transgenes , Cloroplastos/genética , Cloroplastos/metabolismo , Estabilidade Proteica , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Mamíferos/metabolismo
3.
Molecules ; 26(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279372

RESUMO

The emergence of drug-resistant pathogens poses a serious critical threat to global public health and requires immediate action. Antimicrobial peptides (AMPs) are a class of short peptides ubiquitously found in all living forms, including plants, insects, mammals, microorganisms and play a significant role in host innate immune system. These peptides are considered as promising candidates to treat microbial infections due to its distinct advantages over conventional antibiotics. Given their potent broad spectrum of antimicrobial action, several AMPs are currently being evaluated in preclinical/clinical trials. However, large quantities of highly purified AMPs are vital for basic research and clinical settings which is still a major bottleneck hindering its application. This can be overcome by genetic engineering approaches to produce sufficient amount of diverse peptides in heterologous host systems. Recently plants are considered as potential alternatives to conventional protein production systems such as microbial and mammalian platforms due to their unique advantages such as rapidity, scalability and safety. In addition, AMPs can also be utilized for development of novel approaches for plant protection thereby increasing the crop yield. Hence, in order to provide a spotlight for the expression of AMP in plants for both clinical or agricultural use, the present review presents the importance of AMPs and efforts aimed at producing recombinant AMPs in plants for molecular farming and plant protection so far.


Assuntos
Biotecnologia/métodos , Plantas Geneticamente Modificadas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/biossíntese , Engenharia Genética/métodos , Plantas Geneticamente Modificadas/genética , Proteínas Citotóxicas Formadoras de Poros/genética
4.
Plant Cell Rep ; 39(10): 1317-1329, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32651706

RESUMO

KEY MESSAGE: Plant-produced SazCA and its application to CO2 capture. Technologies that rely on chemical absorption or physical adsorption have been developed to capture CO2 from industrial flue gases and sequester it at storage sites. Carbonic anhydrases (CAs), metalloenzymes, that catalyze the reversible hydration of CO2 have recently received attention as biocatalysts in the capture of CO2 from flue gases, but their cost presents a major obstacle for use at an industrial scale. This cost, however, can be reduced either by producing a long-lasting enzyme suitable for CO2 capture or by lowering production costs. High-level expression, easy purification, and immobilization of CAs from Sulfurihydrogenibium azorense (SazCA) were investigated in a plant system. Fusion of the 60-amino acid-long ectodomain (M-domain) of the human receptor-type tyrosine-protein phosphatase C increased the levels of SazCA accumulation. Fusion of the cellulose-binding module (CBM3) from Clostridium thermocellum resulted in tight binding of recombinant protein to microcrystalline cellulose beads, enabling easy purification. The chimeric fusion protein, BMC-SazCA, which consisted of SazCA with the M and CBM3 domains, was expressed in tobacco (Nicotiana benthamiana), giving a recombinant protein yield in leaf extracts of 350 mg/kg fresh weight. BMC-SazCA produced in planta was active in the presence of various chemicals used in CO2 capture. Immobilization of BMC-SazCA on the surface of microcrystalline cellulose beads extended its heat stability, allowing its reuse in multiple rounds of the CO2 hydration reaction. These results suggest that production of SazCA in plants has great potential for CA-based CO2 sequestration and mineralization.


Assuntos
Bactérias/enzimologia , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Celulose/química , Enzimas Imobilizadas/metabolismo , Nicotiana/metabolismo , Temperatura , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Extratos Vegetais , Plantas Geneticamente Modificadas , Plasmídeos/genética , Proteínas Recombinantes/metabolismo , Nicotiana/genética
6.
Biotechnol J ; 19(1): e2300319, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37853601

RESUMO

Infectious diseases such as Coronavirus disease 2019 (COVID-19) and Middle East respiratory syndrome (MERS) present an increasingly persistent crisis in many parts of the world. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The angiotensin-converting enzyme 2 (ACE2) is a crucial cellular receptor for SARS-CoV-2 infection. Inhibition of the interaction between SARS-CoV-2 and ACE2 has been proposed as a target for the prevention and treatment of COVID-19. We produced four recombinant plant-derived ACE2 isoforms with or without the mu tailpiece (µ-tp) of immunoglobulin M (IgM) and the KDEL endoplasmic reticulum retention motif in a plant expression system. The plant-derived ACE2 isoforms bound whole SARS-CoV-2 virus and the isolated receptor binding domains of SARS-CoV-2 Alpha, Beta, Gamma, Delta, and Omicron variants. Fusion of µ-tp and KDEL to the ACE2 protein (ACE2 µK) had enhanced binding activity with SARS-CoV-2 in comparison with unmodified ACE2 protein derived from CHO cells. Furthermore, the plant-derived ACE2 µK protein exhibited no cytotoxic effects on Vero E6 cells and effectively inhibited SARS-CoV-2 infection. The efficient and rapid scalability of plant-derived ACE2 µK protein offers potential for the development of preventive and therapeutic agents in the early response to future viral outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Enzima de Conversão de Angiotensina 2/metabolismo , Proteínas de Plantas/metabolismo , Cricetulus , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo
7.
Adv Biol (Weinh) ; 7(12): e2300011, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37409415

RESUMO

The remarkable mechanical strength and extensibility of spider dragline silk spidroins are attributed to the major ampullate silk proteins (MaSp). Although fragmented MaSp molecules have been extensively produced in various heterologous expression platforms for biotechnological applications, complete MaSp molecules are required to achieve instinctive spinning of spidroin fibers from aqueous solutions. Here, a plant cell-based expression platform for extracellular production of the entire MaSp2 protein is developed, which exhibits remarkable self-assembly properties to form spider silk nanofibrils. The engineered transgenic Bright-yellow 2 (BY-2) cell lines overexpressing recombinant secretory MaSp2 proteins yield 0.6-1.3  µg L-1 at 22 days post-inoculation, which is four times higher than those of cytosolic expressions. However, only 10-15% of these secretory MaSp2 proteins are discharged into the culture media. Surprisingly, expression of functional domain-truncated MaSp2 proteins lacking the C-terminal domain in transgenic BY-2 cells increases recombinant protein secretion incredibly, from 0.9 to 2.8 mg L-1 per day within 7 days. These findings demonstrate significant improvement in the extracellular production of recombinant biopolymers such as spider silk spidroins using plant cells. In addition, the results reveal the regulatory roles of the C-terminal domain of MaSp2 proteins in controlling their protein quality and secretion.


Assuntos
Fibroínas , Seda , Serina Proteases Associadas a Proteína de Ligação a Manose , Proteínas Recombinantes/genética
8.
Front Plant Sci ; 14: 1298880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322423

RESUMO

Mycoplasma gallisepticum (MG) is responsible for chronic respiratory disease in avian species, characterized by symptoms like respiratory rales and coughing. Existing vaccines for MG have limited efficacy and require multiple doses. Certain MG cytoadherence proteins (GapA, CrmA, PlpA, and Hlp3) play a crucial role in the pathogen's respiratory tract colonization and infection. Plant-based proteins and therapeutics have gained attention due to their safety and efficiency. In this study, we designed a 21.4-kDa multi-epitope peptide vaccine (MEPV) using immunogenic segments from cytoadherence proteins. The MEPV's effectiveness was verified through computational simulations. We then cloned the MEPV, introduced it into the plant expression vector pSiM24-eGFP, and expressed it in Nicotiana benthamiana leaves. The plant-produced MEPV proved to be immunogenic when administered intramuscularly to chickens. It significantly boosted the production of immunoglobulin Y (IgY)-neutralizing antibodies against cytoadherence protein epitopes in immunized chickens compared to that in the control group. This preliminary investigation demonstrates that the plant-derived MEPV is effective in triggering an immune response in chickens. To establish an efficient poultry health management system and ensure the sustainability of the poultry industry, further research is needed to develop avian vaccines using plant biotechnology.

9.
Methods Mol Biol ; 2585: 211-225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36331777

RESUMO

Since its discovery in 1937 in the West Nile district of Uganda, West Nile virus (WNV) has been one of the leading causes of mosquito-transmitted infectious diseases (Smithburn, Burke, Am J Trop Med 20:22, 1940). Subsequently, it spread to Europe, Asia, Australia, and finally North America in 1999 (Sejvar, Ochsner 5(3):6-10, 2003). Worldwide outbreaks have continued to increase since the 1990s (Chancey et al, Biomed Res Int 2015:376230, 2015). According to the Center for Disease Control and Prevention, more than 51,000 cases of WNV infection and nearly 2400 cases of WNV-related death were reported in the USA from 1999 to 2019. The estimated economic impact of WNV infections is close to 800 million dollars in the USA from 1999 to 2012 (Barrett, Am J Trop Med Hyg 90:389, 2014).


Assuntos
Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Febre do Nilo Ocidental/prevenção & controle , Europa (Continente)/epidemiologia , Surtos de Doenças , Anticorpos
10.
Methods Mol Biol ; 2597: 235-250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374425

RESUMO

The proper glycosylation of glycoproteins is important for their structure and function. This is an especially important consideration when choosing a platform to express recombinant glycoproteins destined for therapeutic use. Chinese hamster ovary (CHO) cells have been the choice expression platform for their ability to produce recombinant glycoproteins with glycosylation profiles similar to those observed in humans. However, consistency with glycosylation has been noted as problematic, and sialylation, an important modification in human glycoproteins, has not been achieved to an acceptable degree in CHO cells. Plant biotechnology and glycoengineering has now made it possible to produce therapeutic recombinant glycoproteins in plants with glycosylation profiles observed in humans, including sialylation. Furthermore, the glycosylation profiles of recombinant therapeutic glycoproteins produced in plants are homogenous and consistently reproducible. Here, entirely via transient expression, two therapeutic monoclonal antibodies are produced in glycoengineered Nicotiana benthamiana plants that carry human glycosylation profiles including sialylation.


Assuntos
Produtos Biológicos , Cricetinae , Humanos , Animais , Glicosilação , Células CHO , Cricetulus , Proteínas Recombinantes/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo
11.
Plants (Basel) ; 11(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36235427

RESUMO

The problem with increasing the yield of recombinant proteins is resolvable using different approaches, including the transport of a target protein to cell compartments with a low protease activity. In the cell, protein targeting involves short-signal peptide sequences recognized by intracellular protein transport systems. The main systems of the protein transport across membranes of the endoplasmic reticulum and endosymbiotic organelles are reviewed here, as are the major types and structure of the signal sequences targeting proteins to the endoplasmic reticulum and its derivatives, to plastids, and to mitochondria. The role of protein targeting to certain cell organelles depending on specific features of recombinant proteins and the effect of this targeting on the protein yield are discussed, in addition to the main directions of the search for signal sequences based on their primary structure. This knowledge makes it possible not only to predict a protein localization in the cell but also to reveal the most efficient sequences with potential biotechnological utility.

12.
J Interferon Cytokine Res ; 42(2): 62-71, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171703

RESUMO

Interferons (IFNs) are divided into 3 types (type I, type II, and type III) on the basis of sequence homology and functional properties. Recombinant IFNs have been approved by regulatory agencies in many countries for clinical treatment of hepatitis B, hepatitis C, and other diseases; these IFNs are mainly produced in microorganisms and mammalian cell systems. However, there are serious obstacles to the production of recombinant IFNs in microorganism systems; for example, the recombinant IFN may have different glycosylation patterns from the native protein, be present in insoluble inclusion bodies, be contaminated with impurities such as endotoxins and nucleic acids, have a short half-life in human blood, and incur high production costs. Some medicinal proteins have been successfully expressed in plants and used in clinical applications, suggesting that plants may also be a good system for IFN expression. However, there are still many technical problems that need to be addressed before the clinical application of plant-expressed IFNs, such as increasing the amount of recombinant protein expression and ensuring that the IFN is modified with the correct type of glycosylation. In this article, we review the classification of IFNs, their roles in antiviral signal transduction pathways, their clinical applications, and their expression in plant systems.


Assuntos
Hepatite C , Interferon Tipo I , Animais , Antivirais , Hepacivirus , Humanos , Fatores Imunológicos , Interferons , Mamíferos , Transdução de Sinais
13.
Plants (Basel) ; 11(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35448821

RESUMO

The current COVID-19 pandemic very dramatically shows that the world lacks preparedness for novel viral diseases. In addition to newly emerging viruses, many known pathogenic viruses such as influenza are constantly evolving, leading to frequent outbreaks with severe diseases and deaths. Hence, infectious viruses are a recurrent burden to our daily life, and powerful strategies to stop the spread of human pathogens and disease progression are of utmost importance. Transient plant-based protein expression is a technology that allows fast and highly flexible manufacturing of recombinant viral proteins and, thus, can contribute to infectious disease detection and prevention. This review highlights recent progress in the transient production of viral glycoproteins in N. benthamiana with a focus on SARS-CoV-2-derived viral antigens.

14.
Artigo em Inglês | MEDLINE | ID: mdl-34805101

RESUMO

Plant-based transient expression systems have recognized potential for use as rapid and cost-effective alternatives to expression systems based on bacteria, yeast, insect, or mammalian cells. The free-floating aquatic plants of the Lemnaceae family (duckweed) have compact architecture and can be vegetatively propagated on low-cost nutrient solutions in aseptic conditions. These features provide an economically feasible opportunity for duckweed-based production of high-value products via transient expression of recombinant products in fully contained, controlled, aseptic and bio-safe conditions in accordance with the requirements for pharmaceutical manufacturing and environmental biosafety. Here, we demonstrated Agrobacterium-mediated high-yield transient expression of a reporter green fluorescent protein using deconstructed vectors based on potato virus X and sweet potato leaf curl virus, as well as conventional binary vectors, in two representatives of the Lemnaceae (Spirodela polyrhiza and Landoltia punctata). Aseptically cultivated duckweed populations yielded reporter protein accumulation of >1 mg/g fresh biomass, when the protein was expressed from a deconstructed potato virus X-based vector, which is capable of replication and cell-to-cell movement of the replicons in duckweed. The expression efficiency demonstrated here places duckweed among the most efficient host organisms for plant-based transient expression systems, with the additional benefits of easy scale-up and full containment.

15.
N Biotechnol ; 63: 29-36, 2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-33667631

RESUMO

Porcine circovirus type 2 (PCV2) is a non-enveloped, icosahedral virus of the Circoviridae family, with a small, circular, single-stranded DNA genome. PCV2 infections cause substantial economic losses in the pig industry worldwide. Currently, commercially produced PCV2 vaccines are expensive, whereas plant-based expression systems can produce recombinant proteins at low cost for use as vaccines. In this study, recombinant PCV2 capsid protein (rCap) was transiently expressed in Nicotiana benthamiana and purified by metal affinity chromatography, with a yield of 102 mg from 1 kg plant leaves. Electron microscopy confirmed that purified rCap self-assembled into virus-like particles (VLPs) at neutral pH. It was shown to provoke a strong immune response in guinea pigs. The results indicate that plant systems can enable production of large amounts of proteins to serve as candidates for subunit vaccines.


Assuntos
Anticorpos Neutralizantes/biossíntese , Proteínas do Capsídeo/biossíntese , Circovirus/química , Nicotiana/metabolismo , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Animais , Anticorpos Neutralizantes/química , Proteínas do Capsídeo/química , Cobaias , Nicotiana/química , Vacinas de Partículas Semelhantes a Vírus/química
16.
Mol Biotechnol ; 63(12): 1125-1137, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34398446

RESUMO

Plants are becoming useful platforms for recombinant protein production at present time. With the advancement of efficient molecular tools of genomics, proteomics, plants are now being used as a biofactory for production of different life saving therapeutics. Plant-based biofactory is an established production system with the benefits of cost-effectiveness, high scalability, rapid production, enabling post-translational modification, and being devoid of harmful pathogens contamination. This review introduces the main challenges faced by plant expression system: post-translational modifications, protein stability, biosafety concern and regulation. It also summarizes essential factors to be considered in engineering plants, including plant expression system, promoter, post-translational modification, codon optimization, and fusion tags, protein stabilization and purification, subcellular targeting, and making vaccines in an edible way. This review will be beneficial and informative to scholars and readers in the field of plant biotechnology.


Assuntos
Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Engenharia de Proteínas/métodos , Uso do Códon , Descoberta de Drogas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Estabilidade Proteica
17.
Biotechnol Rep (Amst) ; 29: e00605, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33732633

RESUMO

Virus-like particles (VLPs) are a class of structures formed by the self-assembly of viral capsid protein subunits and contain no infective viral genetic material. The Hepatitis B core (HBc) antigen is capable of assembling into VLPs that can elicit strong immune responses and has been licensed as a commercial vaccine against Hepatitis B. The HBc VLPs have also been employed as a platform for the presentation of foreign epitopes to the immune system and have been used to develop vaccines against, for example, influenza A and Foot-and-mouth disease. Plant expression systems are rapid, scalable and safe, and are capable of providing correct post-translational modifications and reducing upstream production costs. The production of HBc-based virus-like particles in plants would thus greatly increase the efficiency of vaccine production. This review investigates the application of plant-based HBc VLP as a platform for vaccine production.

18.
Methods Enzymol ; 660: 223-238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34742391

RESUMO

Recombinant proteins have a broad range of applications from basic research to pharmaceutical development. Of utmost importance in the production of recombinant proteins is the selection of the best recombinant protein production system, such that high-quality and functional recombinant proteins are produced. Plants can produce a large quantity of recombinant proteins rapidly and economically. Glycoengineering has created "humanized" plant lines that can produce glycoproteins with specific human glycans with a high level of homogeneity on demand. Here, a detailed protocol was provided to produce a large, multisubunit, and complex bispecific antibody that targets two distinct viruses. The successful production of this multiple-subunit protein demonstrated that plants are the optimal system for the production of recombinant proteins of various sizes and complexity, which can be employed for various applications including diagnostics, therapeutics, and vaccines to combat current and future pandemics.


Assuntos
Vírus Chikungunya , Dengue , Vírus Chikungunya/genética , Dengue/prevenção & controle , Humanos , Plantas , Proteínas Recombinantes
19.
Anim Cells Syst (Seoul) ; 23(2): 97-105, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30949396

RESUMO

Viral hemorrhagic septicemia (VHS) is an important infectious disease in fish worldwide caused by viral hemorrhagic septicemia virus (VHSV). VHSV is the causative agent of serious systemic diseases in fish, affecting a number of teleost fish species. In this study, VHSV glycoprotein (G), including its epitope, as a subunit vaccine candidate, was expressed in tobacco plant (Nicotiana tabacum). The recombinant gene, VHSVG, was fused to the immunoglobulin Fc fragment and extended with the endoplasmic reticulum (ER) retention signal (KDEL) to generate VHSVG-FcK. The recombinant expression vector for VHSVG-FcK was transferred into Agrobacterium tumefaciens (LBA4404), and plant transformation was conducted N. tabacum. Polymerase chain reaction (PCR) was performed to confirm gene insertion and VHSVG-FcK protein expression was confirmed by immunoblot analysis. VHSVG-FcK protein was successfully purified from tobacco plant leaves. Furthermore, ELISA analysis showed that mice serum immunized with the plant-derived VHSVG-FcK (VHSVGP-FcK) had a high absorbance against VHSVG-FcK, indicating that the plant-derived recombinant subunit vaccine protein VHSVG-FcK can induce immune response. Taken together, this recombinant vaccine protein can be expressed in plant expression systems and can be appropriately assembled to be functional in immunogenicity.

20.
Curr Pharm Des ; 24(12): 1317-1324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29521217

RESUMO

BACKGROUND: Influenza is a widely distributed infection that almost annually causes seasonal epidemics. The current egg-based platforms for influenza vaccine production are facing a number of challenges and are failing to satisfy the global demand in the case of pandemics due to the long production time. Recombinant vaccines are an alternative that can be quickly produced in high quantities in standard expression systems. METHODS: Plants may become a promising biofactory for the large-scale production of recombinant proteins due to low cost, scalability, and safety. Plant-based expression systems have been used to produce recombinant vaccines against influenza based on two targets; the major surface antigen hemagglutinin and the transmembrane protein M2. RESULTS: Different forms of recombinant hemagglutinin were successfully expressed in plants, and some plantproduced vaccines based on hemagglutinin were successfully tested in clinical trials. However, these vaccines remain strain specific, while the highly conserved extracellular domain of the M2 protein (M2e) could be used for the development of a universal influenza vaccine. In this review, the state of the art in developing plant-produced influenza vaccines based on M2e is presented and placed in perspective. A number of strategies to produce M2e in an immunogenic form in plants have been reported, including its presentation on the surface of plant viruses or virus-like particles formed by capsid proteins, linkage to bacterial flagellin, and targeting to protein bodies. CONCLUSION: Some M2e-based vaccine candidates were produced at high levels (up to 1 mg/g of fresh plant tissue) and were shown to be capable of stimulating broad-range protective immunity.


Assuntos
Produtos Biológicos/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Nicotiana/química , Animais , Produtos Biológicos/metabolismo , Humanos , Vacinas contra Influenza/biossíntese , Vacinas Sintéticas/biossíntese , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA