Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Appl Toxicol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950973

RESUMO

Interest in microalgae products for use in food is increasing, as demands for sustainable and cost-effective food choices grow due to the escalating global population and increase in climate-related struggles with agriculture. Toxicological assessments of some species of microalgae have been conducted, but there were little data available for the oral consumption of the red microalgae Porphyridium purpureum and no data on genotoxicity. This article articulates a genotoxicity assessment and a 90-day repeated dose oral toxicity study in rats performed according to OECD guidelines. Under the experimental conditions applied, the test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used in the bacterial reverse mutation test. Similarly, the test item did not induce structural chromosomal aberrations in V79 hamster lung cells. The test item also did not cause chromosomal damage in bone marrow of mice in the mammalian micronucleus test. The no observed adverse effect level (NOAEL) of the 90-day repeated dose oral toxicity study in rats was determined to be the highest dose tested, 3000 mg/kg bw/day. These data add to the body of evidence regarding the safety of P. purpureum for human consumption.

2.
Mar Drugs ; 22(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535479

RESUMO

Phycoerythrin and polysaccharides have significant commercial value in medicine, cosmetics, and food industries due to their excellent bioactive functions. To maximize the production of biomass, phycoerythrin, and polysaccharides in Porphyridium purpureum, culture media were supplemented with calcium gluconate (CG), magnesium gluconate (MG) and polypeptides (BT), and their optimal amounts were determined using the response surface methodology (RSM) based on three single-factor experiments. The optimal concentrations of CG, MG, and BT were determined to be 4, 12, and 2 g L-1, respectively. The RSM-based models indicated that biomass and phycoerythrin production were significantly affected only by MG and BT, respectively. However, polysaccharide production was significantly affected by the interactions between CG and BT and those between MG and BT, with no significant effect from BT alone. Using the optimized culture conditions, the maximum biomass (5.97 g L-1), phycoerythrin (102.95 mg L-1), and polysaccharide (1.42 g L-1) concentrations met and even surpassed the model-predicted maximums. After optimization, biomass, phycoerythrin, and polysaccharides concentrations increased by 132.3%, 27.97%, and 136.67%, respectively, compared to the control. Overall, this study establishes a strong foundation for the highly efficient production of phycoerythrin and polysaccharides using P. purpureum.


Assuntos
Gluconatos , Porphyridium , Ficoeritrina , Gluconato de Cálcio , Polissacarídeos
3.
Mar Drugs ; 22(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38786599

RESUMO

The purpose of this study was to examine the influence of 10 and 20 nm nanoparticles (AgNPs) on the growth and biochemical composition of microalga Porphyridium purpureum CNMN-AR-02 in two media which differ by the total amount of mineral salts (MM1 with 33.02 g/L and MM2 with 21.65 g/L). Spectrophotometric methods were used to estimate the amount of biomass and its biochemical composition. This study provides evidence of both stimulatory and inhibitory effects of AgNPs on different parameters depending on the concentration, size, and composition of the nutrient medium. In relation to the mineral medium, AgNPs exhibited various effects on the content of proteins (an increase up to 20.5% in MM2 and a decrease up to 36.8% in MM1), carbohydrates (a decrease up to 35.8% in MM1 and 39.6% in MM2), phycobiliproteins (an increase up to 15.7% in MM2 and 56.8% in MM1), lipids (an increase up to 197% in MM1 and no changes found in MM2), antioxidant activity (a decrease in both media). The composition of the cultivation medium has been revealed as one of the factors influencing the involvement of nanoparticles in the biosynthetic activity of microalgae.


Assuntos
Antioxidantes , Meios de Cultura , Nanopartículas Metálicas , Microalgas , Porphyridium , Prata , Porphyridium/efeitos dos fármacos , Porphyridium/metabolismo , Nanopartículas Metálicas/química , Meios de Cultura/química , Prata/química , Prata/farmacologia , Microalgas/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Biomassa
4.
Bioprocess Biosyst Eng ; 47(7): 1017-1026, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740635

RESUMO

The microalgae industry shows a promising future in the production of high-value products such as pigments, phycoerythrin, polyunsaturated fatty acids, and polysaccharides. It was found that polysaccharides have high biomedical value (such as antiviral, antibacterial, antitumor, antioxidative) and industrial application prospects (such as antioxidants). This study aimed to improve the polysaccharides accumulation of Porphyridium purpureum CoE1, which was effectuated by inorganic salt starvation strategy whilst supplying rich carbon dioxide. At a culturing temperature of 25 °C, the highest polysaccharide content (2.89 g/L) was achieved in 50% artificial seawater on the 12th day. This accounted for approximately 37.29% of the dry biomass, signifying a 25.3% increase in polysaccharide production compared to the culture in 100% artificial seawater. Subsequently, separation, purification and characterization of polysaccharides produced were conducted. Furthermore, the assessment of CO2 fixation capacity during the cultivation of P. purpureum CoE1 was conducted in a 10 L photobioreactor. This indicated that the strain exhibited an excellent CO2 fixation capacity of 1.66 g CO2/g biomass/d. This study proposed an efficient and feasible approach that not only increasing the yield of polysaccharides by P. purpureum CoE1, but also fixing CO2 with a high rate, which showed great potential in the microalgae industry and Bio-Energy with Carbon Capture and Storage.


Assuntos
Dióxido de Carbono , Polissacarídeos , Porphyridium , Porphyridium/metabolismo , Porphyridium/crescimento & desenvolvimento , Polissacarídeos/metabolismo , Dióxido de Carbono/metabolismo , Biomassa , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Fotobiorreatores
5.
Mar Drugs ; 20(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36005487

RESUMO

To solve the problem of antibiotic abuse in aquaculture and to utilize the application potential of antimicrobial peptides (AMPs), a chloroplast transformation system of Porphyridium purpureum was successfully constructed for effectively expressing two exogenous AMPs. The endogenous fragments of 16S rDNA/trnA-23S rDNA were used as flanking fragments for the homologous recombination in the chloroplast genome. Two AMPs encoded by the transformation vector were controlled by the native promoter psbB in a polycistron. The plasmids were transferred into P. purpureum via particle bombardment and the transformation vectors were screened using phosphinothricin (bar), a dominant selection marker under the control of the psbA promoter. Subsequently, in the positive transformed colonies, the exogenous fragments were found to be inserted in the flanking fragments directionally as expected and two foreign AMPs were successfully obtained. Finally, two exogenous peptides with antibacterial properties were obtained from the transformed strain. The two AMPs expressed by the transformed strain were shown to have similar inhibitory effects to antibiotics by inhibition tests. This suggested that AMPs can be introduced into aquaculture using baited microalgae, providing new ideas and ways to solve a series of aquaculture diseases caused by bacteria.


Assuntos
Porphyridium , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Cloroplastos/genética , DNA Ribossômico
6.
Mar Drugs ; 19(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064032

RESUMO

Porphyridium purpureum is a well-known Rhodophyta that recently has attracted enormous attention because of its capacity to produce many high-value metabolites such as the pigment phycoerythrin and several high-value fatty acids. Phycoerythrin is a fluorescent red protein-pigment commercially relevant with antioxidant, antimicrobial activity, and fluorescent properties. The volumetric mass transfer coefficient (kLa) was kept constant within the different scaling-up stages in the present study. This scaling-up strategy was sought to maintain phycoerythrin production and other high-value metabolites by Porphyridium purpureum, using hanging-bag photobioreactors. The kLa was monitored to ensure the appropriate mixing and CO2 diffusion in the entire culture during the scaling process (16, 80, and 400 L). Then, biomass concentration, proteins, fatty acids, carbohydrates, and phycoerythrin were determined in each step of the scaling-up process. The kLa at 16 L reached a level of 0.0052 s-1, while at 80 L, a value of 0.0024 s-1 was achieved. This work result indicated that at 400 L, 1.22 g L-1 of biomass was obtained, and total carbohydrates (117.24 mg L-1), proteins (240.63 mg L-1), and lipids (17.75% DW) were accumulated. Regarding fatty acids production, 46.03% palmitic, 8.03% linoleic, 22.67% arachidonic, and 2.55% eicosapentaenoic acid were identified, principally. The phycoerythrin production was 20.88 mg L-1 with a purity of 2.75, making it viable for food-related applications. The results of these experiments provide insight into the high-scale production of phycoerythrin via the cultivation of P. purpureum in an inexpensive and straightforward culture system.


Assuntos
Ácidos Graxos/biossíntese , Microalgas/crescimento & desenvolvimento , Ficoeritrina/biossíntese , Porphyridium/crescimento & desenvolvimento , Proteínas/metabolismo , Carboidratos/análise , Carboidratos/biossíntese , Ácidos Graxos/análise , Microalgas/metabolismo , Fotobiorreatores , Ficoeritrina/análise , Porphyridium/metabolismo , Proteínas/análise
7.
Bioprocess Biosyst Eng ; 44(7): 1491-1499, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33710454

RESUMO

The red alga Porphyridium purpureum has been known to produce polyunsaturated fatty acids, especially arachidonic acid (ARA), under stressful conditions. However, there is no consistent conclusion about the response of ARA in this alga to nitrogen (N) stress. Also, no research has been done to clearly elucidate the underlying molecular mechanisms of N stress. In this work, P. purpureum CoE1 was cultivated under nitrogen limitation conditions and the putative Δ5-desaturase related gene FADSD5 was isolated. The results showed that the fatty acids in P. purpureum CoE1 were significantly higher in the N limited cultures (54.3 mg g-1) than in the N-replete cultures (45.3 mg g-1) at the 18th day (t-test, p < 0.001), which was attributed to the upregulated abundance of the putative Δ5-desaturase related protein, Δ5-Des. The study also indicated that the expression of the putative Δ5-desaturase related gene, FADSD5, increased with cell growth, demonstrating considerable potentials for ARA biosynthesis in P. purpureum CoE1. These results might guide the direction in illuminating the biosynthetic pathway of fatty acids with molecular evidence and enable genetic modifications of P. purpureum CoE1 for enhancing the ARA accumulation.


Assuntos
Ácido Araquidônico/química , Nitrogênio/química , Porphyridium/metabolismo , Biomassa , Biotecnologia/métodos , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/química , Microbiologia Industrial/métodos , Modelos Lineares , Análise de Componente Principal , Regulação para Cima
8.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946676

RESUMO

The functional food market has been in a state of constant expansion due to the increasing awareness of the impact of the diet on human health. In the search for new natural resources that could act as a functional ingredient for the food industry, microalgae represent a promising alternative, considering their high nutritional value and biosynthesis of numerous bioactive compounds with reported biological properties. In the present work, the phytochemical profile, antioxidant activity, and enzymatic inhibitory effect aiming at different metabolic disorders (Alzheimer's disease, Type 2 diabetes, and obesity) were evaluated for the species Porphyridium purpureum, Chlorella vulgaris, Arthorspira platensis, and Nannochloropsis oculata. All the species presented bioactive diversity and important antioxidant activity, demonstrating the potential to be used as functional ingredients. Particularly, P. purpureum and N. oculata exhibited higher carotenoid and polyphenol content, which was reflected in their superior biological effects. Moreover, the species P. purpureum exhibited remarkable enzymatic inhibition for all the analyses.


Assuntos
Antioxidantes , Inibidores Enzimáticos , Microalgas/química , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Suínos
9.
Bioprocess Biosyst Eng ; 43(2): 347-355, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31606754

RESUMO

Porphyridium purpureum is a rich source for producing phycoerythrin (PE); however, the PE content is greatly affected by culture conditions. Researchers have aimed to optimize the cultivation of P. purpureum for accumulation of PE. When traditional optimized culture conditions were used to cultivate P. purpureum, high PE contents were not usually achieved. In this study, an induced cultivation pattern was applied to P. purpureum for PE biosynthesis (i.e., an incremental approach by altering temperatures, light intensities, and nitrate concentrations). Results revealed that the induced pattern greatly improved the PE biosynthesis. The optimized PE content of 229 mg/L was achieved on the 12th cultivation day, which was a maximum PE content within one cultivation period and accounted for approximately 3.05% of the dry biomass. The induced cultivation pattern was highly suitable for PE synthesis in P. purpureum, which provided an important reference value to the large-scale production of PE.


Assuntos
Biomassa , Luz , Ficoeritrina , Porphyridium/crescimento & desenvolvimento , Ficoeritrina/biossíntese , Ficoeritrina/química , Ficoeritrina/isolamento & purificação
10.
Photosynth Res ; 140(2): 173-188, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30276605

RESUMO

A mutated phytoene desaturase (pds) gene, pds-L504R, conferring resistance to the herbicide norflurazon has been reported as a dominant selectable marker for the genetic engineering of microalgae (Steinbrenner and Sandmann in Appl Environ Microbiol 72:7477-7484, 2006; Prasad et al. in Appl Microbiol Biotechnol 98(20):8629-8639, 2014). However, this mutated genomic clone harbors several introns and the entire expression cassette including its native promoter and terminator has a length > 5.6 kb, making it unsuitable as a standard selection marker. Therefore, we designed a synthetic, short pds gene (syn-pds-int) by removing introns and unwanted internal restriction sites, adding suitable restriction sites for cloning purposes, and introduced the first intron from the Chlamydomonas reinhardtii RbcS2 gene close to the 5'end without changing the amino acid sequence. The syn-pds-int gene (1872 bp) was cloned into pCAMBIA 1380 under the control of a short sequence (615 bp) of the promoter of pds (pCAMBIA 1380-syn-pds-int). This vector and the plasmid pCAMBIA1380-pds-L504R hosting the mutated genomic pds were used for transformation studies. To broaden the existing transformation portfolio, the rhodophyte Porphyridium purpureum was targeted. Agrobacterium-mediated transformation of P. purpureum with both the forms of pds gene, pds-L504R or syn-pds-int, yielded norflurazon-resistant (NR) cells. This is the first report of a successful nuclear transformation of P. purpureum. Transformation efficiency and lethal norflurazon dosage were determined to evaluate the usefulness of syn-pds-int gene and functionality of the short promoter of pds. PCR and Southern blot analysis confirmed transgene integration into the microalga. Both forms of pds gene expressed efficiently as evidenced by the stability, tolerance and the qRT-PCR analysis. The molecular toolkits and transformation method presented here could be used to genetically engineer P. purpureum for fundamental studies as well as for the production of high-value-added compounds.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Oxirredutases/genética , Porphyridium/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Núcleo Celular/genética , Herbicidas/farmacologia , Íntrons/genética , Oxirredutases/metabolismo , Plasmídeos/genética , Porphyridium/efeitos dos fármacos , Porphyridium/enzimologia , Piridazinas/farmacologia , Transformação Genética
11.
Biotechnol Lett ; 41(1): 91-106, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30430406

RESUMO

OBJECTIVE: To explore the atherogenic foam cell prevention efficiency of two dipeptides purified from Porphyridium purpureum on RAW 264.7 cell line and to study its molecular interaction through molecular docking. RESULT: P. purpureum consists of 29.9% protein and 2.98% phycoerythrin on a dry weight basis. The two dipeptides namely of Histidine-Glutamic acid (HE) and Glycine-Proline (GP) isolated from the total protein and purified phycoerythrin of P. purpureum respectively, were evaluated for atherogenic foam cell prevention capacity in RAW 264.7 cell line. The IC5O values of peptides were found to be 91.2 ± 1.81 µg/ml (GP), 103.3 ± 4.8 µg/ml (HE) in MTT assay. The two peptides reduce the foam cell formation, intracellular lipid accumulation (cholesterol and triglycerides) and the secretion of TNF-α and IL-6 which are inflammatory cytokines in RAW 264.7 cell line at non-cytotoxic concentrations. A molecular interaction study proposed the binding pose for GP and HE peptides targeting the scavenging receptors CD36, SRA1, and Map Kinase p38 (a protein mediator). CONCLUSIONS: The cell line and molecular docking study indicated that among the two dipeptides, peptide GP has the highest atherogenic foam cell prevention efficiency.


Assuntos
Aterosclerose , Simulação de Acoplamento Molecular , Peptídeos , Proteínas de Plantas , Porphyridium/química , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Antígenos CD36/metabolismo , Interleucina-6/metabolismo , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Bioprocess Biosyst Eng ; 40(12): 1763-1773, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28836004

RESUMO

The present study attempts to cultivate Porphyridium purpureum under different scale-up conditions for further development and commercialization of microalgae-derived PUFAs such as ARA and EPA. Different temperatures (25, 30, and 35 °C) and light intensities (70, 165, and 280 µmol/m2s) were applied to the 50 L pilot-scale cultivation of P. purpureum in ASW. The cultivation under the light intensity of 280 µmol/m2s at 35 °C obtained biomass concentration up to 9.52 g/L, total fatty acid content to 56.82 mg/g, and ARA content to 22.29 mg/g. While the maximum EPA content of 7.00 mg/g was achieved under the light intensity of 280 µmol/m2s at 25 °C and the highest ratio of UFAs to TFAs of 74.66% was also obtained in this trial. Both biomass concentration and TFAs content were improved by increasing light intensity and temperature. Moreover, the ratio of ARA to EPA was enhanced by increasing cultivation temperature under the light intensity of 280 µmol/m2s. In contrast with flask culture, the conversion of linoleic acid (C18:2) to ARA was enhanced in scale-up culture, leading to more ARA content. Phosphate limitation enhanced the synthesis of lipid and LPUFAs. Moreover, the biomass concentration and biosynthesis of palmitic acid were preferred by sufficient C (NaHCO3).


Assuntos
Ácido Araquidônico/metabolismo , Microalgas/metabolismo , Porphyridium/metabolismo , Biomassa , Luz , Microalgas/crescimento & desenvolvimento , Fosfatos/metabolismo , Porphyridium/crescimento & desenvolvimento , Temperatura
13.
World J Microbiol Biotechnol ; 33(4): 74, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28303457

RESUMO

Biomass production is currently explored in microalgae, macroalgae and land plants. Microalgal biofuel development has been performed mostly in green algae. In the Japanese tradition, macrophytic red algae such as Pyropia yezoensis and Gelidium crinale have been utilized as food and industrial materials. Researches on the utilization of unicellular red microalgae such as Cyanidioschyzon merolae and Porphyridium purpureum started only quite recently. Red algae have relatively large plastid genomes harboring more than 200 protein-coding genes that support the biosynthetic capacity of the plastid. Engineering the plastid genome is a unique potential of red microalgae. In addition, large-scale growth facilities of P. purpureum have been developed for industrial production of biofuels. C. merolae has been studied as a model alga for cell and molecular biological analyses with its completely determined genomes and transformation techniques. Its acidic and warm habitat makes it easy to grow this alga axenically in large scales. Its potential as a biofuel producer is recently documented under nitrogen-limited conditions. Metabolic pathways of the accumulation of starch and triacylglycerol and the enzymes involved therein are being elucidated. Engineering these regulatory mechanisms will open a possibility of exploiting the full capability of production of biofuel and high added-value oil. In the present review, we will describe the characteristics and potential of these algae as biotechnological seeds.


Assuntos
Biocombustíveis/microbiologia , Metabolismo dos Lipídeos , Rodófitas/crescimento & desenvolvimento , Biomassa , Genomas de Plastídeos , Redes e Vias Metabólicas , Microalgas/genética , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Plastídeos/genética , Rodófitas/genética , Rodófitas/metabolismo
14.
BMC Genomics ; 17(1): 612, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27516065

RESUMO

BACKGROUND: Porphyridium purpureum has been utilized in important industrial and pharmaceutical fields. The identification of microRNAs (miRNAs) in this unique species is of great importance: such identification can help fill gaps in the small RNA (sRNA) studies of this organism and help to elucidate essential biological processes and their regulation mechanisms in this special micro alga. RESULTS: In this study, 254 high-confidence miRNAs (203 conserved miRNAs and 51 novel miRNAs) were identified by sRNA deep sequencing (sRNA-seq) combined with bioinformatics. A total of 235 putative miRNA families were predicted, including 192 conserved families and 43 species-specific families. The conservation and diversity of predicted miRNA families were analysed in different plant species. Both the 100 % northern blot validation rate (VR) of four randomly selected miRNAs and the results of stem-loop quantitative real time RT-PCR (qRT-PCR) assays of 25 randomly selected miRNAs demonstrated that the majority of the miRNAs identified in this study are credible. A total of 14,958 and 2184 genes were predicted to be targeted by the 186 conserved and 41 novel miRNAs. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that some target genes likely provide valuable references for further understanding of vital functions in P. purpureum. In addition, a cytoscape network will provide some clues for research into the complex biological processes that occur in this unique alga. CONCLUSIONS: We first identified a large set of conserved and novel miRNAs in P. purpureum. The characteristic and validation analysis on miRNAs demonstrated authenticity of identification data. Functional annotation of target genes and metabolic pathways they involved in illuminated the direction for further utilization and development this micro alga based on its unique properties.


Assuntos
Proteínas de Algas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , MicroRNAs/genética , Porphyridium/genética , RNA de Plantas/genética , Biologia Computacional , Sequência Conservada , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular
15.
Bioprocess Biosyst Eng ; 39(7): 1129-36, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27004948

RESUMO

Polyunsaturated fatty acids (PUFAs) are highly appreciated on their nutritive value for human health and aquaculture. P. purpureum, one of the red microalgae acknowledged as a promising accumulator of ARA, was chosen as the target algae in the present research. Effects of sodium bicarbonate (0.04-1.2 g/L), temperature (25, 30 and 33 °C) and phosphate (0.00-0.14 g/L) on biomass yield, total fatty acids (TFA) and arachidonic acid (ARA) accumulation were investigated systemically. NaHCO3 dose of 0.8 g/L and moderate temperature of 30 °C were preferred. In addition, TFA and ARA production were significantly enhanced by an appropriate concentration of phosphate, and the highest TFA yield of 666.38 mg/L and ARA yield of 159.74 mg/L were obtained at a phosphate concentration of 0.035 g/L. Interestingly, with phosphate concentration continuing to fall, UFA/TFA and ARA/EPA ratios were increased accordingly, suggesting that phosphate limitation promoted unsaturated fatty acids and arachidonic acid biosynthesis. Low concentration of phosphate may be favored to increase the enzymatic activities of ∆6-desaturase, which played a key role in catalyzing the conversion of C16:0 to C18:2, and thus the selectivity of UFA increased. Meanwhile, the increase of ARA selectivity could be attributed to ω6 pathway promotion and ∆17-desaturase activity inhibition with phosphate limitation. Phosphate limitation strategy enhanced unsaturated fatty acids and ARA biosynthesis in P. purpureum, and can be applied in commercial scale manufacturing and commercialization of ARA.


Assuntos
Ácido Araquidônico/biossíntese , Ácidos Graxos Insaturados/metabolismo , Fosfatos/metabolismo , Porphyridium/metabolismo , Biomassa , Temperatura
16.
Aquat Toxicol ; 272: 106960, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761586

RESUMO

Microplastics (MPs) pollution and seawater acidification have increasingly become huge threats to the ocean ecosystem. Their impacts on microalgae are of great importance, since microalgae are the main primary producers and play a critical role in marine ecosystems. However, the impact of microplastics and acidification on unicellular red algae, which have a unique phycobiliprotein antenna system, remains unclear. Therefore, the impacts of polystyrene-MPs alone and the combined effects of MPs and seawater acidification on the typical unicellular marine red algae Porphyridium purpureum were investigated in the current study. The result showed that, under normal seawater condition, microalgae densities were increased by 17.75-41.67 % compared to the control when microalgae were exposed to small-sized MPs (0.1 µm) at concentrations of 5-100 mg L-1. In addition, the photosystem II and antioxidant enzyme system were not subjected to negative effects. The large-sized MPs (1 µm) boosted microalgae growth at a low concentration of MPs (5 mg L-1). However, it was observed that microalgae growth was significantly inhibited when MPs concentration increased up to 50 and 100 mg L-1, accompanied by the remarkably reduced Fv/Fm value and the elevated levels of SOD, CAT enzymes, phycoerythrin (PE), and extracellular polysaccharide (EPS). Compared to the normal seawater condition, microalgae densities were enhanced by 52.11-332.56 % under seawater acidification, depending on MPs sizes and concentrations, due to the formed CO2-enrichment condition and appropriate pH range. PE content in microalgal cells was significantly enhanced, but SOD and CAT activities as well as EPS content markedly decreased under acidification conditions. Overall, the impacts of seawater acidification were more pronounced than MPs impacts on microalgae growth and physiological responses. These findings will contribute to a substantial understanding of the effects of MPs on marine unicellular red microalgae, especially in future seawater acidification scenarios.


Assuntos
Microplásticos , Fotossíntese , Rodófitas , Água do Mar , Poluentes Químicos da Água , Água do Mar/química , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Rodófitas/efeitos dos fármacos , Rodófitas/química , Concentração de Íons de Hidrogênio , Microplásticos/toxicidade , Microalgas/efeitos dos fármacos , Antioxidantes/metabolismo , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Porphyridium/efeitos dos fármacos , Acidificação dos Oceanos
17.
Bioresour Technol ; 374: 128771, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36822552

RESUMO

Porphyridium purpureum is a promising microalga species due to the content of various valuable compounds. In this study, specific irradiance parameter, representing the amount of light energy per unit of microalgae biomass, was introduced. The growth characteristics and pigments and protein accumulation of P. purpureum culture were investigated under semi-continuous mode. Varying dilution rate and surface irradiance resulted in a specific irradiance of 0.2-6.7 W g-1. Using mathematical modeling, we determined the patterns of changes in biomass, pigments, protein content and productivity of P. purpureum culture depending on specific irradiance. The content of target compounds was maximized under the lowest level of specific irradiance (0.2-1.2 W g-1), while the highest productivity of this components was reached under 1.2-1.7 W g-1. Overall, lower irradiance levels were favorable for P. purpureum cultivation based on the energy consumption and production characteristics of this species.


Assuntos
Microalgas , Porphyridium , Rodófitas , Porphyridium/metabolismo , Biomassa , Microalgas/metabolismo , Modelos Teóricos
18.
Biotechnol Rep (Amst) ; 38: e00798, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37181274

RESUMO

Herpes simplex virus type 2 (HSV-2) is a human infectious agent with significant impact on public health due to its high prevalence in the population and its ability to elicit a wide range of diseases, from mild to severe. Although several antiviral drugs, such as acyclovir, are currently available to treat HSV-2-related clinical manifestations, their effectiveness is poor. Therefore, the identification and development of new antiviral drugs against HSV-2 is necessary. Seaweeds are attractive candidates for such purposes because they are a vast source of natural products due to their highly diverse compounds, many with demonstrated biological activity. In this study, we evaluated the in vitro antiviral potential of red algae extracts obtained from Agarophyton chilense, Mazzaella laminarioides, Porphyridium cruentum, and Porphyridium purpureum against HSV-2. The phycocolloids agar and carrageenan obtained from the macroalgae dry biomass of A. chilense and M. laminarioides and the exopolysaccharides from P. cruentum and P. purpureum were evaluated. The cytotoxicity of these extracts and the surpluses obtained in the extraction process of the agar and carrageenans were evaluated in human epithelial cells (HeLa cells) in addition to their antiviral activity against HSV-2, which were used to calculate selectivity indexes (SIs). Several compounds displayed antiviral activity against HSV-2, but carrageenans were not considered as a potential antiviral therapeutic agent when compared to the other algae extracts with a SI of 23.3. Future assays in vivo models for HSV-2 infection should reveal the therapeutic potential of these algae compounds as new antivirals against this virus.

19.
Microorganisms ; 10(11)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363716

RESUMO

Red microalga Porphyridium purpureum (Bory) Drew is a well-known object of biotechnology due to its unique ability to synthesize a wide range of biologically active compounds. Enough minerals in an accessible form in a medium are a prerequisite for maintaining a high growth rate of P. purpureum. Carbon is the main element of microalgal biomass and is a component of all organic compounds. The work aimed to study the morphological features of cells and the accumulation and production of B-phycoerythrin and total protein in P. purpureum biomass in different ways of supplying CO2 into the culture. In Variant 1, CO2 was directly injected into a gas-air mixture (2-3 percent v/v) used for culture bubbling via capillary. In Variant 2, the air was supplied to the culture through the aquarium sparger. Variant 3 was like the first one but without the additional introduction of carbon dioxide. The application of the method for sparging atmospheric air led to a significant increase in both the productivity of the P. purpureum and the rate of protein and B-phycoerythrin synthesis in comparison with growing it using the air without spraying (two-and-a-half times, five times, and more than eight times, respectively). Moreover, there were significant changes in the morphological structure of P. purpureum cells, which were visualized both by microscopy and by changes in the color of the culture. Based on the experimental data obtained, the variants for the carbon supply experiment were ranked as follows: Variant 1 is better than Variant 2 and Variant 3. The use of atomization as a technological method made it possible to speed up the transfer of carbon dioxide from the air to the medium, which helped to keep the growth rate of P. purpureum biomass and B-phycoerythrin accumulation high.

20.
Life (Basel) ; 12(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36362988

RESUMO

Phycobilisomes in cyanobacteria and red algae are large protein complexes that absorb light and transfer energy for use in photosynthesis. The light energy absorbed by chromophores binding to phycobiliproteins in the peripheral rods can be funneled to the core through chromophores at very high efficiency. The molecular mechanism of excitation energy transfer within a phycobilisome is an example of a higher and unique function in a living organism. However, the mechanism underlying the high efficiency remains unclear. Thus, this study was carried out as a step to resolve this mechanism theoretically. The three-dimensional structure of phycobilisomes containing the linker proteins of the red alga Porphyridium purpureum was determined by cryoelectron microscopy at 2.82 Å resolution in 2020. Using these data, the absorption wavelength of each ß82 chromophore in the phycocyanin hexamer located next to the core was calculated using quantum chemical treatment, considering the electric effect from its surrounding phycocyanin proteins and two linker proteins. In addition to unaffected chromophores, chromophores that were redshifted and blueshifted under the electrical influence of the two linker proteins were found. Namely, the chromophore serving as the energy sink in the rod was determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA