Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.751
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34992142

RESUMO

Bacterial behavior and virulence during human infection is difficult to study and largely unknown, as our vast knowledge of infection microbiology is primarily derived from studies using in vitro and animal models. Here, we characterize the physiology of Porphyromonas gingivalis, a periodontal pathogen, in its native environment using 93 published metatranscriptomic datasets from periodontally healthy and diseased individuals. P. gingivalis transcripts were more abundant in samples from periodontally diseased patients but only above 0.1% relative abundance in one-third of diseased samples. During human infection, P. gingivalis highly expressed genes encoding virulence factors such as fimbriae and gingipains (proteases) and genes involved in growth and metabolism, indicating that P. gingivalis is actively growing during disease. A quantitative framework for assessing the accuracy of model systems showed that 96% of P. gingivalis genes were expressed similarly in periodontitis and in vitro midlogarithmic growth, while significantly fewer genes were expressed similarly in periodontitis and in vitro stationary phase cultures (72%) or in a murine abscess infection model (85%). This high conservation in gene expression between periodontitis and logarithmic laboratory growth is driven by overall low variance in P. gingivalis gene expression, relative to other pathogens including Pseudomonas aeruginosa and Staphylococcus aureus Together, this study presents strong evidence for the use of simple test tube growth as the gold standard model for studying P. gingivalis biology, providing biological relevance for the thousands of laboratory experiments performed with logarithmic phase P. gingivalis Furthermore, this work highlights the need to quantitatively assess the accuracy of model systems.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Periodontite/microbiologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/metabolismo , Animais , Fímbrias Bacterianas/metabolismo , Cisteína Endopeptidases Gingipaínas , Humanos , Laboratórios , Camundongos , Porphyromonas gingivalis/patogenicidade , Transcriptoma , Virulência/genética , Fatores de Virulência
2.
J Infect Dis ; 229(1): 262-272, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855446

RESUMO

Periodontitis is an exemplar of dysbiosis associated with the coordinated action of multiple members within the microbial consortium. The polymicrobial synergy and dysbiosis hypothesis proposes a dynamic host-microbiome balance, with certain modulators capable of disrupting eubiosis and driving shifts towards dysbiosis within the community. However, these factors remain to be explored. We established a Porphyromonas gingivalis- or Aggregatibacter actinomycetemcomitans-modified subgingival microbiome model and 16S rRNA sequencing revealed that P. gingivalis and A. actinomycetemcomitans altered the microbiome structure and composition indicated by α and ß diversity metrics. P. gingivalis increased the subgingival dysbiosis index (SDI), while A. actinomycetemcomitans resulted in a lower SDI. Furthermore, P. gingivalis-stimulated microbiomes compromised epithelium function and reduced expression of tight junction proteins, whereas A. actinomycetemcomitans yielded mild effects. In conclusion, by inoculating P. gingivalis, we created dysbiotic microcosm biofilms in vitro resembling periodontitis-related subgingival microbiota, exhibiting enhanced dysbiosis and impaired epithelium integrity.


Assuntos
Microbiota , Periodontite , Humanos , Porphyromonas gingivalis , Aggregatibacter actinomycetemcomitans/genética , RNA Ribossômico 16S/genética , Disbiose
3.
J Cell Mol Med ; 28(1): e18064, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031653

RESUMO

With the increasing incidence of oral cancer in the world, it has become a hotspot to explore the pathogenesis and prevention of oral cancer. It has been proved there is a strong link between periodontal pathogens and oral cancer. However, the specific molecular and cellular pathogenic mechanisms remain to be further elucidated. Emerging evidence suggests that periodontal pathogens-induced epithelial-mesenchymal transition (EMT) is closely related to the progression of oral cancer. Cells undergoing EMT showed increased motility, aggressiveness and stemness, which provide a pro-tumour environment and promote malignant metastasis of oral cancer. Plenty of studies proposed periodontal pathogens promote carcinogenesis via EMT. In the current review, we discussed the association between the development of oral cancer and periodontal pathogens, and summarized various mechanisms of EMT caused by periodontal pathogens, which are supposed to play an important role in oral cancer, to provide targets for future research in the fight against oral cancer.


Assuntos
Neoplasias Bucais , Porphyromonas gingivalis , Humanos , Neoplasias Bucais/patologia , Transição Epitelial-Mesenquimal , Carcinogênese , Fusobacterium nucleatum
4.
Infect Immun ; 92(3): e0034423, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38376159

RESUMO

As one of the keystone pathogens of periodontitis, the oral bacterium Porphyromonas gingivalis produces an array of virulence factors, including a recently identified sialidase (PG0352). Our previous report involving loss-of-function studies indicated that PG0352 plays an important role in the pathophysiology of P. gingivalis. However, this report had not been corroborated by gain-of-function studies or substantiated in different P. gingivalis strains. To fill these gaps, herein we first confirm the role of PG0352 in cell surface structures (e.g., capsule) and serum resistance using P. gingivalis W83 strain through genetic complementation and then recapitulate these studies using P. gingivalis ATCC33277 strain. We further investigate the role of PG0352 and its counterpart (PGN1608) in ATCC33277 in cell growth, biofilm formation, neutrophil killing, cell invasion, and P. gingivalis-induced inflammation. Our results indicate that PG0352 and PGN1608 are implicated in P. gingivalis cell surface structures, hydrophobicity, biofilm formation, resistance to complement and neutrophil killing, and host immune responses. Possible molecular mechanisms involved are also discussed. In summary, this report underscores the importance of sialidases in the pathophysiology of P. gingivalis and opens an avenue to elucidate their underlying molecular mechanisms.


Assuntos
Periodontite , Porphyromonas gingivalis , Humanos , Virulência , Neuraminidase/genética , Neuraminidase/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Periodontite/microbiologia
5.
Emerg Infect Dis ; 30(10): 2214-2217, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39320242

RESUMO

A 61-year-old man in Japan with abdominal pain was suspected of having a renal tumor. Despite initial treatment, his condition rapidly deteriorated, leading to death. Postmortem examination revealed a renal abscess and sepsis caused by Porphyromonas gingivalis. This case underscores the need to consider atypical pathogens in renal masses.


Assuntos
Abscesso , Infecções por Bacteroidaceae , Hemorragia , Porphyromonas gingivalis , Humanos , Masculino , Pessoa de Meia-Idade , Porphyromonas gingivalis/isolamento & purificação , Evolução Fatal , Japão , Hemorragia/etiologia , Hemorragia/microbiologia , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/diagnóstico , Infecções por Bacteroidaceae/tratamento farmacológico , Abscesso/microbiologia , Abscesso/diagnóstico , Nefropatias/microbiologia
6.
Curr Issues Mol Biol ; 46(4): 2991-3004, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38666917

RESUMO

Frankincense is produced by Boswellia trees, which can be found throughout the Middle East and parts of Africa and Asia. Boswellia serrata extract has been shown to have anti-cancer, anti-inflammatory, and antimicrobial effects. Periodontitis is an oral chronic inflammatory disease that affects nearly half of the US population. We investigated the antimicrobial effects of B. serrata extract on two oral pathogens associated with periodontitis. Using the minimum inhibitory concentration and crystal violet staining methods, we demonstrated that Porphyromonas gingivalis growth and biofilm formation were impaired by treatment with B. serrata extracts. However, the effects on Fusobacterium nucleatum growth and biofilm formation were not significant. Using quantification of colony-forming units and microscopy techniques, we also showed that concentrations of B. serrata that were not toxic for host cells decreased intracellular P. gingivalis infection in human gingival epithelial cells. Our results show antimicrobial activity of a natural product extracted from Boswellia trees (B. serrata) against periodontopathogens. Thus, B. serrata has the potential for preventing and/or treating periodontal diseases. Future studies will identify the molecular components of B. serrata extracts responsible for the beneficial effects.

7.
Clin Immunol ; 258: 109859, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065368

RESUMO

The pathogenic anti-citrullinated protein antibodies (ACPA) are thought to play a vital role in the initiation and immune maintenance of rheumatoid arthritis (RA). However, it is noteworthy that ACPA is not a salient characteristic of any conventional RA animal model. Porphyromonas gingivalis (Pg) is the first microorganism identified to induce citrullination and a target of autoantibodies in early rheumatoid arthritis (RA). Thus, we employed C3H mice with specific MHC types and combined Pg infection with collagen immunity to develop an animal model of ACPA-positive RA. The resulting model exhibited citrullination characteristics, as well as pathological and immune cell changes. 1) Mice showed a significant increase in ACPA levels, and various organs and tissues exhibited elevated levels of citrullinated protein. 2) The mice experienced heightened pain, inflammation, and bone destruction. 3) The spleen and lymph nodes of the mice showed a significant increase in the proportion of Tfh-GCB cell subpopulations responsible for regulating autoantibody production. In conclusion, the C3H mouse model of Pg infection with collagen immunity demonstrated significant alterations in ACPA levels, citrullinated protein expression, and immune cell subpopulations, which could be a crucial factor leading to increased pain, inflammation, and bone destruction.


Assuntos
Artrite Reumatoide , Porphyromonas gingivalis , Animais , Camundongos , Camundongos Endogâmicos C3H , Autoanticorpos , Imunização , Inflamação , Colágeno , Dor
8.
Biochem Biophys Res Commun ; 707: 149783, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38493746

RESUMO

Ingestion of Porphyromonas gingivalis, a periodontal pathogen, disrupts the intestinal barrier in mice. However, the involvement of outer membrane vesicles (OMVs) secreted from P. gingivalis in the destruction of the intestinal barrier remains unclear. In this study, we tested the hypothesis that OMVs carrying gingipains, the major cysteine proteases produced by P. gingivalis, affects the intestinal barrier function. OMVs increased the permeability of the Caco-2 cell monolayer, a human intestinal epithelial cell line, accompanied by degradation of the tight junction protein occludin. In contrast, OMVs prepared from mutant strains devoid of gingipains failed to induce intestinal barrier dysfunction or occludin degradation in Caco-2 cells. A close histological examination revealed the intracellular localization of gingipain-carrying OMVs. Gingipain activity was detected in the cytosolic fraction of Caco-2 cells after incubation with OMVs. These results suggest that gingipains were internalized into intestinal cells through OMVs and transported into the cytosol, where they then directly degraded occludin from the cytosolic side. Thus, P. gingivalis OMVs might destroy the intestinal barrier and induce systemic inflammation via OMV itself or intestinal substances leaked into blood vessels, causing various diseases.


Assuntos
Adesinas Bacterianas , Porphyromonas gingivalis , Animais , Camundongos , Humanos , Cisteína Endopeptidases Gingipaínas/metabolismo , Células CACO-2 , Porphyromonas gingivalis/fisiologia , Citosol/metabolismo , Ocludina/metabolismo , Adesinas Bacterianas/metabolismo
9.
BMC Cancer ; 24(1): 534, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671413

RESUMO

BACKGROUND: While there is an understanding of the association between the expression of Porphyromonas gingivalis (P. gingivalis) and prognosis of oral squamous cell carcinoma (OSCC), significance specially to address the relevance between different immunohistochemical intensities of P. gingivalis and tumor-associated macrophages (TAMs) in OSCC tissue and related clinicopathologic characteristics has not been well investigated. The present study aimed to investigate the pathological features related to M2-TAM in P. gingivalis-infected OSCC and ascertain its clinical relevance with patients' prognosis. METHODS: A prospective cohort study was designed to comparatively analyze 200 patients from June 2008 to June 2020. Bioinformatics analyses were implemented to identify DOK3 as a key molecule and to appraise immunocyte infiltration using Gene Expression Omnibus and The Cancer Genome Atlas databases. Immunohistochemical evaluation was performed to analyze the association between the expression levels of P. gingivalis, DOK3, and M2-TAM and clinicopathological variables using Fisher's exact test or Pearson's chi-square test. Cox analysis was used to calculate hazard ratios (HR) with corresponding 95% confidence interval (CI) for various clinicopathological features. The Kaplan-Meier approach and log-rank test were used to plot the survival curves. RESULTS: The expression level of P. gingivalis was positively associated with DOK3 and M2-TAMs expression level (P < 0.001). Parameters, including body mass index, clinical stage, recurrence, tumor differentiation, and P. gingivalis, DOK3, and M2-TAM immunoexpression levels, affected the prognosis of patients with OSCC (all P < 0.05). In addition, P. gingivalis (HR = 1.674, 95%CI 1.216-4.142, P = 0.012), DOK3 (HR = 1.881, 95%CI 1.433-3.457, P = 0.042), and M2-TAM (HR = 1.649, 95%CI 0.824-3.082, P = 0.034) were significantly associated with the 10-year cumulative survival rate. CONCLUSIONS: Elevated expression of P. gingivalis and DOK3 indicates M2-TAM infiltration and unfavorable prognosis of OSCC, and could be considered as three novel independent risk factors for predicting the prognosis of OSCC.


Assuntos
Infecções por Bacteroidaceae , Neoplasias Bucais , Porphyromonas gingivalis , Macrófagos Associados a Tumor , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/imunologia , Biomarcadores Tumorais/metabolismo , China/epidemiologia , Neoplasias Bucais/microbiologia , Neoplasias Bucais/patologia , Neoplasias Bucais/mortalidade , Neoplasias Bucais/imunologia , Prognóstico , Estudos Prospectivos , Macrófagos Associados a Tumor/imunologia
10.
Anal Biochem ; 687: 115425, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38092295

RESUMO

OBJECTIVE: A practical visual detection method was established to detect Porphyromonas gingivalis (P. gingivalis) by employing a combination of recombinase polymerase amplification and lateral flow strips (RPA-LF) assay, designed for conducting point-of-care testing in clinical settings. METHODS: Primers and probes targeting the P. gingivalis pepO gene were designed. The RPA-LF assay was established by optimising reaction temperature and time, determining the limit of detection (LOD). The specificity of the method was determined by assessing its cross-reactivity with deoxyribonucleic acid from 23 pathogenic bacteria. Finally, the clinical samples from healthy controls (n = 30) and individuals with periodontitis (n = 31) were analysed. The results were compared with those obtained using real-time polymerase chain reaction (PCR). RESULTS: The optimal reaction temperature and time were 39 °C and 12 min. The method exhibited a LOD at 6.40 × 10-4 µg/mL and demonstrated high specificity and sensitivity during cross-reactivity assessment. The RPA-LF assay achieved a P. gingivalis detection rate of 84 % in individuals with periodontitis and 3 % in healthy controls. The results were consistent with those obtained through real-time PCR. CONCLUSION: An RPA-LF assay was developed for detecting P. gingivalis, characterised by its high sensitivity, high specificity, simple operational procedure, and rapid reaction time.


Assuntos
Periodontite , Recombinases , Humanos , Recombinases/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Porphyromonas gingivalis/genética , Sensibilidade e Especificidade , Nucleotidiltransferases
11.
FASEB J ; 37(7): e22981, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246607

RESUMO

Oral and gut microbiomes are important for the maintenance of homeostasis in the human body. Altered or disturbed mutualism between their members results in dysbiosis with local injury and subsequent systemic diseases. The high bacterial density causes intense competition among microbiome residents to acquire nutrients, including iron and heme, the latter of high importance for heme auxotrophic members of the Bacteroidetes phylum. Our main hypothesis is that the heme acquisition mechanism, with the leading role played by a novel HmuY family of hemophore-like proteins, can be used to fulfill nutritional requirements and increase virulence. We characterized HmuY homologs expressed by Bacteroides fragilis and compared their properties with the first representative of this family, the HmuY protein of Porphyromonas gingivalis. In contrast to other Bacteroidetes members, B. fragilis produces three HmuY homologs (Bfr proteins). All bfr transcripts were produced at higher levels in bacteria starved of iron and heme (fold change increase ~60, ~90, and ~70 for bfrA, bfrB, and bfrC, respectively). X-ray protein crystallography showed that B. fragilis Bfr proteins are structurally similar to P. gingivalis HmuY and to other homologs, except for differences in the potential heme-binding pockets. BfrA binds heme, mesoheme, and deuteroheme, but preferentially under reducing conditions, using Met175 and Met146 to coordinate heme iron. BfrB binds iron-free protoporphyrin IX and coproporphyrin III, whereas BfrC does not bind porphyrins. HmuY is capable of heme sequestration from BfrA, which might increase the ability of P. gingivalis to cause dysbiosis also in the gut microbiome.


Assuntos
Microbioma Gastrointestinal , Porphyromonas gingivalis , Humanos , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Disbiose , Heme/metabolismo , Proteínas de Bactérias/metabolismo
12.
Biomed Microdevices ; 26(2): 20, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430318

RESUMO

Polymerase chain reaction (PCR) has been considered as the gold standard for detecting nucleic acids. The simple PCR system is of great significance for medical applications in remote areas, especially for the developing countries. Herein, we proposed a low-cost self-assembled platform for microchamber PCR. The working principle is rotating the chamber PCR microfluidic chip between two heaters with fixed temperature to solve the problem of low temperature variation rate. The system consists of two temperature controllers, a screw slide rail, a chamber array microfluidic chip and a self-built software. Such a system can be constructed at a cost of about US$60. The micro chamber PCR can be finished by rotating the microfluidic chip between two heaters with fixed temperature. Results demonstrated that the sensitivity of the temperature controller is 0.1℃. The relative error of the duration for the microfluidic chip was 0.02 s. Finally, we successfully finished amplification of the target gene of Porphyromonas gingivalis in the chamber PCR microfluidic chip within 35 min and on-site detection of its PCR products by fluorescence. The chip consisted of 3200 cylindrical chambers. The volume of reagent in each volume is as low as 0.628 nL. This work provides an effective method to reduce the amplification time required for micro chamber PCR.


Assuntos
Microfluídica , Microfluídica/métodos , Temperatura , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase/métodos
13.
Arch Microbiol ; 206(6): 244, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702412

RESUMO

Aggregatibacter actinomycetemcomitans is an opportunistic Gram-negative periodontopathogen strongly associated with periodontitis and infective endocarditis. Recent evidence suggests that periodontopathogens can influence the initiation and progression of oral squamous cell carcinoma (OSCC). Herein we aimed to investigate the effect of A. actinomycetemcomitans-derived extracellular vesicles (EVs) on OSCC cell behavior compared with EVs from periodontopathogens known to associate with carcinogenesis. EVs were isolated from: A. actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin (CDT) or lipopolysaccharide (LPS) O-antigen; Porphyromonas gingivalis; Fusobacterium nucleatum; and Parvimonas micra. The effect of EVs on primary and metastatic OSCC cells was assessed using cell proliferation, apoptosis, migration, invasion, and tubulogenesis assays. A. actinomycetemcomitans-derived EVs reduced the metastatic cancer cell proliferation, invasion, tubulogenesis, and increased apoptosis, mostly in CDT- and LPS O-antigen-dependent manner. EVs from F. nucleatum impaired the metastatic cancer cell proliferation and induced the apoptosis rates in all OSCC cell lines. EVs enhanced cancer cell migration regardless of bacterial species. In sum, this is the first study demonstrating the influence of A. actinomycetemcomitans-derived EVs on oral cancer in comparison with other periodontopathogens. Our findings revealed a potential antitumorigenic effect of these EVs on metastatic OSCC cells, which warrants further in vivo investigations.


Assuntos
Aggregatibacter actinomycetemcomitans , Apoptose , Proliferação de Células , Vesículas Extracelulares , Neoplasias Bucais , Aggregatibacter actinomycetemcomitans/genética , Vesículas Extracelulares/metabolismo , Neoplasias Bucais/microbiologia , Neoplasias Bucais/patologia , Humanos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Movimento Celular , Fusobacterium nucleatum/fisiologia , Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/patologia , Porphyromonas gingivalis/genética
14.
Inflamm Res ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164592

RESUMO

OBJECTIVE: Porphyromonas gingivalis (P. gingivalis), one of the major periodontopathogens, is associated with the progression and exacerbation of atherosclerosis. In this study, we aimed to investigate whether the gastrin-releasing peptide receptor antagonist, RC-3095, could attenuate P. gingivalis LPS-induced inflammatory responses in endothelial cells and macrophages, as well as atherosclerosis in an ApoE-/- mouse model treated with P. gingivalis LPS. METHODS: The effect of RC-3095 on P. gingivalis LPS-induced endothelial inflammation was examined using HUVECs and rat aortic endothelium. THP-1 cells were polarized into M1 macrophages by exposure to P. gingivalis LPS, with or without RC-3095. The effect of RC-3095 on atherosclerosis progression was assessed in high-fat-fed male ApoE-/- mice through injections of P. gingivalis LPS, RC-3095, or a combination of both. RESULTS: RC-3095 significantly reduced P. gingivalis LPS-induced leukocyte adhesion to endothelial cells and aortic endothelium by suppressing NF-κB-dependent expressions of ICAM-1 and VCAM-1. In addition, RC-3095 inhibited the P. gingivalis LPS-induced polarization of M1 macrophages by blocking the MAPK and NF-κB signaling pathways. Moreover, RC-3095 decreased the area of atherosclerotic lesions in ApoE-/- mice, which was accelerated by P. gingivalis LPS injection, and lowered the expressions of ICAM-1 and VCAM-1 in the aortic tissue of mice with atherosclerosis. CONCLUSIONS: RC-3095 can alleviate P. gingivalis LPS-induced endothelial inflammation, macrophage polarization, and atherosclerosis progression, suggesting its potential as a therapeutic approach for periodontal pathogen-associated atherosclerosis.

15.
Inflamm Res ; 73(5): 693-705, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38150024

RESUMO

BACKGROUND: The aim of this study was to investigate the impact of Porphyromonas gingivalis (P. gingivalis) on the progression of oral squamous cell carcinoma (OSCC) through neutrophil extracellular traps (NETs) in the tumor immune microenvironment. METHODS: The expression of NETs-related markers was identified through immunohistochemistry, immunofluorescence, and Western blotting in different clinical stages of OSCC samples. The relationship between NETs-related markers and clinicopathological characteristics in 180 samples was analyzed using immunohistochemistry data. Furthermore, the ability to predict the prognosis of OSCC patients was determined by ROC curve analysis and survival analysis. The effect of P. gingivalis on the release of NETs was identified through immunofluorescence and immunohistochemistry, both in vitro and in vivo. CAL27 and SCC25 cell lines were subjected to NETs stimulation to elucidate the influence of NETs on various cellular processes, including cell proliferation, migration, invasion, and metastasis in vitro. Furthermore, the impact of NETs on the growth and metastatic potential of OSCC was assessed using in vivo models involving tumor-bearing mice and tumor metastasis mouse models. RESULTS: Immunochemistry analysis revealed a significant correlation between the NETs-related markers and clinical stage, living status as well as TN stage. P. gingivalis has demonstrated its ability to effectively induce the release of NETs both in vivo and in vitro. NETs have the potential to facilitate cell migration, invasion, and colony formation. Moreover, in vivo experiments have demonstrated that NETs play a pivotal role in promoting tumor metastasis. CONCLUSION: High expression of NETs-related markers demonstrates a strong correlation with the progression of OSCC. Inhibition of the NETs release process stimulated by P. gingivalis and targeted NETs could potentially open up a novel avenue in the field of immunotherapy for patients afflicted with OSCC.


Assuntos
Carcinoma de Células Escamosas , Armadilhas Extracelulares , Neoplasias Bucais , Porphyromonas gingivalis , Microambiente Tumoral , Porphyromonas gingivalis/imunologia , Humanos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Microambiente Tumoral/imunologia , Animais , Neoplasias Bucais/imunologia , Neoplasias Bucais/patologia , Neoplasias Bucais/microbiologia , Linhagem Celular Tumoral , Feminino , Masculino , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Pessoa de Meia-Idade , Camundongos , Progressão da Doença , Camundongos Endogâmicos BALB C , Proliferação de Células , Movimento Celular , Camundongos Nus , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Neutrófilos/imunologia , Idoso
16.
BMC Infect Dis ; 24(1): 225, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378498

RESUMO

BACKGROUND: Fusobacterium nucleatum (F. nucleatum) belongs to the genus Fusobacterium, which is a gram-negative obligate anaerobic bacterium. Bacteremia associated with F. nucleatum is a serious complication, which is not common in clinic, especially when it is combined with other intracranial pathogenic microorganism infection. We reported for the first time a case of F. nucleatum bacteremia combined with intracranial Porphyromonas gingivalis (P. gingivalis) and herpes simplex virus type 1(HSV-1) infection. CASE PRESENTATION: A 60-year-old woman was admitted to our hospital with a headache for a week that worsened for 2 days. Combined with history, physical signs and examination, it was characterized as ischemic cerebrovascular disease (ICVD). F. nucleatum was detected in blood by matrix-assisted laser desorption/ionization time-offight mass spectrometry (MALDI-TOF-MS). Meanwhile, P. gingivalis and HSV-1 in cerebrospinal fluid (CSF) were identified by metagenome next generation sequencing (mNGS). After a quick diagnosis and a combination of antibiotics and antiviral treatment, the patient recovered and was discharged. CONCLUSION: To our knowledge, this is the first report of intracranial P. gingivalis and HSV-1 infection combined with F. nucleatum bacteremia.


Assuntos
Bacteriemia , Infecções por Fusobacterium , Herpes Simples , Herpesvirus Humano 1 , Feminino , Humanos , Pessoa de Meia-Idade , Porphyromonas gingivalis , Fusobacterium nucleatum , Herpesvirus Humano 1/genética , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Herpes Simples/complicações , Herpes Simples/diagnóstico , Herpes Simples/tratamento farmacológico , Bacteriemia/complicações , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/diagnóstico , Infecções por Fusobacterium/tratamento farmacológico
17.
J Periodontal Res ; 59(2): 395-407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311599

RESUMO

OBJECTIVE: The study aimed to investigate the change of amyloid precursor protein (APP) processing and amyloid ß (Aß) metabolites in linking periodontitis to Alzheimer's disease (AD). BACKGROUND: Aß is one of the main pathological features of AD, and few studies have discussed changes in its expression in peripheral tissues or analyzed the relationship between the peripheral imbalance of Aß production and clearance. METHODS: A murine model of periodontitis was established by oral infection with Porphyromonas gingivalis (P. gingivalis). Micro-computed tomography (Micro-CT) was used to observe the destruction of the alveolar bone. Nested quantitative polymerase chain reaction (qPCR) was used to measure small quantities of P.gingivalis DNA in different tissues. Behavioral experiments were performed to measure cognitive function in the mice. The mRNA levels of TNF-α, IL-6, IL-8, RANKL, OPG, APP695, APP751, APP770, and BACE1 in the gingival tissues or cortex were detected by RT-PCR. The levels of Aß1-40 and Aß1-42 in gingival crevicular fluid (GCF) and plasma were tested by ELISA. RESULTS: P. gingivalis oral infection was found to cause alveolar bone resorption and impaired learning and memory. P.gingivalis DNA was detected in the gingiva, blood and cortex of the P.gingivalis group by nested qPCR (p < .05). The mRNA expression of TNF-α, IL-6, IL-8, RANKL/OPG, and BACE1 in the gingival tissue was significantly higher than that in the control group (p < .05). Similarly, upregulated mRNA levels of APP695 and APP770 were observed in the gingival tissuses and cortex of the P. gingivalis group (p < .05). The levels of Aß1-40 and Aß1-42 in the GCF and plasma of the P. gingivalis group were significantly higher than those in the control group (p < .05). CONCLUSION: P. gingivalis can directly invade the brain via hematogenous infection. The invasion of P. gingivalis could trigger an immune response and lead to an imbalance between Aß production and clearance in peripheral tissues, which may trigger an abnormal Aß metabolite in the brain, resulting in the occurrence and development of AD.


Assuntos
Perda do Osso Alveolar , Periodontite , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Porphyromonas gingivalis/metabolismo , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides/metabolismo , Fator de Necrose Tumoral alfa , Modelos Animais de Doenças , Microtomografia por Raio-X , Interleucina-6 , Interleucina-8 , Ácido Aspártico Endopeptidases , Periodontite/metabolismo , RNA Mensageiro/análise , DNA
18.
J Periodontal Res ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962877

RESUMO

AIM: Periodontitis is an inflammatory disease driven by opportunistic bacteria including Porphyromonas gingivalis and Fusobacterium nucleatum, where T-cell and NKT-cell responses to these bacteria in patients with periodontitis grade B or C are not fully elucidated. The objective is to determine if exaggerated proinflammatory Th-cell responses to periodontitis-associated bacteria, but not commensal bacteria, is a characteristic of increased periodontitis grade. METHODS: Mononuclear cells from patients with periodontitis grade C (n = 26) or grade B (n = 33) and healthy controls (HCs; n = 26) were stimulated with P. gingivalis, F. nucleatum or the commensal bacteria, Staphylococcus epidermidis and Cutibacterium acnes. Cytokine production by different T-cell populations and FOXP3-expression by regulatory T cells were assessed by flow cytometry. RESULTS: Compared to HCs, grade C patients had decreased frequencies of interleukin (IL)-10-producing CD4+ T cells before stimulation (p = .02) and increased frequencies of IFN-y-producing CD4+ T cells after stimulation with P. gingivalis (p = .0019). Grade B patients had decreased frequencies of FOXP3+ CD4+ T cells before (p = .030) before and after stimulation with anti-CD2/anti-CD3/anti-CD28-loaded beads (p = .047), P. gingivalis (p = .013) and S. epidermidis (p = .018). Clinical attachment loss correlated with the frequencies of IFN-y-producing Th1 cells in P. gingivalis- and F. nucleatum-stimulated cultures in grade B patients (p = .023 and p = .048, respectively) and with the frequencies of Th17 cells in P. gingivalis-stimulated cultures (p = .0062) in grade C patients. Patients with periodontitis grade C or grade B showed lower frequencies of IL-10-producing NKT cells than HCs in unstimulated cultures (p = .0043 and p = .027 respectively). CONCLUSIONS: Both periodontitis groups showed decreased frequencies of immunoregulatory T-cell and NKT cell subsets at baseline. Clinical attachment loss correlated with P. gingivalis-induced Th17-responses in grade C patients and with Th1-responses in grade B patients when cells were stimulated with P. gingivalis, supporting that dysregulated pro-inflammatory T-cell responses to periodontitis-associated bacteria contribute to the pathogenesis of periodontitis.

19.
J Periodontal Res ; 59(4): 798-811, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38699845

RESUMO

BACKGROUND AND OBJECTIVE: Prevention of periodontal bone resorption triggered by Porphyromonas gingivalis (P. gingivalis) is crucial for dental stability. Capsaicin, known as the pungent ingredient of chili peppers, can activate key signaling molecules involved in osteogenic process. However, the effect of capsaicin on osteogenesis of periodontal ligament stem cells (PDLSCs) under inflammation remains elusive. METHODS: P. gingivalis culture suspension was added to mimic the inflammatory status after capsaicin pretreatment. The effects of capsaicin on the osteogenesis of PDLSCs, as well as mitochondrial morphology, Ca2+ level, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and osteogenesis-regulated protein expression levels were analyzed. Furthermore, a mouse experimental periodontitis model was established to evaluate the effect of capsaicin on alveolar bone resorption and the expression of osteogenesis-related proteins. RESULTS: Under P. gingivalis stimulation, capsaicin increased osteogenesis of PDLSCs. Not surprisingly, capsaicin rescued the damage to mitochondrial morphology, decreased the concentration of intracellular Ca2+ and ROS, enhanced MMP and activated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. The in vivo results showed that capsaicin significantly attenuated alveolar bone loss and augmented the expression of bone associated proteins. CONCLUSION: Capsaicin increases osteogenesis of PDLSCs under inflammation and reduces alveolar bone resorption in mouse experimental periodontitis.


Assuntos
Capsaicina , Mitocôndrias , Osteogênese , Ligamento Periodontal , Porphyromonas gingivalis , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Células-Tronco , Serina-Treonina Quinases TOR , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Células-Tronco/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Capsaicina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Perda do Osso Alveolar/prevenção & controle , Periodontite/microbiologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças
20.
J Periodontal Res ; 59(2): 366-380, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38189472

RESUMO

BACKGROUND AND OBJECTIVE: As a chronic inflammatory disease, periodontitis threatens oral health and is a risk factor for Alzheimer's disease (AD). There is growing evidence that these two diseases are closely related. However, current research is still incomplete in understanding the common genes and common mechanisms between periodontitis and AD. In this study, we aimed to identify common genes in periodontitis and AD and analyze the relationship between crucial genes and immune cells to provide new therapeutic targets for clinical treatment. MATERIALS AND METHODS: We evaluated differentially expressed genes (DEGs) specific to periodontitis and AD. Co-expressed genes were identified by obtaining gene expression profile data from the Gene Expression Omnibus (GEO) database. Using the STRING database, protein-protein interaction (PPI) networks were constructed, and essential genes were identified. We also used four algorithms to identify critical genes and constructed regulatory networks. The association of crucial genes with immune cells and potential therapeutic effects was also assessed. RESULTS: PDGFRB, VCAN, TIMP1, CHL1, EFEMP2, and IGFBP5 were obtained as crucial common genes. Immune infiltration analysis showed that Natural killer cells and Myeloid-derived suppressor cells were significantly differentially expressed in patients with PD and AD compared with the normal group. FOXC1 and GATA2 are important TFs for PD and AD. MiR-23a, miR-23b, miR-23a, and miR-23b were associated with AD and PD. Finally, the hub genes retrieved from the DSigDB database indicate multiple drug molecule and drug-target interactions. CONCLUSION: This study reveals commonalities in common hub genes and immune infiltration between periodontitis and AD, and the analysis of six hub genes and immune cells may provide new insights into potential therapeutic directions for the pathogenesis of periodontitis complicated by AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Periodontite , Humanos , Doença de Alzheimer/genética , Periodontite/genética , Periodontite/terapia , Biologia Computacional , Bases de Dados Factuais , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA