Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Macromol Rapid Commun ; 45(2): e2300483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37876336

RESUMO

This study focuses on the synthesis of fully renewable polycarbonates (PCs) starting from cellulose-based platform molecules levoglucosenone (LGO) and 2,5-bis(hydroxymethyl)furan (BHMF). These unique bio-based PCs are obtained through the reaction of a citronellol-containing triol (Triol-citro) derived from LGO, with a dimethyl carbonate derivative of BHMF (BHMF-DC). Solvent-free polymerizations are targeted to minimize waste generation and promote an eco-friendly approach with a favorable environmental factor (E-factor). The choice of metal catalyst during polymerization significantly influences the polymer properties, resulting in high molecular weight (up to 755 kDa) when Na2 CO3 is employed as an inexpensive catalyst. Characterization using nuclear magnetic resonance confirms the successful incorporation of the furan ring and the retention of the terminal double bond of the citronellol pendant chain. Furthermore, under UV irradiation, the presence of both citronellol and furanic moieties induces singular structural changes, triggering the formation of three distinct structures within the polymer network, a phenomenon herein occurs for the first time in this type of polymer. These findings pave the way to new functional materials prepared from renewable monomers with tunable properties.


Assuntos
Monoterpenos Acíclicos , Compostos Bicíclicos Heterocíclicos com Pontes , Furaldeído/análogos & derivados , Glucose/análogos & derivados , Cimento de Policarboxilato , Polímeros , Polímeros/química
2.
Macromol Rapid Commun ; : e2400623, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312123

RESUMO

Amino-acid-derived polyzwitterions and polybetaines (PBs) are two promising alternatives to non-ionic polymers, for example, to increase tumor permeability. In this study, amino-acid-derived polyzwitterions are synthesized and a strategy to quarternize the amine in the side chain functional group is developed to combine the advantages of both types. The functional monomer is polymerized via reversible addition-fragmentation chain-transfer polymerization for which a kinetic study is performed. Further, the impact of the permanent positive charge on amino-acid-derived polyzwitterions is studied based on two zwitterionic polymers obtained via post-polymerization modification (PPM) of Poly(N-acryloxysuccinimide) to allow good comparison between methylated and non-methylated polymers. Circular dichroism shows that the stereocenter remains intact during PPM. pH titration and ζ-potential measurements show that the methylated polymer has a negative ζ-potential over the measured pH range and, therefore, the polymer remains zwitterionic over a broader pH range than its non-methylated equivalent. Both polymers are well tolerated by mammalian cells up to concentrations of 1 mg mL-1. The study introduces a path to a new polymer class that combines the advantages of both PBs and amino-acid-derived polyzwitterions and highlights the impact a permanent charge has on the physiochemical properties.

3.
Macromol Rapid Commun ; : e2400490, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319676

RESUMO

Chemical reactions and transformations in non-traditional vessels have gained significant interest in recent years. Flow chemistry, with its advantages in mixing, mass transfer, scalability, and automation, is a driving force behind this paradigm shift. In particular, the Vortex Fluidic Device (VFD) has emerged as a versatile tool across various applications, from organic synthesis to materials science. In this study, the role of the VFD in performing the Biginelli reaction, a multicomponent reaction widely used in pharmaceutical and polymer science, for a post-polymerization modification is explored. By conducting the Biginelli reaction in the VFD, rapid product formation with low catalyst loading and without the need for high temperatures is achieved. However, the critical need to understand and know solution viscosity, especially within the context of modifying macromolecules is highlighted.

4.
Angew Chem Int Ed Engl ; : e202414872, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320976

RESUMO

Ring-opening metathesis polymerization (ROMP) is an effective method for synthesizing functional polymers, but since the technique typically relies on high ring strain cyclic olefins, the most common monomers are norbornene derivatives. The reliance on one class of monomer limits the obtainable properties of ROMP polymers. In this work, we investigate new bicyclic monomers synthesized via epoxidation of commercial dienes. DFT estimates of these monomers' ring strains suggests a significant increase in strain for cyclic olefins containing allylic epoxides. We found that the eight-membered (3,4-COO) and five-membered (CPO) cyclic olefins were particularly effective for ROMP. CPO was of especially intriguing due to its excellent polymerizability when compared to the limited reactivity of other five-membered rings. Unlike polynorbornenes, the resulting polymers of both monomers displayed glass transition temperatures well below room temperature. Interestingly, poly(3,4-COO) showed both high stereo- and regioregularity while poly(CPO) showed little regularity. Both polymers could be readily modified via post-polymerization ring-opening of the reactive allylic epoxides. With a high epoxide density in poly(CPO), CPO is an exciting new ROMP monomer that is easily synthesized, can be polymerized to high conversion at room temperature, and may be facilely modified to yield a wide range of functional materials.

5.
Angew Chem Int Ed Engl ; 63(36): e202411010, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38895894

RESUMO

Elemental sulfur has shown to be a promising alternative feedstock for development of novel polymeric materials with high sulfur content. However, the utilization of inverse vulcanized polymers is restricted by the limitation of functional comonomers suitable for an inverse vulcanization. Control over properties and structure of inverse vulcanized polymers still poses a challenge to current research due to the dynamic nature of sulfur-sulfur bonds and high temperature of inverse vulcanization reactions. In here, we report for the first time the inverse vulcanization of norbornenyl pentafluorophenyl ester (NB-PFPE), allowing for post-modification of inverse vulcanized polymers via amidation of reactive PFP esters to yield high sulfur content polymers under mild conditions. Amidation of the precursor material with three functional primary amines (α-amino-ω-methoxy polyethylene glycol, aminopropyl trimethoxy silane, allylamine) was investigated. The resulting materials were applicable as sulfur containing poly(ethylene glycol) nanoparticles in aqueous environment. Cross-linked mercury adsorbents, sulfur surface coatings, and high-sulfur content networks with predictable thermal properties were achievable using aminopropyl trimethoxy silane and allylamine for post-polymerization modification, respectively. With the broad range of different amines available and applicable for post-polymerization modification, the versatility of poly(sulfur-random-NB-PFPE) as a platform precursor polymer for novel specialized sulfur containing materials was showcased.

6.
Angew Chem Int Ed Engl ; : e202410846, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106196

RESUMO

Polyamide plays a pivotal role in engineering thermoplastics. Constrained by the harsh conditions and arduous procedures for its industrial synthesis, developing facile synthesis of polyamides is still challengeable and holds profound significance. Herein, we successfully utilized water as one of the monomers to synthesize functional polyamides under ambient conditions. A powerful multicomponent polymerization of water, isocyanides, and chlorooximes was established in phosphate-buffered saline. Soluble and thermally stable polyamides with high weight-average molecular weights (up to 53 900) were obtained in excellent yields (up to 95 %). The polymerization exhibits unique polymerization-induced emission characteristics, successfully converting non-emissive monomers into unconventional emissive polymers. Notably, the resultant polyamides could undergo effective post-modification via the hydroxyl-yne click reaction. By incorporating various functional groups into the polyamide, its emission color could be fine-tuned from blue to green and to red. Remarkably, the refractive index (n) of the polyamide at 589 nm could be increased from 1.6173 to 1.7227 and the Δn could be unprecedentedly as high as 0.1054 for non-heavy atom-containing polymers after post-modification, and its micron-thick films exhibited excellent transparency in the visible region. Thus, this work not only establishes a powerful polymerization toward novel polyamides but also opens up an avenue for their versatile functionalization.

7.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895096

RESUMO

For successful therapeutic interventions in cancer immunotherapy, strong antigen-specific immune responses are required. To this end, immunostimulating cues must be combined with antigens to simultaneously arrive at antigen-presenting cells and initiate cellular immune responses. Recently, imidazoquinolines have shown their vast potential as small molecular Toll-like receptor 7/8 (TLR7/8) agonists for immunostimulation when delivered by nanocarriers. At the same time, peptide antigens are promising antigen candidates but require combination with immune-stimulating adjuvants to boost their immunogenicity and exploit their full potential. Consequently, we herein present biodegradable polycarbonate nanogels as versatile delivery system for adjuvants within the particles' core as well as for peptide antigens by surface decoration. For that purpose, orthogonally addressable multifunctional polycarbonate block copolymers were synthesized, enabling adjuvant conjugation through reactive ester chemistry and peptide decoration by strain-promoted alkyne-azide cycloaddition (SPAAC). In preparation for SPAAC, CD4+-specific peptide sequences of the model protein antigen ovalbumin were equipped with DBCO-moieties by site-selective modification at their N-terminal cysteine. With their azide groups exposed on their surface, the adjuvant-loaded nanogels were then efficiently decorated with DBCO-functional CD4+-peptides by SPAAC. In vitro evaluation of the adjuvant-loaded peptide-decorated gels then confirmed their strong immunostimulating properties as well as their high biocompatibility. Despite their covalent conjugation, the CD4+-peptide-decorated nanogels led to maturation of primary antigen-presenting cells and the downstream priming of CD4+-T cells. Subsequently, the peptide-decorated nanogels loaded with TLR7/8 agonist were successfully processed by antigen-presenting cells, enabling potent immune responses for future application in antigen-specific cancer immunotherapy.


Assuntos
Neoplasias , Receptor 7 Toll-Like , Humanos , Animais , Camundongos , Nanogéis , Receptor 7 Toll-Like/agonistas , Azidas , Peptídeos , Antígenos , Adjuvantes Imunológicos/química , Imunidade , Camundongos Endogâmicos C57BL , Células Dendríticas
8.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674566

RESUMO

Synthetic poly(amino acids) are a unique class of macromolecules imitating natural polypeptides and are widely considered as carriers for drug and gene delivery. In this work, we synthesized, characterized and studied the properties of amphiphilic copolymers obtained by the post-polymerization modification of poly(α,L-glutamic acid) with various hydrophobic and basic L-amino acids and D-glucosamine. The resulting glycopolypeptides were capable of forming nanoparticles that exhibited reduced macrophage uptake and were non-toxic to human lung epithelial cells (BEAS-2B). Moreover, the developed nanoparticles were suitable for loading hydrophobic cargo. In particular, paclitaxel nanoformulations had a size of 170-330 nm and demonstrated a high cytostatic efficacy against human lung adenocarcinoma (A549). In general, the obtained nanoparticles were comparable in terms of their characteristics and properties to those based on amphiphilic (glyco)polypeptides obtained by copolymerization methods.


Assuntos
Ácido Glutâmico , Nanopartículas , Humanos , Polimerização , Peptídeos/química , Portadores de Fármacos/química , Nanopartículas/química , Aminoácidos , Sistemas de Liberação de Medicamentos/métodos
9.
Angew Chem Int Ed Engl ; 62(35): e202308855, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37395737

RESUMO

We report syntheses of isotactic polyacrylate and polyacrylamide via a stereospecific radical polymerization of a pendant-transformable monomer, acrylamide carrying isopropyl-substituted ureidosulfonamide (1), followed by post-polymerization modification (PPM). The study in the alcoholysis and aminolysis reactions of the model compound (2) for evaluation of the transformation ability of the electron-withdrawing pendant group on the repeating unit 1 revealed the following points: the pendant of the polymer became more reactive than that of monomer; the pendant was active enough for aminolysis reaction affording the amide compound quantitatively without additive/catalyst; the addition of a lithium triflate [Li(OTf)] and triethylamine (Et3 N) was effective as for promotion of the alcoholysis reaction. Poly(methyl acrylate) (PMA) was quantitatively obtained via the radical polymerization of 1 in the presence of Li(OTf) at 60 °C and the subsequent addition of methanol along with Et3 N. Thus-obtained PMA showed higher isotacticity [m=74 %] than that directly obtained via radical polymerization of methyl acrylate (MA) (m=51 %). The isotacticity was further increased as the temperature and monomer concentration were lower, and eventually m was increased up to 93 %. The aminolysis PPM after the iso-specific radical polymerization of 1 gave various isotactic polyacrylamides carrying different alkyl pendant groups, including poly(N-isopropylacrylamide) (PNIPAM).

10.
Angew Chem Int Ed Engl ; 62(40): e202303841, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335931

RESUMO

Non-activated esters are prominently featured functional groups in polymer science, as ester functional monomers display great structural diversity and excellent compatibility with a wide range of polymerization mechanisms. Yet, their direct use as a reactive handle in post-polymerization modification has been typically avoided due to their low reactivity, which impairs the quantitative conversion typically desired in post-polymerization modification reactions. While activated ester approaches are a well-established alternative, the modification of non-activated esters remains a synthetic and economically valuable opportunity. In this review, we discuss past and recent efforts in the utilization of non-activated ester groups as a reactive handle to facilitate transesterification and aminolysis/amidation reactions, and the potential of the developed methodologies in the context of macromolecular engineering.

11.
Angew Chem Int Ed Engl ; 62(20): e202303115, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929595

RESUMO

Accumulation of end-of-life plastics presents ongoing environmental concerns. One strategy to solve this grand challenge is to invent new techniques that modify post-consumer waste and impart new functionality. While promising approaches for the chemical upcycling of commodity polyolefins and polyaromatics exist, analogous approaches to repurpose unsaturated polymers (e.g., polybutadiene) are scarce. In this work, we propose a method to upcycle polybutadiene, one of the most widely used commercial rubbers, via a mild, metal-free allylic amination reaction. The resulting materials have tunable thermal and surface wetting properties as a function of both sulfonamide identity and grafting density. Importantly, this approach maintains the parent alkene microstructure without evidence of olefin reduction, olefin transposition, and/or chain scission. Based on these findings, we anticipate future applications in the remediation of complex elastomers and vulcanized rubbers.

12.
Angew Chem Int Ed Engl ; 62(21): e202300699, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36949365

RESUMO

Post-polymerization modification (PPM) offers a versatile approach for engineering multifunctional polymers, but this advantage has not been fully exploited to fabricate multifunctional liquid crystal polymers (LCPs). Here, we design a facile synthetic approach towards multifunctional LCP by combining the ring-opening metathesis polymerization (ROMP) with PPM, in which ROMP helps to prepare a reactive LCP precursor with high molecular weight, and PPM provides a facilitation to introduce functional groups into the precursor. Consequently, a photo- and humidity-responsive linear LCP (LLCP) is demonstrated to show the potential of this synthetic strategy to diversify functions of the LCPs. Under light irradiation and humidity changes, the deformation modes of the LLCP films are converted to complex shapes (bending, twisting, and curling). The obtained dual-responsive LLCP with high molecular weight possesses excellent processability and recyclability, making it possible to construct 3D shape actuators with programmable deformation behaviors under light/humidity.

13.
Beilstein J Org Chem ; 19: 1580-1603, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915554

RESUMO

Radical chemistry is one of the most important methods used in modern polymer science and industry. Over the past century, new knowledge on radical chemistry has both promoted and been generated from the emergence of polymer synthesis and modification techniques. In this review, we discuss radical chemistry in polymer science from four interconnected aspects. We begin with radical polymerization, the most employed technique for industrial production of polymeric materials, and other polymer synthesis involving a radical process. Post-polymerization modification, including polymer crosslinking and polymer surface modification, is the key process that introduces functionality and practicality to polymeric materials. Radical depolymerization, an efficient approach to destroy polymers, finds applications in two distinct fields, semiconductor industry and environmental protection. Polymer chemistry has largely diverged from organic chemistry with the fine division of modern science but polymer chemists constantly acquire new inspirations from organic chemists. Dialogues on radical chemistry between the two communities will deepen the understanding of the two fields and benefit the humanity.

14.
Angew Chem Int Ed Engl ; 61(29): e202201781, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35506938

RESUMO

The catalytic conversion of esters to amides represents new opportunities in the synthetic diversification and upcycling of polymers, as esters are commonly featured in various polymer structures. Yet, direct amidation is typically hampered by poor reaction kinetics and the effects of polymer structure on the reactivity remain poorly understood. We report the accelerated amidation for amines with additional hydrogen bond donating or accepting groups. These amines facilitate the expeditious (co)amidation of polymers with pendant ester groups, displaying at least a 400-fold higher reactivity relative to polyesters with esters in the main chain. Furthermore, a positive correlation between the reactivity and degree of polymerization for poly(methyl acrylate) suggests a hydrogen-bond mediated intramolecular activation of the esters, which was confirmed by FT-IR spectroscopy and basic molecular mechanics modeling. The reported method paves the way to synthesize diverse (co)polymers with amide side chains from readily available polymeric precursors.


Assuntos
Ésteres , Polímeros , Amidas/química , Aminas , Ésteres/química , Polimerização , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Macromol Rapid Commun ; 42(22): e2100478, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34519386

RESUMO

A new sequential post-polymerization modification route has been developed for the synthesis of multifunctional polymers from a simple aldehyde polymer. In the first modification step, a template polymer derived from the radical polymerization of 4-vinyl benzaldehyde undergoes Rh-catalyzed hydroacylation with alkenes to furnish a group of ketone polymers. In the second modification step, Schiff base formation with alkoxy ammonium salts introduces a second group-an oxime functionality. Both the steps are highly efficient, introducing evenly distributed dual functionalities at the same position.


Assuntos
Aldeídos , Cetonas , Oximas , Polimerização , Polímeros
16.
Macromol Rapid Commun ; 42(10): e2100063, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33939230

RESUMO

Herein, a straightforward synthesis of a novel class of polymers, that is, poly(N-(4-vinylphenyl)sulfonamide)s, and their monomers is reported. A set of monomers with varying electron densities, fine-tuned by different substituents on the aromatic sulfonamide moiety, is polymerized by free radical polymerization featuring low molar masses (2300  ≤ Mn  ≤ 3200 g mol-1 ) and low dispersities (1.15 ≤ D ≤ 1.47). Further, the post-polymerization modification of the obtained polymers via aza-Michael addition with electron-deficient alkenes is demonstrated using organic superbases as catalysts, paving the way toward the facile synthesis of novel polymeric protected ß-amino acid derivatives.


Assuntos
Polímeros , Sulfonamidas , Catálise , Peso Molecular , Polimerização
17.
Macromol Rapid Commun ; 42(13): e2100133, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34031945

RESUMO

Living cationic polymerization is known for a good control over chain growth yielding polymers with well-defined molar mass distributions and low dispersities. However, the practical challenges involved in the synthesis of poly(vinyl ether)s limited suitable post-polymerization modifications (PPM) via chemoselective click reactions. Herein the successful controlled cationic polymerization of vinyl ethers bearing pendant CC double and C≡C triple bonds using a single-component initiation under ambient conditions is reported. Furthermore, the PPM via thiol-ene/-yne and copper(I)-catalyzed alkyne-azide cycloaddition reaction of the obtained polymers is successfully realized laying the foundation for the synthesis of unprecedented functional poly(vinyl ether)s.


Assuntos
Polímeros , Compostos de Vinila , Alcinos , Polimerização
18.
Angew Chem Int Ed Engl ; 60(4): 1821-1830, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33034131

RESUMO

The primary impediments in developing large antibodies as drugs against intracellular targets involve their low transfection efficiency and suitable reversible encapsulation strategies for intracellular delivery with retention of biological activity. To address this, we outline an electrostatics-enhanced covalent self-assembly strategy to generate polymer-protein/antibody nanoassemblies. Through structure-activity studies, we down-select the best performing self-immolative pentafluorophenyl containing activated carbonate polymer for bioconjugation. With the help of an electrostatics-aided covalent self-assembly approach, we demonstrate efficient encapsulation of medium to large proteins (HRP, 44 kDa and ß-gal, 465 kDa) and antibodies (ca. 150 kDa). The designed polymeric nanoassemblies are shown to successfully traffic functional antibodies (anti-NPC and anti-pAkt) to cytosol to elicit their bioactivity towards binding intracellular protein epitopes and inducing apoptosis.


Assuntos
Anticorpos/administração & dosagem , Polímeros/química , Proteínas/química , Eletroforese em Gel de Poliacrilamida , Peroxidase do Rábano Silvestre/química , Hidrólise , Eletricidade Estática , Propriedades de Superfície , beta-Galactosidase/química
19.
Angew Chem Int Ed Engl ; 59(34): 14656-14663, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32378308

RESUMO

We report the synthesis of monomers for atom-transfer radical polymerization (ATRP) and a reversible addition-fragmentation chain transfer (RAFT) agent bearing trifluoroborate iminiums (TIMs), which are quantitatively converted into potassium acyltrifluoroborates (KATs) after polymerization. The resulting KAT-containing polymers are suitable for rapid amide-forming ligations for both post-polymerization modification and polymer conjugation. The polymer conjugation occurs rapidly, even under dilute (micromolar) aqueous conditions at ambient temperatures, thereby enabling the synthesis of a variety of linear and star-shaped block copolymers. In addition, we applied post-polymerization modification to the covalent linking of a photocaged cyclic antibiotic (gramicidin S) to the side chains of the KAT-containing copolymer. Cellular assays revealed that the polymer-antibiotic conjugate is biocompatible and provides efficient light-controlled release of the antibiotic on demand.

20.
Angew Chem Int Ed Engl ; 59(14): 5683-5695, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31821673

RESUMO

2D polymer sheets with six positively charged pyrylium groups at each pore edge in a stacked single crystal can be transformed into a 2D polymer with six pyridines per pore by exposure to gaseous ammonia. This reaction furnishes still a crystalline material with tunable protonation degree at regular nano-sized pores promising as separation membrane. The exfoliation is compared for both 2D polymers with the latter being superior. Its liquid phase exfoliation yields nanosheet dispersions, which can be size-selected using centrifugation cascades. Monolayer contents of ≈30 % are achieved with ≈130 nm sized sheets in mg quantities, corresponding to tens of trillions of monolayers. Quantification of nanosheet sizes, layer number and mass shows that this exfoliation is comparable to graphite. Thus, we expect that recent advances in exfoliation of graphite or inorganic crystals (e.g. scale-up, printing etc.) can be directly applied to this 2D polymer as well as to covalent organic frameworks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA