Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microorganisms ; 10(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889166

RESUMO

Over the last years, nontuberculous mycobacteria (NTM) have emerged as important human pathogens. Accurate and rapid mycobacterial species identification is needed to successfully diagnose, treat, and manage infections caused by NTM. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS, was demonstrated to effectively identify mycobacteria isolates subcultured from solid or liquid media rather than new positive cultures. The present study aims to develop a new extraction protocol to yield rapid and accurate identification of NTM from primary MGIT cultures by MALDI-TOF MS. A total of 60 positive MGIT broths were examined by the Bruker Biotyper system with Mycobacteria Library v. 2.0 (Bruker Daltonics GmbH & Co. KG., Bremen, Germany). The results were compared with those obtained by the molecular method, line probe assay GenoType Mycobacterium CM/AS/NTM-DR. All samples were concordantly identified by MALDI-TOF MS and the molecular test for all the tested mycobacteria. Fifty-seven (95%) MGIT positive cultures for NTM from clinical samples had a MALDI-TOF MS analysis score S ≥ 1.8. Although a small number of strains and a limited diversity of mycobacterial species were analysed, our results suggest that MALDI-TOF MS could represent a promising routine diagnostic tool for identifying mycobacterial species directly from primary liquid culture.

2.
Int J Infect Dis ; 102: 172-177, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33039611

RESUMO

OBJECTIVES: We evaluated the performance of the MicroIDSys Elite system, a newly developed matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry system for identification of mycobacteria directly from positive MGIT liquid cultures. METHODS: Analytical specificity was evaluated with 63 reference strains grown in mycobacteria growth indicator tube media. Prospective performance evaluation was conducted with primary liquid cultures of sputum samples for identification of mycobacteria, and results were compared to multigenerational sequencing as the reference method. Liquid media subcultures were also analyzed. RESULTS: The accuracy for the 63 reference strains was 98.4% (62/63). A total of 167 paired mycobacterial primary cultures and subcultures in liquid media, comprised of seven Mycobacterium tuberculosis isolates, 109 slowly growing nontuberculous mycobacterial isolates, and 51 rapidly growing nontuberculous mycobacterial isolates, was identified by the MicroIDSys Elite system. Using primary liquid cultures, the MicroIDSys Elite system correctly identified 143 (85.6%) isolates; 21 (12.6%) resulted in "no identification"; and three (1.8%) isolates were misidentified. Using liquid media subcultures with this system, 159 (95.2%) isolates were correctly identified; seven (4.2%) resulted in "no identification"; and one (0.6%) isolate was misidentified. CONCLUSION: The MicroIDSys Elite system is a useful routine diagnostic tool for identification of mycobacterial species from liquid culture.


Assuntos
Técnicas Bacteriológicas , Mycobacterium/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Meios de Cultura , Lasers , Micobactérias não Tuberculosas/isolamento & purificação , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA