Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188736

RESUMO

Hepatitis B virus (HBV) chronically infects approximately 350 million people worldwide, and 600,000 deaths are caused by HBV-related hepatic failure, liver cirrhosis, and hepatocellular carcinoma annually. It is important to reveal the mechanism underlying the regulation of HBV replication. This study demonstrated that osteopetrosis-associated transmembrane protein 1 (Ostm1) plays an inhibitory role in HBV replication. Ostm1 represses the levels of HBeAg and HBsAg proteins, HBV 3.5-kb and 2.4/2.1-kb RNAs, and core-associated DNA in HepG2, Huh7, and NTCP-HepG2 cells. Notably, Ostm1 has no direct effect on the activity of HBV promoters or the transcription of HBV RNAs; instead, Ostm1 binds to HBV RNA to facilitate RNA decay. Detailed studies further demonstrated that Ostm1 binds to and recruits the RNA exosome complex to promote the degradation of HBV RNAs, and knockdown of the RNA exosome component exonuclease 3 (Exosc3) leads to the elimination of Ostm1-mediated repression of HBV replication. Mutant analyses revealed that the N-terminal domain, the transmembrane domain, and the C-terminal domain are responsible for the repression of HBV replication, and the C-terminal domain is required for interaction with the RNA exosome complex. Moreover, Ostm1 production is not regulated by interferon-α (IFN-α) or IFN-γ, and the expression of IFN signaling components is not affected by Ostm1, suggesting that Ostm1 anti-HBV activity is independent of the IFN signaling pathway. In conclusion, this study revealed a distinct mechanism underlying the repression of HBV replication, in which Ostm1 binds to HBV RNA and recruits RNA exosomes to degrade viral RNA, thereby restricting HBV replication.IMPORTANCE Hepatitis B virus (HBV) is a human pathogen infecting the liver to cause a variety of diseases ranging from acute hepatitis to advanced liver diseases, fulminate hepatitis, liver cirrhosis, and hepatocellular carcinoma, thereby causing a major health problem worldwide. In this study, we demonstrated that Ostm1 plays an inhibitory role in HBV protein production, RNA expression, and DNA replication. However, Ostm1 has no effect on the activities of the four HBV promoters; instead, it binds to HBV RNA and recruits RNA exosomes to promote HBV RNA degradation. We further demonstrated that the anti-HBV activity of Ostm1 is independent of the interferon signaling pathway. In conclusion, this study reveals a distinct mechanism underlying the repression of HBV replication and suggests that Ostm1 is a potential therapeutic agent for HBV infection.


Assuntos
Exossomos/metabolismo , Vírus da Hepatite B/fisiologia , Proteínas de Membrana/metabolismo , RNA Viral/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/genética , Exossomos/virologia , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Células Hep G2 , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B/genética , Antígenos E da Hepatite B/metabolismo , Humanos , Interferon-alfa/genética , Interferon-alfa/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Proteínas de Membrana/genética , Domínios Proteicos , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/genética
2.
Microbiol Spectr ; 11(3): e0505822, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158744

RESUMO

The RNA exosome complex is a conserved, multisubunit RNase complex that contributes to the processing and degradation of RNAs in mammalian cells. However, the roles of the RNA exosome in phytopathogenic fungi and how it relates to fungal development and pathogenicity remain unclear. Herein, we identified 12 components of the RNA exosome in the wheat fungal pathogen Fusarium graminearum. Live-cell imaging showed that all the components of the RNA exosome complex are localized in the nucleus. FgEXOSC1 and FgEXOSCA were successfully knocked out; they are both involved in the vegetative growth, sexual reproduction, and pathogenicity of F. graminearum. Moreover, deletion of FgEXOSC1 resulted in abnormal toxisomes, decreased deoxynivalenol (DON) production, and downregulation of the expression levels of DON biosynthesis genes. The RNA-binding domain and N-terminal region of FgExosc1 are required for its normal localization and functions. Transcriptome sequencing (RNA-seq) showed that the disruption of FgEXOSC1 resulted in differential expression of 3,439 genes. Genes involved in processing of noncoding RNA (ncRNA), rRNA and ncRNA metabolism, ribosome biogenesis, and ribonucleoprotein complex biogenesis were significantly upregulated. Furthermore, subcellular localization, green fluorescent protein (GFP) pulldown, and coimmunoprecipitation (co-IP) assays demonstrated that FgExosc1 associates with the other components of the RNA exosome to form the RNA exosome complex in F. graminearum. Deletion of FgEXOSC1 and FgEXOSCA reduced the relative expression of some of the other subunits of the RNA exosome. Deletion of FgEXOSC1 affected the localization of FgExosc4, FgExosc6, and FgExosc7. In summary, our study reveals that the RNA exosome is involved in vegetative growth, sexual reproduction, DON production, and pathogenicity of F. graminearum. IMPORTANCE The RNA exosome complex is the most versatile RNA degradation machinery in eukaryotes. However, little is known about how this complex regulates the development and pathogenicity of plant-pathogenic fungi. In this study, we systematically identified 12 components of the RNA exosome complex in Fusarium head blight fungus Fusarium graminearum and first unveiled their subcellular localizations and established their biological functions in relation to the fungal development and pathogenesis. All the RNA exosome components are localized in the nucleus. FgExosc1 and FgExoscA are both required for the vegetative growth, sexual reproduction, DON production and pathogenicity in F. graminearum. FgExosc1 is involved in ncRNA processing, rRNA and ncRNA metabolism process, ribosome biogenesis and ribonucleoprotein complex biogenesis. FgExosc1 associates with the other components of RNA exosome complex and form the exosome complex in F. graminearum. Our study provides new insights into the role of the RNA exosome in regulating RNA metabolism, which is associated with fungal development and pathogenicity.


Assuntos
Fusarium , Tricotecenos , Fusarium/genética , Virulência/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Tricotecenos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ribonucleoproteínas/metabolismo
3.
Int J Biol Sci ; 19(13): 4206-4222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705741

RESUMO

Matrix stiffness is a central modulator of hepatic stellate cells (HSCs) activation and hepatic fibrogenesis. However, the long non-coding RNAs (lncRNAs)-regulated transcriptional factors linking matrix stiffness to alterations in HSCs phenotype are not completely understood. In this study, we investigated the effects of matrix stiffness on HSCs activation and its potential mechanism. Through analysis the RNA-seq data with human primary HSCs cultured on 0.4 kPa and 25.6 kPa hydrogel, we identified that forkhead box protein C2 (FOXC2) and its antisense lncRNA FXOC2-AS1 as the new mechanosensing transcriptional regulators that coordinate HSCs responses to the matrix stiffness, moreover, FOXC2 and FOXC2-AS1 expression were also elevated in human fibrosis and cirrhosis tissues. The matrix stiffness was sufficient to activate HSCs into myofibroblasts, resulting in nuclear accumulation of FOXC2. Disrupting FOXC2 and FOXC2-AS1 level abrogated stiffness-induced activation of HSCs. Further mechanistic studies displayed that stiffness-upregulated lncRNA FOXC2-AS1 had no influence on transcription of FOXC2. FOXC2-AS1 exerted its biological function through maintaining the RNA stability of FOXC2, and protecting FOXC2 mRNA from degradation by RNA exosome complex. Additionally, rescue assays confirmed that reintroduction of FOXC2 in FOXC2-AS1-depleted HSCs reversed the repression of FOXC2-AS1 knockdown on stiffness-induced HSCs activation. In AAV6-treated mice fibrotic models, targeting FOXC2 in vivo lead to a reduced degree of liver fibrosis. In sum, our study uncovers a reciprocal crosstalk between matrix stiffness and FOXC2-AS1/FOXC2 axis leading to modulation of HSCs mechanoactivation and liver fibrosis, and present AAV6 shRNA as an effective strategy that targets FOXC2 leading to the resolution of liver fibrosis.


Assuntos
Células Estreladas do Fígado , RNA Longo não Codificante , Animais , Humanos , Camundongos , Transdiferenciação Celular/genética , Modelos Animais de Doenças , Cirrose Hepática/genética , Miofibroblastos , RNA Longo não Codificante/genética
4.
FEBS J ; 288(11): 3418-3423, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33590687

RESUMO

mRNA degradation rate is one of the key stages of gene expression regulation in eukaryotic cells. To date, intertwined processes of post-transcriptional control have been widely investigated, but focused rather on the examination of mechanisms controlling stability of particular protein-coding transcripts. Currently, a wealth of information from structural, biochemical, and high-throughput studies makes it tempting to define general rules governing mRNA stability that could be considered as versatile and valid on a genome-wide scale. Basu et al. analyzed multiple experimental and computational data on Saccharomyces cerevisiae mRNA half-lives as well as on secondary structures and protein-binding sites within transcripts, and collated it with available structures of ribonucleases, that is, enzymes responsible for mRNA degradation. This approach allowed to conclude how particular mRNA features such as lengths of unstructured terminal or internal regions or sequestration into ribonucleoprotein complexes impact half-lives of protein-coding transcripts and to define genome-scale principles of mRNA stability control in yeast.


Assuntos
Genoma Fúngico/genética , Estabilidade de RNA/genética , Saccharomyces cerevisiae/genética , Transcriptoma/genética , Regulação Fúngica da Expressão Gênica/genética , Ligação Proteica/genética , RNA Mensageiro/genética
5.
Wiley Interdiscip Rev RNA ; 11(2): e1572, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31713323

RESUMO

The majority of the mammalian genome is transcribed by RNA polymerase II, yielding a vast amount of noncoding RNA (ncRNA) in addition to the standard production of mRNA. The typical nuclear biogenesis of mRNA relies on the tightly controlled coupling of co- and post-transcriptional processing events, which ultimately results in the export of transcripts into the cytoplasm. These processes are subject to surveillance by nuclear RNA decay pathways to prevent the export of aberrant, or otherwise "non-optimal," transcripts. However, unlike mRNA, many long ncRNAs are nuclear retained and those that maintain enduring functions must employ precautions to evade decay. Proper sorting and localization of RNA is therefore an essential activity in eukaryotic cells and the formation of ribonucleoprotein complexes during early stages of RNA synthesis is central to deciding such transcript fate. This review details our current understanding of the pathways and factors that direct RNAs towards a particular destiny and how transcripts combat the adverse conditions of the nucleus. This article is categorized under: RNA Export and Localization > Nuclear Export/Import RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Assuntos
Núcleo Celular/metabolismo , RNA/metabolismo , Animais , Humanos , RNA/genética
6.
Methods Mol Biol ; 2062: 383-400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768986

RESUMO

Chemical cross-linking and mass spectrometric readout (CX-MS) has become a useful toolkit for structural analysis of protein complexes. CX-MS enables rapid detection of a larger number of cross-link peptides from the chemically cross-linked protein assembly, providing invaluable cross-link spatial restraints to understand the architecture of the complex. Since CX-MS is complementary with other structural and computational modeling tools, it can be used for integrative structural determination of large native protein assemblies. However, due to technical limitations, current CX-MS applications have still been predominantly confined to complexes reconstituted from recombinant proteins where large amount of purified materials are available. Cross-linking and hybrid structural proteomic analysis of endogenous protein complexes remains a challenge. In this chapter, we present a protocol that efficiently couples affinity capture of endogenous complexes with sensitive CX-MS analysis, with particular application to the yeast RNA processing exosome complexes.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Exossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas/métodos , Proteômica/métodos , Proteínas Recombinantes/metabolismo
7.
Mitochondrion ; 37: 46-54, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28687512

RESUMO

Recessive mutations in EXOSC3, encoding a subunit of the human RNA exosome complex, cause pontocerebellar hypoplasia type 1b (PCH1B). We report a boy with severe muscular hypotonia, psychomotor retardation, progressive microcephaly, and cerebellar atrophy. Biochemical abnormalities comprised mitochondrial complex I and pyruvate dehydrogenase complex (PDHc) deficiency. Whole exome sequencing uncovered a known EXOSC3 mutation p.(D132A) as the underlying cause. In patient fibroblasts, a large portion of the EXOSC3 protein was trapped in the cytosol. MtDNA copy numbers in muscle were reduced to 35%, but mutations in the mtDNA and in nuclear mitochondrial genes were ruled out. RNA-Seq of patient muscle showed highly increased mRNA copy numbers, especially for genes encoding structural subunits of OXPHOS complexes I, III, and IV, possibly due to reduced degradation by a dysfunctional exosome complex. This is the first case of mitochondrial dysfunction associated with an EXOSC3 mutation, which expands the phenotypic spectrum of PCH1B. We discuss the links between exosome and mitochondrial dysfunction.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Mutação , Atrofias Olivopontocerebelares/genética , Atrofias Olivopontocerebelares/patologia , Proteínas de Ligação a RNA/genética , Complexo I de Transporte de Elétrons/deficiência , Humanos , Lactente , Masculino , Doença da Deficiência do Complexo de Piruvato Desidrogenase
8.
Stem Cell Reports ; 9(4): 1053-1061, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29020613

RESUMO

The RNA exosome complex targets AU-rich element (ARE)-containing mRNAs in eukaryotic cells. We identified a transcription factor, ZSCAN10, which binds to the promoters of multiple RNA exosome complex subunits in pluripotent stem cells to maintain subunit gene expression. We discovered that induced pluripotent stem cell clones generated from aged tissue donors (A-iPSC) show poor expression of ZSCAN10, leading to poor RNA exosome complex expression, and a subsequent elevation in ARE-containing RNAs, including glutathione peroxidase 2 (Gpx2). Excess GPX2 leads to excess glutathione-mediated reactive oxygen species scavenging activity that blunts the DNA damage response and apoptosis. Expression of ZSCAN10 in A-iPSC recovers RNA exosome gene expression, the DNA damage response, and apoptosis. These findings reveal the central role of ZSCAN10 and the RNA exosome complex in maintaining pluripotent stem cell redox status to support a normal DNA damage response.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Oxirredução , Células-Tronco Pluripotentes/metabolismo , Fatores Etários , Apoptose/genética , Dano ao DNA , Expressão Gênica , Regulação da Expressão Gênica , Instabilidade Genômica , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Homeostase , Células-Tronco Pluripotentes Induzidas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doadores de Tecidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA