Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 442(1): 114186, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098465

RESUMO

TGFß1 is a powerful regulator of fibrosis; secreted in a latent form, it becomes active after release from the latent complex. During tissue fibrosis, the EDA + isoform of cellular fibronectin is overexpressed. In pulmonary fibrosis it has been proposed that the fibronectin splice variant including an EDA domain (FN EDA+) activates latent TGFß. Our work investigates the potential of blocking the 'splicing in' of EDA with antisense oligonucleotides to inhibit TGFß1-induced EDA + fibronectin and to prevent the cascade of events initiated by TGFß1 in human renal proximal tubule cells (PTEC). Human primary PTEC were treated with TGFß1 for 48 h, medium removed and the cells transfected with RNase H-independent antisense oligonucleotides (ASO) designed to block EDA exon inclusion (ASO5). The efficacy of ASO to block EDA exon inclusion was assessed by EDA + fibronectin RNA and protein expression; the expression of TGFß, αSMA (α smooth muscle actin), MMP2 (matrix metalloproteinse-2), MMP9 (matrix metalloproteinse-9), Collagen I, K Cadherin and connexin 43 was analysed. Targeting antisense oligonucleotides designed to block EDA exon inclusion in fibronectin pre mRNA were effective in reducing the amount of TGFß1 -induced cellular EDA + fibronectin RNA and secreted EDA + fibronectin protein (assessed by western immunoblotting and immunocytochemistry) in human proximal tubule cells in an in vitro cell culture model. The effect was selective for EDA + exon with no effect on EDB + fibronectin RNA and total fibronectin mRNA. Exogenous TGFß1 induced endogenous TGFß, αSMA, MMP2, MMP9 and Col I mRNA. TGFß1 treatment for 48h reduced the expression of K-Cadherin and increased the expression of connexin-43. These TGFß1-induced pro-fibrotic changes were attenuated by ASO5 treatment. 48 h after the removal of exogenous TGFß, further increases in αSMA, MMP2, MMP9 was observed; ASO5 significantly inhibited this subsequent increase. ASO5 treatment also significantly inhibited ability of the cell culture medium harvested at the end of the experiment (96h) to stimulate SMAD3 reporter cells. The role of endogenous TGFß1 was confirmed by the use of a TGFß receptor inhibitor. Our results demonstrate a critical role of FN EDA+ in a cycle of TGFß driven pro-fibrotic responses in human PTEC and blocking its production with ASO technology offers a potential therapy to interrupt this vicious circle and hence limit the progression of renal fibrosis.


Assuntos
Processamento Alternativo , Células Epiteliais , Fibronectinas , Fibrose , Túbulos Renais Proximais , Oligonucleotídeos Antissenso , Fator de Crescimento Transformador beta1 , Humanos , Fibronectinas/metabolismo , Fibronectinas/genética , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/citologia , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Fibrose/metabolismo , Processamento Alternativo/genética , Fator de Crescimento Transformador beta1/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos dos fármacos , Células Cultivadas , Comunicação Autócrina , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética
2.
Cell Biochem Funct ; 42(3): e4005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583082

RESUMO

Tubulointerstitial fibrosis is an inevitable consequence of all progressive chronic kidney disease (CKD) and contributes to a substantial health burden worldwide. Icariin, an active flavonoid glycoside obtained from Epimedium species, exerts potential antifibrotic effect. The study aimed to explore the protective effects of icariin against tubulointerstitial fibrosis in unilateral ureteral obstruction (UUO)-induced CKD mice and TGF-ß1-treated HK-2 cells, and furthermore, to elucidate the underlying mechanisms. The results demonstrated that icariin significantly improved renal function, alleviated tubular injuries, and reduced fibrotic lesions in UUO mice. Furthermore, icariin suppressed renal inflammation, reduced oxidative stress as evidenced by elevated superoxide dismutase activity and decreased malondialdehyde level. Additionally, TOMM20 immunofluorescence staining and transmission electron microscope revealed that mitochondrial mass and morphology of tubular epithelial cells in UUO mice was restored by icariin. In HK-2 cells treated with TGF-ß1, icariin markedly decreased profibrotic proteins expression, inhibited inflammatory factors, and protected mitochondria along with preserving mitochondrial morphology, reducing reactive oxygen species (ROS) and mitochondrial ROS (mtROS) overproduction, and preserving membrane potential. Further investigations demonstrated that icariin could activate nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway both in vivo and in vitro, whereas inhibition of Nrf2 by ML385 counteracted the protective effects of icariin on TGF-ß1-induced HK-2 cells. In conclusion, icariin protects against renal inflammation and tubulointerstitial fibrosis at least partly through Nrf2-mediated attenuation of mitochondrial dysfunction, which suggests that icariin could be developed as a promising therapeutic candidate for the treatment of CKD.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Rim/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Flavonoides/farmacologia , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Fibrose , Inflamação/metabolismo
3.
Mol Med ; 29(1): 63, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161357

RESUMO

BACKGROUND: Renal interstitial fibrosis (RIF) is a common pathway to end-stage renal disease regardless of the initial etiology. Currently, the molecular mechanisms for RIF remains not fully elucidated. Nuclear receptor subfamily 4 group A member 1(Nr4a1), a member of the NR4A subfamily of nuclear receptors, is a ligand-activated transcription factor. The role of Nr4a1 in RIF remains largely unknown. METHODS: In this study, we determined the role and action mechanism of Nr4a1 in RIF. We used unilateral ureteral obstruction (UUO) mice and transforming growth factor (TGF)-ß1-treated human renal proximal tubular epithelial cells (HK-2 cells) as in vivo and in vitro models of RIF. A specific Nr4a1 agonist Cytosporone B (Csn-B) was applied to activate Nr4a1 both in vivo and in vitro, and Nr4a1 small interfering RNA was applied in vitro. Renal pathological changes were evaluated by hematoxylin and eosin and Masson staining, and the expression of fibrotic proteins including fibronectin (Fn) and collagen-I (Col-I), and phosphorylated p38 MAPK was measure by immunohistochemical staining and western blot analysis. RESULTS: The results showed that Nr4a1 was upregulated in UUO mouse kidneys, and was positively correlated with the degree of interstitial kidney injury and the levels of fibrotic proteins. Csn-B treatment aggravated UUO-induced renal interstitial fibrosis, and induced p38 MAPK phosphorylation. In vitro, TGF-ß induced Nr4a1 expression, and Nr4a1 downregulation prevented TGF-ß1-induced expression of Fn and Col-I and the activation of p38 MAPK. Csn-B induced fibrotic proteins expression and p38 MAPK phosphorylation, and moreover Csn-B induced fibrotic proteins expression was abrogated by treatment with p38 MAPK inhibitor SB203580. We provided further evidence that Csn-B treatment promoted cytoplasmic accumulation of Nr4a1. CONCLUSION: The findings in the present study indicate that Nr4a1 promotes renal fibrosis potentially through activating p38 MAPK kinase.


Assuntos
Nefropatias , Humanos , Animais , Camundongos , Fosforilação , Nefropatias/etiologia , Fenilacetatos , Rim , Colágeno Tipo I , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética
4.
Pharmacol Res ; 176: 106084, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35051590

RESUMO

Renal tubulointerstitial fibrosis (RIF), characterized by epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (TECs), is the main cause of diabetic renal fibrosis. Oxidative stress plays a pivotal role in the development of diabetic RIF. Connexin32 (Cx32), prominently expressed in renal TECs, has emerged as an important player in the regulation of oxidative stress. However, the role of Cx32 in diabetic RIF has not been explored yet. Here, we showed that adenovirus-mediated Cx32 overexpression suppressed EMT to ameliorate RIF and renal function in STZ-induced diabetic mice, while knockout (KO) of Cx32 exacerbated RIF in diabetic mice. Moreover, overexpression of Cx32 inhibited EMT and the production of extra cellular matrix (ECM) in high glucose (HG) induced NRK-52E cells, whereas knockdown of Cx32 showed the opposite effects. Furthermore, we showed that NOX4, the main source of ROS in renal tubular, was down-regulated by Cx32. Mechanistically, Cx32 down-regulated the expression of PKC alpha in a carboxyl-terminal-dependent manner, thereby inhibiting the phosphorylation at Thr147 of p22phox triggered by PKC alpha, which ultimately repressed the formation of the p22phox-NOX4 complex to reduce the protein level of NOX4. Thus, we establish Cx32 as a novel target and confirm the protection mechanism in RIF.


Assuntos
Conexinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Transição Epitelial-Mesenquimal , Animais , Linhagem Celular , Conexinas/genética , Células HEK293 , Humanos , Túbulos Renais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , NADPH Oxidase 4/metabolismo , Ratos , Proteína beta-1 de Junções Comunicantes
5.
Ren Fail ; 44(1): 923-932, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35618411

RESUMO

Accumulating evidence has implicated that berberine (BBR) has a beneficial effect on diabetic kidney disease (DKD), but its mechanism is not clear. The aim of this study was to assess whether berberine could alleviate tubulointerstitial fibrosis and attenuate epithelial-to-mesenchymal transition (EMT) and its possible molecular mechanism. High-fat diet (HFD) followed by injection of STZ was used to induce diabetic rats in vivo. After the onset of diabetes, rats were treated with either BBR or saline for 12 weeks. In vitro, the human renal proximal tubular epithelial cell line (HK-2) was exposed to high glucose, with or without BBR. The influence of berberine on renal tubulointerstitial histological changes, markers of epithelial-to-mesenchymal transition (EMT) and (NOD-like receptor pyrin domain-containing protein 3) NLRP3 inflammasome expression were examined. Results showed that in vivo, BBR could significantly ameliorate microalbumin and renal pathologic changes in diabetic rats. Immunofluorescence showed that BBR could inhibit EMT. Furthermore, BBR could down-regulate the level of the NLRP3 inflammasome in diabetic rats. Consistently, in vitro, BBR suppressed high glucose-induced EMT and activation of NLRP3 inflammasome in HK-2. Our study demonstrated that BBR could inhibit high glucose-induced EMT and renal interstitial fibrosis by suppressing the NLRP3 inflammasome. BBR might be used as a novel drug to ameliorate tubulointerstitial fibrosis in DKD.


Assuntos
Berberina , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/prevenção & controle , Fibrose , Glucose , Inflamassomos/metabolismo , Inflamassomos/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos
6.
J Cell Physiol ; 236(11): 7655-7671, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33993470

RESUMO

Chronic kidney disease is a global health problem and eventually develops into an end-stage renal disease (ESRD). It is now widely believed that renal tubulointerstitial fibrosis (TIF) plays an important role in the progression of ESRD. Renal tubular epithelial-mesenchymal transition (EMT) is an important cause of TIF. Studies have shown that FGF2 is highly expressed in fibrotic renal tissue, although the mechanism remains unclear. We found that FGF2 can activate STAT3 and induce EMT in renal tubular epithelial cells. STAT3, an important transcription factor, was predicted by the JASPAR biological database to bind to the promoter region of YAP1. In this study, STAT3 was shown to promote the expression of the downstream target gene YAP1 through transcription, promote EMT of renal tubular epithelial cells, and mediate the occurrence of renal TIF. This study provides a theoretical basis for the involvement of the FGF2/STAT3/YAP1 signaling pathway in the process of renal interstitial fibrosis and provides a potential target for the treatment of renal fibrosis.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Nefropatias/metabolismo , Túbulos Renais/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Fator 2 de Crescimento de Fibroblastos/genética , Fibrose , Humanos , Nefropatias/etiologia , Nefropatias/genética , Nefropatias/patologia , Túbulos Renais/patologia , Masculino , Camundongos Endogâmicos C57BL , Fosforilação , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Transdução de Sinais , Obstrução Ureteral/complicações , Proteínas de Sinalização YAP/genética
7.
FASEB J ; 34(3): 4591-4601, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32017279

RESUMO

Injury of renal tubular epithelial cells is a key feature of the pathogenicity associated with tubulointerstitial fibrosis and other kidney diseases. HUWE1, an E3 ubiquitin ligase, acts by participating in ubiquitination and degradation of its target proteins. However, the detailed mechanisms by which HUWE1 might regulate fibrosis in renal tubular epithelial cells have not been established. Here, the possible regulation of renal tubulointerstitial fibrosis by HUWE1 was investigated by examining the expression of HUWE1 and EGFR in unilateral ureteral obstruction (UUO) mice. Markedly consistent reciprocal changes in HUWE1 and EGFR expression were observed at the protein and mRNA levels in the kidney after UUO injury. Expression of HUWE1 inhibited TGF-ß-induced injury to HK-2 cells, while HUWE1 overexpression decreased the expression of EGFR. Further analysis indicated that HUWE1 physically interacted with EGFR and promoted its ubiquitination and degradation. HUWE1 expression also showed clinical relevance in renal disease, as it notably decreased in multiple types of clinical nephropathy, while EGFR expression significantly increased when compared to the normal kidney. Therefore, this study demonstrated that HUWE1, which serves as an E3 ubiquitin ligase specific for EGFR, promotes EGFR ubiquitination and degradation, thereby regulating EGFR expression and providing protection against kidney injury.


Assuntos
Fibrose/metabolismo , Fibrose/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Rim/metabolismo , Rim/patologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Western Blotting , Linhagem Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Imunofluorescência , Humanos , Imuno-Histoquímica , Nefropatias/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Ubiquitinação/fisiologia , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
8.
J Cell Biochem ; 120(5): 6998-7014, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30652342

RESUMO

Renal tubular epithelial-to-mesenchymal transition (EMT) and tubulointerstitial fibrosis (TIF) are important pathological features of diabetic nephropathy (DN). However, the regulatory mechanism underlying EMT and TIF are still unclear. Previous studies showed that the decrease in the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was closely related to the aggravation of DN, but no published study showed how PTEN participated in the regulation of EMT and TIF. In this study, the rat proximal tubular epithelial cells (NRK52E) and C57BL mice and human kidney tissues were used as the research objects to investigate the mechanism underlying the regulatory effect of peroxisome proliferator-activated receptors γ (PPARγ) on PTEN and its influence on EMT and TIF, the regulation of PTEN's dual activity of lipid phosphatase/protein phosphatase by the serine threonine protein kinase B(AKT)/focal adhesion kinase (FAK) signaling pathway, and the role of PTEN in EMT and TIF. The results showed that PPARγ regulated the expression of PTEN at a transcriptional level and further regulated EMT and TIF. This dual activity could regulate the phosphorylation level of AKT and FAK and also affect FAK transcription. However, the 129 mutant of PTEN (PTEN-G129E) lost the lipid phosphatase activity, and its protein phosphatase activity was involved only in EMT and renal fibrosis through regulating FAK phosphorylation. This study systematically elucidated the role of PPARγ/PTEN/AKT/FAK signaling pathway in EMT and TIF during the pathogenesis of DN.

9.
Kidney Blood Press Res ; 44(4): 656-668, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31387101

RESUMO

BACKGROUND/AIMS: Cyclosporine A (CsA) is an immunosuppressant drug that is used during organ transplants. However, its utility is limited by its nephrotoxic potential. This study aimed to investigate whether fluorofenidone (AKF-PD) could provide protection against CsA-induced nephrotoxicity. METHODS: Eighty-five male Sprague-Dawley rats were divided into 5 groups: drug solvent, CsA, CsA with AKF-PD (250, 500 mg/kg/day), and CsA with pirfenidone (PFD, 250 mg/kg/day). Tubulointerstitial injury index, extracellular matrix (ECM) deposition, expression of type I and IV collagen, transforming growth factor (TGF)-ß1, platelet-derived growth factor (PDGF), Fas ligand (FASL), cleaved-caspase-3, cleaved-poly(ADP-ribose) polymerase (PARP)-1, and the number of transferase-mediated nick end-labeling (TUNEL)-positive renal tubule cells were determined. In addition, levels of TGF-ß1, FASL, cleaved-caspase-3, cleaved-PARP-1, and number of annexin V-positive cells were determined in rat proximal tubular epithelial cells (NRK-52E) treated with CsA (20 µmol/L), AKF-PD (400 µg/mL), PFD (400 µg/mL), and GW788388 (5 µmol/L). RESULTS: AKF-PD (250, 500 mg/kg/day) significantly reduced tubulointerstitial injury, ECM deposition, expression of type I and IV collagen, TGF-ß1, PDGF, FASL, cleaved-caspase-3, cleaved-PARP-1, and number of TUNEL-positive renal tubule cells in the CsA-treated kidneys. In addition, AKF-PD (400 µg/mL) significantly decreased TGF-ß1, FASL, cleaved-caspase-3, and PARP-1 expression in NRK-52E cells and further reduced the number of annexin V-positive cells. CONCLUSION: AKF-PD protect kidney from fibrosis and apoptosis in CsA-induced kidney injury.


Assuntos
Ciclosporina/toxicidade , Fibrose/prevenção & controle , Rim/lesões , Piridonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Rim/patologia , Masculino , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley
10.
Pharm Biol ; 57(1): 169-175, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30905239

RESUMO

CONTEXT: Ursolic acid (UA; 3ß-hydroxy-urs-12-en-28-oic acid), one of the pentacyclic triterpenoids found in various plants and herbs, possesses some beneficial effects under pathological conditions, including combating hepatic fibrosis. OBJECTIVE: This study investigates the effects of UA on renal tubulointerstitial fibrosis in vivo and in vitro. MATERIALS AND METHODS: In vivo, 24 male C57BL6 mice were divided into four groups. Eighteen mice were subjected to unilateral ureteral obstruction (UUO) and the remaining six sham-operated mice served as control. UUO mice received either vehicle or UA (50 or 100 mg/kg) by gastric gavage for 6 days. In vitro, HK-2 cells were treated with 10 or 50 µM UA and 10 ng/mL recombinant human transforming growth factor-ß1 (TGF-ß1). The molecular mechanisms of fibrosis were investigated. RESULTS: UUO induced marked interstitial collagen I and fibronectin deposition and epithelial-mesenchymal transition (EMT), as evidenced by increased α-smooth muscle actin (α-SMA) and decreased E-cadherin. However, UA treatment significantly reduced collagen I and fibronectin accumulation in the fibrotic kidney. UA treatment also decreased α-SMA and preserved E-cadherin in vivo. In vitro, TGF-ß1-treated HK-2 cells demonstrated elevated α-SMA, snail1, slug, TGF-ß1, and p-smad3, as well as diminished E-cadherin. UA pretreatment prevented E-cadherin loss and diminished α-SMA expression in HK-2 cells. UA downregulated mRNA expression of snail1 and slug. UA also lowered TGF-ß1 protein expression and p-Smad3 in HK-2 cells. CONCLUSIONS: UA attenuated renal tubulointerstitial fibrosis by inhibiting EMT, and such inhibition may be achieved by decreasing profibrotic factors. UA may be a novel therapeutic agent for renal fibrosis.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose/tratamento farmacológico , Nefropatias/tratamento farmacológico , Triterpenos/farmacologia , Actinas/metabolismo , Animais , Caderinas/metabolismo , Linhagem Celular , Colágeno/metabolismo , Fibronectinas/metabolismo , Fibrose/patologia , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Distribuição Aleatória , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Ácido Ursólico
11.
J Cell Mol Med ; 22(1): 628-645, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28994186

RESUMO

To address the pathophysiological mechanisms underlying chronic kidney disease with comorbid cardiac dysfunction, we investigated renal and cardiac, functional and structural damage when myocardial infarction (MI) was applied in the setting of kidney injury (induced by 5/6 nephrectomy-STNx). STNx or Sham surgery was induced in male Sprague-Dawley rats with MI or Sham surgery performed 4 weeks later. Rats were maintained for a further 8 weeks. Rats (n = 36) were randomized into four groups: Sham+Sham, Sham+MI, STNx+Sham and STNx+MI. Increased renal tubulointerstitial fibrosis (P < 0.01) and kidney injury molecule-1 expression (P < 0.01) was observed in STNx+MI compared to STNx+Sham animals, while there were no further reductions in renal function. Heart weight was increased in STNx+MI compared to STNx+Sham or Sham+MI animals (P < 0.05), despite no difference in blood pressure. STNx+MI rats demonstrated greater cardiomyocyte cross-sectional area and increased cardiac interstitial fibrosis compared to either STNx+Sham (P < 0.01) or Sham+MI (P < 0.01) animals which was accompanied by an increase in diastolic dysfunction. These changes were associated with increases in ANP, cTGF and collagen I gene expression and phospho-p38 MAPK and phospho-p44/42 MAPK protein expression in the left ventricle. Addition of MI accelerated STNx-induced structural damage but failed to significantly exacerbate renal dysfunction. These findings highlight the bidirectional response in this model known to occur in cardiorenal syndrome (CRS) and provide a useful model for examining potential therapies for CRS.


Assuntos
Coração/fisiopatologia , Rim/patologia , Insuficiência Renal Crônica/fisiopatologia , Animais , Biomarcadores/metabolismo , Pressão Sanguínea , Cardiomegalia/complicações , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Comorbidade , Eletrocardiografia , Fibrose , Regulação da Expressão Gênica , Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hemodinâmica , Inflamação/complicações , Inflamação/patologia , Estimativa de Kaplan-Meier , Rim/fisiopatologia , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Tamanho do Órgão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia , Transdução de Sinais
12.
Kidney Blood Press Res ; 42(3): 428-443, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750410

RESUMO

BACKGROUND/AIMS: Renal tubulointerstitial fibrosis (TIF) is the common pathway of progressive chronic kidney disease. Inflammation has been widely accepted as the major driving force of TIF. Cystathionine ß-synthase (CBS) is the first and rate-limiting enzyme in the transsulfuration pathway. CBS is considered to play protective role in liver and pulmonary fibrosis, but its role in TIF remains unknown. The purpose of this study was to investigate the potential role and mechanism of CBS in renal inflammation and TIF. METHODS: Renal function, tubulointerstitium damage index score, extracellular matrix (ECM) deposition, and the expressions of collagen I, collagen III, fibronectin, CD3, CD68, IL-1ß, TNF-α were measured in sham operation and unilateral ureteral obstruction (UUO) rats. Proteomics and gene array analysis were performed to screen differentially expressed molecules in the development of renal inflammation and TIF in UUO rats. The expression of CBS was detected in patients with obstructive nephropathy and UUO rats. We confirmed the expression of CBS using western blot and real-time PCR in HK-2 cells. Overexpression plasmid and siRNA were transfected specifically to study the possible function of CBS in HK-2 cells. RESULTS: Abundant expression of CBS, localized in renal tubular epithelial cells, was revealed in human and rat renal tissue, which correlated negatively with the progression of fibrotic disease. Expression of CBS was dramatically decreased in the obstructed kidney from UUO rats as compared with the sham group (SHM). In addition, knocking down CBS exacerbated extracellular matrix (ECM) deposition, whereas CBS overexpression attenuated TGF-ß1-induced ECM deposition in vitro. Inflammatory and chemotactic factors were also increased in CBS knockdown HK-2 cells stimulated by IL-1ß. CONCLUSIONS: These findings establish CBS as a novel inhibitor in renal fibrosis and as a new therapeutic target in patients with chronic kidney disease.


Assuntos
Cistationina beta-Sintase/deficiência , Fibrose/etiologia , Rim/lesões , Animais , Matriz Extracelular/metabolismo , Fibrose/prevenção & controle , Humanos , Rim/enzimologia , Rim/patologia , Túbulos Renais/patologia , Ratos , Fator de Crescimento Transformador beta1/metabolismo
13.
Am J Physiol Renal Physiol ; 309(6): F514-22, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25904701

RESUMO

Renal fibrosis is a histological outcome of chronic kidney disease (CKD) progression. However, the noninvasive detection of renal fibrosis remains a challenge. Here we constructed a renal fibrosis target mRNA array and used it to detect urinary mRNAs of CKD patients for investigating potential noninvasive biomarkers of renal fibrosis. We collected urine samples from 39 biopsy-proven CKD patients and 11 healthy controls in the training set. Urinary mRNA profiles of 86 genes showed a total of 21 mRNAs that were differentially expressed between CKD patients and controls (P < 0.05), and vimentin (VIM) mRNA demonstrated the highest change fold of 9.99 in CKD vs. controls with robust correlations with decline of renal function and severity of tubulointerstitial fibrosis. Additionally, VIM mRNA further differentiated patients with moderate-to-severe fibrosis from none-to-mild fibrosis group with an area of the curve of 0.796 (P = 0.008). A verification of VIM mRNA in the urine of an additional 96 patients and 20 controls showed that VIM is not only well correlated with renal function parameters but also correlated with proteinuria and renal fibrosis scores. Multiple logistic regression and receiver-operating characteristics analysis further showed that urine VIM mRNA is the best predictive parameter of renal fibrosis compared with estimated glomerular filtration rate, serum creatinine, and blood urea nitrogen. In addition, there is no improved predictive performance for the composite biomarkers to predict renal fibrosis severity compared with a single gene of VIM. Overall, urinary VIM mRNA might serve as a novel independent noninvasive biomarker to monitor the progression of kidney fibrosis.


Assuntos
Biomarcadores/metabolismo , Nefropatias/metabolismo , RNA Mensageiro/metabolismo , Vimentina/biossíntese , Vimentina/urina , Adulto , Feminino , Fibrose , Taxa de Filtração Glomerular , Ensaios de Triagem em Larga Escala , Humanos , Rim/patologia , Nefropatias/diagnóstico , Nefropatias/patologia , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Curva ROC , Insuficiência Renal Crônica/urina , Reprodutibilidade dos Testes
14.
Nephrology (Carlton) ; 20(11): 832-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25989822

RESUMO

AIM: Apoptosis is one of the most important mechanisms underlying renal tubulointerstitial fibrosis. We identified a role of protein Peroxiredoxin 1 (Prx1) in protecting apoptosis occurred in tubular epithelial cells of the rat and human kidney. METHODS: Immunohistochemistry (IHC) staining was used to detect Prx1 expression in kidney derived from unilateral-ureteral obstruction (UUO) rats or patients with obstructive nephropathy. Modulation of Prx1 expression by transfecting siRNA and overexpression plasmid approach were carried out in NRK-52E (rat kidney tubular epithelial cell line) cells. UUO-induced apoptosis was determined using TUNEL assay. RESULTS: Immunohistochemistry staining showed that Prx1 expressed in the cytoplasm of renal tubular epithelial cells, in the kidneys of UUO rats. The reduction was confirmed by both IHC and real-time polymerase chain reaction following a course of renal tubulointerstitial fibrosis in UUO rats and a decrease of Prx1 occurred concomitantly with an elevation of TUNEL-positive cells. Fluorofenidone (AKF-PD), a new anti-tubulointerstitial fibrotic agent, attenuated Prx1 reduction in UUO rats. Furthermore, hydrogen peroxide (H2 O2 )-derived oxidative stress activated p38 MAPK, and induced apoptosis in NRK-52E cells; knockdown of Prx1 sensitized both events in NRK-52E cells, and overexpression of Prx1 diminished the apoptosis and the phosphorylation of p38 CONCLUSION: Downregulation of Prx1 occurred in renal tubular epithelial cells of UUO rats and patients with obstructive nephropathy. Prx1 may alleviate the pathogenesis by inhibiting H2 O2 -induced apoptosis via inhibiting the p38 MAPK pathway. Prx1 may represent a useful target for a protective therapy towards renal tubulointerstitial fibrosis.


Assuntos
Apoptose , Células Epiteliais/enzimologia , Nefropatias/enzimologia , Rim/enzimologia , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Adolescente , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Ativação Enzimática , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Fibrose , Humanos , Peróxido de Hidrogênio/farmacologia , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Nefropatias/prevenção & controle , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/genética , Fosforilação , Piridonas/farmacologia , Interferência de RNA , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Transfecção , Obstrução Ureteral/complicações , Adulto Jovem , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
World J Diabetes ; 15(1): 105-125, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38313853

RESUMO

BACKGROUND: Development of end-stage renal disease is predominantly attributed to diabetic nephropathy (DN). Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations observed in renal tissue. Nevertheless, the precise molecular mechanism through which myricetin influences the progression of DN remains uncertain. AIM: To investigate the effects of myricetin on DN and explore its potential therapeutic mechanism. METHODS: Db/db mice were administered myricetin intragastrically on a daily basis at doses of 50 mg/kg or 100 mg/kg for a duration of 12 wk. Subsequently, blood and urine indexes were assessed, along with examination of renal tissue pathology. Kidney morphology and fibrosis were evaluated using various staining techniques including hematoxylin and eosin, periodic acid-Schiff, Masson's trichrome, and Sirius-red. Additionally, high-glucose culturing was conducted on the RAW 264.7 cell line, treated with 25 mM myricetin or co-administered with the PI3K/Akt inhibitor LY294002 for a period of 24 h. In both in vivo and in vitro settings, quantification of inflammation factor levels was conducted using western blotting, real-time qPCR and ELISA. RESULTS: In db/db mice, administration of myricetin led to a mitigating effect on DN-induced renal dysfunction and fibrosis. Notably, we observed a significant reduction in expressions of the kidney injury markers kidney injury molecule-1 and neutrophil gelatinase associated lipocalin, along with a decrease in expressions of inflammatory cytokine-related factors. Furthermore, myricetin treatment effectively inhibited the up-regulation of tumor necrosis factor-alpha, interleukin-6, and interluekin-1ß induced by high glucose in RAW 264.7 cells. Additionally, myricetin modulated the M1-type polarization of the RAW 264.7 cells. Molecular docking and bioinformatic analyses revealed Akt as the target of myricetin. The protective effect of myricetin was nullified upon blocking the polarization of RAW 264.7 via inhibition of PI3K/Akt activation using LY294002. CONCLUSION: This study demonstrated that myricetin effectively mitigates kidney injury in DN mice through the regulation of macrophage polarization via the PI3K/Akt signaling pathway.

16.
Noncoding RNA Res ; 9(4): 1120-1132, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39022687

RESUMO

Long non-coding RNA (lncRNA) H19 is an extensively studied lncRNA that is related to numerous pathological changes. Our previous findings have documented that serum lncRNA H19 levels are decreased in patients with chronic kidney disorder and lncRNA H19 reduction is closely correlated with renal tubulointerstitial fibrosis, an essential step in developing end-stage kidney disease. Nonetheless, the precise function and mechanism of lncRNA H19 in renal tubulointerstitial fibrosis are not fully comprehended. The present work utilized a mouse model of unilateral ureteral obstruction (UUO) and transforming growth factor-ß1 (TGF-ß1)-stimulated HK-2 cells to investigate the possible role and mechanism of lncRNA H19 in renal tubulointerstitial fibrosis were investigated. Levels of lncRNA H19 decreased in kidneys of mice with UUO and HK-2 cells stimulated with TGF-ß1. Up-regulation of lncRNA H19 in mouse kidneys remarkably relieved kidney injury, fibrosis and inflammation triggered by UUO. Moreover, the increase of lncRNA H19 in HK-2 cells reduced epithelial-to-mesenchymal transition (EMT) induced by TGF-ß1. Notably, up-regulation of lncRNA H19 reduced lipid accumulation and triacylglycerol content in kidneys of mice with UUO and TGF-ß1-stimulated HK-2 cells, accompanied by the up-regulation of long-chain acyl-CoA synthetase 1 (ACSL1). lncRNA H19 was identified as a sponge of microRNA-130a-3p, through which lncRNA H19 modulates the expression of ACSL1. The overexpression of microRNA-130a-3p reversed the lncRNA H19-induced increases in the expression of ACSL1. The suppressive effects of lncRNA H19 overexpression on the EMT, inflammation and lipid accumulation in HK-2 cells were diminished by ACSL1 silencing or microRNA-130a-3p overexpression. Overall, the findings showed that lncRNA H19 ameliorated renal tubulointerstitial fibrosis by reducing lipid deposition via modulation of the microRNA-130a-3p/ACSL1 axis.

17.
Pharmacol Rep ; 76(2): 263-272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472637

RESUMO

Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.


Assuntos
Nefropatias , Humanos , Nefropatias/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Fibrose
18.
Cell Biol Int ; 37(9): 1016-21, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23640911

RESUMO

Epithelial-mesenchymal transition (EMT) is an important cellular event in organogenesis, cancer and renal tubulointerstitial fibrosis. Transforming growth factor-beta1 (TGF-beta1) is the key inducer of EMT and the p38 mitogen-activated protein kinases (p38 MAPK), an major intracellular signal transduction pathway is involved in TGF-beta1-induced EMT. Astrocyte elevated gene-1 (AEG-1) represents an chief genetic determinant regulating multiple events in tumorigenesis. Our present study is to explore the role of AEG-1 in TGF-beta1-induced p38 MAPK activation and EMT process in human renal tubular epithelial (HK-2) cells. The protein expressions of AEG-1, the markers of EMT and p38 phosphorylation were measured by Western blot. The protein expression of AEG-1 was increased in HK-2 cells treated with TGF-beta1. Knockdown of AEG-1 potently inhibited phosphorylation of p38 MAPK and reversed TGF-beta1-induced EMT. Over-expression of AEG-1 via AEG-1 transfection elicited p38 MAPK phosphorylation and promoted EMT. The effects of AEG-1 during EMT were blocked by a p38-specific inhibitor. Our findings suggest that AEG-1 plays an important role in TGF-beta1-induced EMT through activation of p38 MAPK in proximal tubular epithelial cells.


Assuntos
Moléculas de Adesão Celular/genética , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Ativação Enzimática , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Eur J Pharmacol ; 955: 175915, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467841

RESUMO

Renal tubulointerstitial fibrosis (RIF), featured by epithelial-to-mesenchymal-transition (EMT) of renal tubular epithelial cells and collagen deposition in the renal interstitial region, is the main pathological change of diabetic nephropathy (DN). Fraxin, the main active component of Fraxinus rhynchophylla Hance with anti-inflammatory activity, has been demonstrated to ameliorate glomerulosclerosis. However, the regulatory role of Fraxin on diabetic RIF remains unclear. In this study, we investigated the renal protective benefits of Fraxin against diabetic RIF and elucidated its mechanisms. In vitro, Fraxin inhibited the abnormal expression of EMT-related markers and proinflammatory cytokines, improved cellular morphology, and subsequently reduced the extracellular matrix (ECM) production in high glucose (HG)-induced NRK-52E cells. In vivo, Fraxin effectively ameliorated renal function, inhibited the abnormal expression of EMT-related markers and proinflammatory cytokines, and reduced ECM deposition in renal tubule interstitium in db/db mice. Notably, Fraxin could directly bind to epidermal growth factor receptor (EGFR), which contributed to the inhibition of EGFR phosphorylation and counteracted the activation of c-Src/NF-κB pathway, eventually ameliorating RIF. Thus, Fraxin may be a potential drug candidate for treating DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Camundongos , Animais , NF-kappa B/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Rim , Nefropatias Diabéticas/patologia , Receptores ErbB , Citocinas/farmacologia , Fibrose , Transição Epitelial-Mesenquimal
20.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166701, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990128

RESUMO

Hypoxia-regulated proximal tubular epithelial cells (PTCs) G2/M phase arrest/delay was involved in production of renal tubulointerstitial fibrosis (TIF). TIF is a common pathological manifestation of progression in patients with chronic kidney disease (CKD), and is often accompanied by lipid accumulation in renal tubules. However, cause-effect relationship between hypoxia-inducible lipid droplet-associated protein (Hilpda), lipid accumulation, G2/M phase arrest/delay and TIF remains unclear. Here we found that overexpression of Hilpda downregulated adipose triglyceride lipase (ATGL) promoted triglyceride overload in the form of lipid accumulation, leading to defective fatty acid ß-oxidation (FAO), ATP depletion in a human PTC cell line (HK-2) under hypoxia and in mice kidney tissue treated with unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI). Hilpda-induced lipid accumulation caused mitochondrial dysfunction, enhanced expression of profibrogenic factors TGF-ß1, α-SMA and Collagen I elevation, and reduced expression of G2/M phase-associated gene CDK1, as well as increased CyclinB1/D1 ratio, resulted in G2/M phase arrest/delay and profibrogenic phenotypes. Hilpda deficiency in HK-2 cell and kidney of mice with UUO had sustained expression of ATGL and CDK1 and reduced expression of TGF-ß1, Collagen I and CyclinB1/D1 ratio, resulting in the amelioration of lipid accumulation and G2/M arrest/delay and subsequent TIF. Expression of Hilpda correlated with lipid accumulation, was positively associated with tubulointerstitial fibrosis in tissue samples from patients with CKD. Our findings suggest that Hilpda deranges fatty acid metabolism in PTCs, which leads to G2/M phase arrest/delay and upregulation of profibrogenic factors, and consequently promote TIF which possibly underlie pathogenesis of CKD.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Regulação para Baixo , Ácidos Graxos , Fibrose , Pontos de Checagem da Fase G2 do Ciclo Celular , Hipóxia/patologia , Rim/patologia , Lipídeos , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA