Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142311

RESUMO

Heterophylly, the phenomenon by which plants alter leaf forms to adapt to surrounding conditions, is apparent in amphibious plant species. In response to submergence, they emerge leaves with narrower blade areas. The pathway that receives the submergence signals and the mechanism regulating leaf form via cell proliferation and/or expansion systems have not yet been fully identified yet. Our anatomical study of Rorippa aquatica, an amphibious plant that exhibits heterophylly in response to various signals, showed that leaf thickness increased upon submergence; this was caused by the expansion of mesophyll cell size. Additionally, these submergence effects were inhibited under blue-light conditions. The ANGUSTIFOLIA3 (AN3)/GROWTH-REGULATING FACTOR (GRF) pathway regulating cell proliferation and cell expansion was downregulated in response to submergence; and the response was blocked under the blue-light conditions. These results suggest that submergence and light quality determine leaf cell morphology via the AN3/GRF pathway.


Assuntos
Rorippa , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Células do Mesofilo , Folhas de Planta/metabolismo , Plantas , Rorippa/metabolismo
2.
Plant Cell Physiol ; 61(2): 353-369, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31651939

RESUMO

Some plant species have a striking capacity for regeneration in nature, including regeneration of the entire individual from explants. However, due to the lack of suitable experimental models, the regulatory mechanisms of spontaneous whole plant regeneration are mostly unknown. In this study, we established a novel model system to study these mechanisms using an amphibious plant within Brassicaceae, Rorippa aquatica, which naturally undergoes vegetative propagation via regeneration from leaf fragments. Morphological and anatomical observation showed that both de novo root and shoot organogenesis occurred from the proximal side of the cut edge transversely with leaf vascular tissue. Time-series RNA-seq analysis revealed that auxin and cytokinin responses were activated after leaf amputation and that regeneration-related genes were upregulated mainly on the proximal side of the leaf explants. Accordingly, we found that both auxin and cytokinin accumulated on the proximal side. Application of a polar auxin transport inhibitor retarded root and shoot regeneration, suggesting that the enhancement of auxin responses caused by polar auxin transport enhanced de novo organogenesis at the proximal wound site. Exogenous phytohormone and inhibitor applications further demonstrated that, in R. aquatica, both auxin and gibberellin are required for root regeneration, whereas cytokinin is important for shoot regeneration. Our results provide a molecular basis for vegetative propagation via de novo organogenesis.


Assuntos
Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Regeneração/genética , Regeneração/fisiologia , Rorippa/crescimento & desenvolvimento , Rorippa/genética , Rorippa/metabolismo , Divisão Celular , Proliferação de Células , Citocininas , Regulação da Expressão Gênica de Plantas , Giberelinas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transcriptoma
3.
Curr Biol ; 33(3): 543-556.e4, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36696900

RESUMO

Land plants have evolved the ability to cope with submergence. Amphibious plants are adapted to both aerial and aquatic environments through phenotypic plasticity in leaf form and function, known as heterophylly. In general, underwater leaves of amphibious plants are devoid of stomata, yet their molecular regulatory mechanisms remain elusive. Using the emerging model of the Brassicaceae amphibious species Rorippa aquatica, we lay the foundation for the molecular physiological basis of the submergence-triggered inhibition of stomatal development. A series of temperature shift experiments showed that submergence-induced inhibition of stomatal development is largely uncoupled from morphological heterophylly and likely regulated by independent pathways. Submergence-responsive transcriptome analysis revealed rapid reprogramming of gene expression, exemplified by the suppression of RaSPEECHLESS and RaMUTE within 1 h and the involvement of light and hormones in the developmental switch from terrestrial to submerged leaves. Further physiological studies place ethylene as a central regulator of the submergence-triggered inhibition of stomatal development. Surprisingly, red and blue light have opposing functions in this process: blue light promotes, whereas red light inhibits stomatal development, through influencing the ethylene pathway. Finally, jasmonic acid counteracts the inhibition of stomatal development, which can be attenuated by the red light. The actions and interactions of light and hormone pathways in regulating stomatal development in R. aquatica are different from those in the terrestrial species, Arabidopsis thaliana. Thus, our work suggests that extensive rewiring events of red light to ethylene signaling might underlie the evolutionary adaption to water environment in Brassicaceae.


Assuntos
Arabidopsis , Brassicaceae , Rorippa , Rorippa/genética , Rorippa/metabolismo , Folhas de Planta , Arabidopsis/genética , Etilenos/metabolismo , Hormônios/metabolismo , Estômatos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Front Plant Sci ; 8: 1717, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046687

RESUMO

Plant species are known to respond to variations in environmental conditions. Many plant species have the ability to alter their leaf morphology in response to such changes. This phenomenon is termed heterophylly and is widespread among land plants. In some cases, heterophylly is thought to be an adaptive mechanism that allows plants to optimally respond to environmental heterogeneity. Recently, many research studies have investigated the occurrence of heterophylly in a wide variety of plants. Several studies have suggested that heterophylly in plants is regulated by phytohormones. Herein, we reviewed the existing knowledge on the relationship and role of phytohormones, especially abscisic acid, ethylene, gibberellins, and auxins (IAA), in regulating heterophylly and attempted to elucidate the mechanisms that regulate heterophylly.

5.
Plant Signal Behav ; 10(12): e1091909, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26367499

RESUMO

Many plants show heterophylly, which is variation in leaf form within a plant owing to environmental change. The molecular mechanisms underlying heterophylly have recently been investigated in several plant species. However, little is known about how plants exhibiting heterophylly sense environmental cues. Here, we used Rorippa aquatica (Brassicaceae), which shows heterophylly, to investigate whether a single leaf can sense and transit changes in ambient temperature. The morphology of newly developed leaves after single-leaf warming treatment was significantly different from that of mock-treated control leaves, suggesting that leaves are sensing organs that mediate the responses to changes in ambient temperature in R. aquatica.


Assuntos
Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Rorippa/anatomia & histologia , Rorippa/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA