Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279648

RESUMO

Virus-encoded circular RNA (circRNA) participates in the immune response to viral infection, affects the human immune system, and can be used as a target for precision therapy and tumor biomarker. The coronaviruses SARS-CoV-1 and SARS-CoV-2 (SARS-CoV-1/2) that have emerged in recent years are highly contagious and have high mortality rates. In coronaviruses, little is known about the circRNA encoded by the SARS-CoV-1/2. Therefore, this study explores whether SARS-CoV-1/2 encodes circRNA and characteristics and functions of circRNA. Based on RNA-seq data of SARS-CoV-1 and SARS-CoV-2 infections, we used circRNA identification tools (circRNA_finder, find_circ and CIRI2) to identify circRNAs. The number of circRNAs encoded by SARS-CoV-1 and SARS-CoV-2 was identified as 151 and 470, respectively. It can be found that SARS-CoV-2 shows more prominent circRNA encoding ability than SARS-CoV-1. Expression analysis showed that only a few circRNAs encoded by SARS-CoV-1/2 showed high expression levels, and the positive strand produced more abundant circRNAs. Then, based on the identified SARS-CoV-1/2-encoded circRNAs, we performed circRNA identification and characterization using the previously developed CirRNAPL. Finally, target gene prediction and functional enrichment analysis were performed. It was found that viral circRNA is closely related to cancer and has a potential role in regulating host cell functions. This study studied the characteristics and functions of viral circRNA encoded by coronavirus SARS-CoV-1/2, providing a valuable resource for further research on the function and molecular mechanism of coronavirus circRNA.


Assuntos
COVID-19 , MicroRNAs , Neoplasias , Humanos , RNA Circular/genética , SARS-CoV-2/genética , COVID-19/genética , RNA Viral/genética , Neoplasias/genética , MicroRNAs/genética
2.
Microbes Infect ; : 105381, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914369

RESUMO

BACKGROUND: In both lung adenocarcinoma (LUAD) and severe acute respiratory syndrome (SARS), uncontrolled inflammation can be detected in lung tissue. The PDZ-binding motif (PBM) in the SARS-CoV-1 E protein has been demonstrated to be a virulence factor that induces a cytokine storm. METHODS: To identify gene expression fluctuations induced by PBM, microarray sequencing data of lung tissue infected with wild-type (SARS-CoV-1-E-wt) or recombinant virus (SARS-CoV-1-E-mutPBM) were analyzed, followed by functional enrichment analysis. To understand the role of the screened genes in LUAD, overall survival and immune correlation were calculated. RESULTS: A total of 12 genes might participate in the initial and developmental stages of LUAD through expression variation and mutation. Moreover, dysregulation of a total of 12 genes could lead to a poorer prognosis. In addition, the downregulation of MAMDC2 and ITGA8 by PBM could also affect patient prognosis. Although the conserved PBM (-D-L-L-V-) can be found at the end of the carboxyl terminus in multiple E proteins of coronaviruses, the specific function of each protein depends on the entire amino acid sequence. CONCLUSIONS: In summary, PBM containing the SARS-CoV-1 E protein promoted the carcinogenesis of LUAD by dysregulating important gene expression profiles and subsequently influencing the immune response and overall prognosis.

3.
Biology (Basel) ; 13(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38666857

RESUMO

Earlier research has established the existence of reliable interactive genomic biomarkers. However, reliable DNA methylation biomarkers, not to mention interactivity, have yet to be identified at the epigenetic level. This study, drawing from 865,859 methylation sites, discovered two miniature sets of Infinium MethylationEPIC sites, each having eight CpG sites (genes) to interact with each other and disease subtypes. They led to the nearly perfect (96.87-100% accuracy) prediction of COVID-19 patients from patients with other diseases or healthy controls. These CpG sites can jointly explain some post-COVID-19-related conditions. These CpG sites and the optimally performing genomic biomarkers reported in the literature become potential druggable targets. Among these CpG sites, cg16785077 (gene MX1), cg25932713 (gene PARP9), and cg22930808 (gene PARP9) at DNA methylation levels indicate that the initial SARS-CoV-2 virus may be better treated as a transcribed viral DNA into RNA virus, i.e., not as an RNA virus that has concerned scientists in the field. Such a discovery can significantly change the scientific thinking and knowledge of viruses.

4.
Front Immunol ; 15: 1442160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100673

RESUMO

The COVID-19 pandemic has uncovered the high genetic variability of the SARS-CoV-2 virus and its ability to evade the immune responses that were induced by earlier viral variants. Only a few monoclonal antibodies that have been reported to date are capable of neutralizing a broad spectrum of SARS-CoV-2 variants. Here, we report the isolation of a new broadly neutralizing human monoclonal antibody, iC1. The antibody was identified through sorting the SARS-CoV-1 RBD-stained individual B cells that were isolated from the blood of a vaccinated donor following a breakthrough infection. In vitro, iC1 potently neutralizes pseudoviruses expressing a wide range of SARS-CoV-2 Spike variants, including those of the XBB sublineage. In an hACE2-transgenic mouse model, iC1 provided effective protection against the Wuhan strain of the virus as well as the BA.5 and XBB.1.5 variants. Therefore, iC1 can be considered as a potential component of the broadly neutralizing antibody cocktails resisting the SARS-CoV-2 mutation escape.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Camundongos Transgênicos , SARS-CoV-2 , Animais , SARS-CoV-2/imunologia , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Pandemias/prevenção & controle , Betacoronavirus/imunologia , Betacoronavirus/genética , Anticorpos Amplamente Neutralizantes/imunologia , Modelos Animais de Doenças , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Pneumonia Viral/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/prevenção & controle
5.
Hlife ; 1(1): 26-34, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38994526

RESUMO

Multiple Omicron sub-lineages have emerged, with Omicron XBB and XBB.1.5 subvariants becoming the dominant variants globally at the time of this study. The key feature of new variants is their ability to escape humoral immunity despite the fact that there are limited genetic changes from their preceding variants. This raises the question of whether Omicron should be regarded as a separate serotype from viruses serologically clustered with the ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Here, we present cross-neutralization data based on a pseudovirus neutralization test using convalescent sera from naïve individuals who had recovered from primary infection by SARS-CoV-1 and SARS-CoV-2 strains/variants including the ancestral virus and variants Beta, Delta, Omicron BA.1, Omicron BA.2 and Omicron BA.5. The results revealed no significant cross-neutralization in any of the three-way testing for SARS-CoV-1, ancestral SARS-CoV-2 and SARS-CoV-2 Omicron subvariants. The data argue for the assignment of three distinct serotypes for the currently known human-infecting SARS-related coronaviruses.

6.
Viruses ; 15(12)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38140582

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the worldwide COVID-19 pandemic. Animal models are extremely helpful for testing vaccines and therapeutics and for dissecting the viral and host factors that contribute to disease severity and transmissibility. Here, we report the assessment and comparison of intranasal and small particle (~3 µm) aerosol SARS-CoV-2 exposure in ferrets. The primary endpoints for analysis were clinical signs of disease, recovery of the virus in the upper respiratory tract, and the severity of damage within the respiratory tract. This work demonstrated that ferrets were productively infected with SARS-CoV-2 following either intranasal or small particle aerosol exposure. SARS-CoV-2 infection of ferrets resulted in an asymptomatic disease course following either intranasal or small particle aerosol exposure, with no clinical signs, significant weight loss, or fever. In both aerosol and intranasal ferret models, SARS-CoV-2 replication, viral genomes, and viral antigens were detected within the upper respiratory tract, with little to no viral material detected in the lungs. The ferrets exhibited a specific IgG immune response to the SARS-CoV-2 full spike protein. Mild pathological findings included inflammation, necrosis, and edema within nasal turbinates, which correlated to positive immunohistochemical staining for the SARS-CoV-2 virus. Environmental sampling was performed following intranasal exposure of ferrets, and SARS-CoV-2 genomic material was detected on the feeders and nesting areas from days 2-10 post-exposure. We conclude that both intranasal and small particle aerosol ferret models displayed measurable parameters that could be utilized for future studies, including transmission studies and testing SARS-CoV-2 vaccines and therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Furões , Vacinas contra COVID-19 , Pandemias , Aerossóis e Gotículas Respiratórios , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA