Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Semin Cell Dev Biol ; 148-149: 42-50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36670035

RESUMO

Downy mildews are obligate oomycete pathogens that attack a wide range of plants and can cause significant economic impacts on commercial crops and ornamental plants. Traditionally, downy mildew disease control relied on an integrated strategies, that incorporate cultural practices, deployment of resistant cultivars, crop rotation, application of contact and systemic pesticides, and biopesticides. Recent advances in genomics provided data that significantly advanced understanding of downy mildew evolution, taxonomy and classification. In addition, downy mildew genomics also revealed that these obligate oomycetes have reduced numbers of virulence factor genes in comparison to hemibiotrophic and necrotrophic oomycetes. However, downy mildews do deploy significant arrays of virulence proteins, including so-called RXLR proteins that promote virulence or are recognized as avirulence factors. Pathogenomics are being applied to downy mildew population studies to determine the genetic diversity within the downy mildew populations and manage disease by selection of appropriate varieties and management strategies. Genome editing technologies have been used to manipulate host disease susceptibility genes in different plants including grapevine and sweet basil and thereby provide new soucres of resistance genes against downy mildews. Previously, it has proved difficult to transform and manipulate downy mildews because of their obligate lifestyle. However, recent exploitation of RNA interference machinery through Host-Induced Gene Silencing (HIGS) and Spray-Induced Gene Silencing (SIGS) indicate that functional genomics in downy mildews is now possible. Altogether, these breakthrough technologies and attendant fundamental understanding will advance our ability to mitigate downy mildew diseases.


Assuntos
Oomicetos , Oomicetos/genética , Oomicetos/metabolismo , Genômica , Plantas , Virulência/genética
2.
Planta ; 259(6): 153, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744752

RESUMO

MAIN CONCLUSION: The study evaluates the potential of Spray-Induced Gene Silencing and Host-Induced Gene Silencing for sustainable crop protection against the broad-spectrum necrotrophic fungus Sclerotinia sclerotiorum. Sclerotinia sclerotiorum (Lib.) de Bary, an aggressive ascomycete fungus causes white rot or cottony rot on a broad range of crops including Brassica juncea. The lack of sustainable control measures has necessitated biotechnological interventions such as RNA interference (RNAi) for effective pathogen control. Here we adopted two RNAi-based strategies-Spray-Induced Gene Silencing (SIGS) and Host-Induced Gene Silencing (HIGS) to control S. sclerotiorum. SIGS was successful in controlling white rot on Nicotiana benthamiana and B. juncea by targeting SsPac1, a pH-responsive transcription factor and SsSmk1, a MAP kinase involved in fungal development and pathogenesis. Topical application of dsRNA targeting SsPac1 and SsSmk1 delayed infection initiation and progression on B. juncea. Further, altered hyphal morphology and reduced radial growth were also observed following dsRNA application. We also explored the impact of stable dsRNA expression in A. thaliana against S. sclerotiorum. In this report, we highlight the utility of RNAi as a biofungicide and a tool for preliminary functional genomics.


Assuntos
Ascomicetos , Nicotiana , Doenças das Plantas , Interferência de RNA , Ascomicetos/fisiologia , Ascomicetos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Nicotiana/genética , Nicotiana/microbiologia , Mostardeira/genética , Mostardeira/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA de Cadeia Dupla/genética
3.
Phytopathology ; 114(5): 1000-1010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38506733

RESUMO

Sclerotinia stem rot is a globally destructive plant disease caused by Sclerotinia sclerotiorum. Current management of Sclerotinia stem rot primarily relies on chemical fungicides and crop rotation, raising environmental concerns. In this study, we developed an eco-friendly RNA bio-fungicide targeting S. sclerotiorum. Six S. sclerotiorum genes were selected for double-stranded RNA (dsRNA) synthesis. Four genes, a chitin-binding domain, mitogen-activated protein kinase, oxaloacetate acetylhydrolase, and abhydrolase-3, were combined to express hairpin RNA in Escherichia coli HT115. The effect of application of total RNA extracted from E. coli HT115 expressing hairpin RNA on disease progressive and necrosis lesions was evaluated. Gene expression analysis using real-time PCR showed silencing of the target genes using 5 ng/µl of dsRNA in a fungal liquid culture. A detached leaf assay and greenhouse application of dsRNA on canola stem and leaves showed variation in the reduction of necrosis symptoms by dsRNA of different genes, with abhydrolase-3 being the most effective. The dsRNA from a combination of four genes reduced disease severity significantly (P = 0.01). Plants sprayed with hairpin RNA from four genes had lesions that were almost 30% smaller than those of plants treated with abhydrolase-3 alone, in lab and greenhouse assays. The results of this study highlight the potential of RNA interference to manage diseases caused by S. sclerotiorum; however, additional research is necessary to optimize its efficacy.


Assuntos
Ascomicetos , Brassica napus , Doenças das Plantas , Ascomicetos/fisiologia , Ascomicetos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Brassica napus/microbiologia , RNA de Cadeia Dupla/genética , Caules de Planta/microbiologia , Folhas de Planta/microbiologia
4.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928507

RESUMO

The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.


Assuntos
Botrytis , Interações Hospedeiro-Patógeno , Doenças das Plantas , Interferência de RNA , Botrytis/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Interações Hospedeiro-Patógeno/genética , Fungicidas Industriais/farmacologia
5.
J Integr Plant Biol ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225562

RESUMO

Soybean rust (SBR), caused by an obligate biotrophic pathogen Phakopsora pachyrhizi, is a devastating disease of soybean worldwide. However, the mechanisms underlying plant invasion by P. pachyrhizi are poorly understood, which hinders the development of effective control strategies for SBR. Here we performed detailed histological characterization on the infection cycle of P. pachyrhizi in soybean and conducted a high-resolution transcriptional dissection of P. pachyrhizi during infection. This revealed P. pachyrhizi infection leads to significant changes in gene expression with 10 co-expressed gene modules, representing dramatic transcriptional shifts in metabolism and signal transduction during different stages throughout the infection cycle. Numerous genes encoding secreted protein are biphasic expressed, and are capable of inhibiting programmed cell death triggered by microbial effectors. Notably, three co-expressed P. pachyrhizi apoplastic effectors (PpAE1, PpAE2, and PpAE3) were found to suppress plant immune responses and were essential for P. pachyrhizi infection. Double-stranded RNA coupled with nanomaterials significantly inhibited SBR infection by targeting PpAE1, PpAE2, and PpAE3, and provided long-lasting protection to soybean against P. pachyrhizi. Together, this study revealed prominent changes in gene expression associated with SBR and identified P. pachyrhizi virulence effectors as promising targets of RNA interference-based soybean protection strategy against SBR.

6.
World J Microbiol Biotechnol ; 40(11): 339, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358476

RESUMO

Plant pathogens and other biological pests represent significant obstacles to crop Protection worldwide. Even though there are many effective conventional methods for controlling plant diseases, new methods that are also effective, environmentally safe, and cost-effective are required. While plant breeding has traditionally been used to manipulate the plant genome to develop resistant cultivars for controlling plant diseases, the emergence of genetic engineering has introduced a completely new approach to render plants resistant to bacteria, nematodes, fungi, and viruses. The RNA interference (RNAi) approach has recently emerged as a potentially useful tool for mitigating the inherent risks associated with the development of conventional transgenics. These risks include the use of specific transgenes, gene control sequences, or marker genes. Utilizing RNAi to silence certain genes is a promising solution to this dilemma as disease-resistant transgenic plants can be generated within a legislative structure. Recent investigations have shown that using target double stranded RNAs via an effective vector system can produce significant silencing effects. Both dsRNA-containing crop sprays and transgenic plants carrying RNAi vectors have proven effective in controlling plant diseases that threaten commercially significant crop species. This article discusses the methods and applications of the most recent RNAi technology for reducing plant diseases to ensure sustainable agricultural yields.


Assuntos
Biotecnologia , Resistência à Doença , Doenças das Plantas , Plantas Geneticamente Modificadas , Interferência de RNA , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Resistência à Doença/genética , Biotecnologia/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Engenharia Genética/métodos , RNA de Cadeia Dupla/genética , Plantas/genética , Plantas/microbiologia , Animais , Vetores Genéticos/genética , Melhoramento Vegetal/métodos
7.
J Bacteriol ; 205(6): e0039222, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37255480

RESUMO

SigS is the sole extracytoplasmic function sigma factor in Staphylococcus aureus and is necessary for virulence, immune evasion, and adaptation to toxic chemicals and environmental stressors. Despite the contribution of SigS to a myriad of critical phenotypes, the downstream effectors of SigS-dependent pathogenesis, immune evasion, and stress adaptation remain elusive. To address this knowledge gap, we analyzed the S. aureus transcriptome following transient overexpression of SigS. We identified a bicistronic transcript, upregulated 1,000-fold, containing two midsized genes, each containing single domains of unknown function (DUFs). We renamed these genes SigS-regulated orfA (sroA) and SigS-regulated orfB (sroB). We demonstrated that SigS regulation of the sroAB operon is direct by using in vitro transcription analysis. Using Northern blot analysis, we also demonstrated that SroA and SroB have opposing autoregulatory functions on the transcriptional architecture of the sigS locus, with SroA stimulating SigS mRNA levels and SroB stimulating s750 (SigS antisense) levels. We hypothesized that these opposing regulatory effects were due to a direct interaction. We subsequently demonstrated a direct interaction between SroA and SroB using an in vivo surrogate genetics approach via bacterial adenylate cyclase-based two-hybrid (BACTH) analysis. We demonstrated that the SroA effect on SigS is at the posttranscriptional level of mRNA stability, highlighting a mechanism likely used by S. aureus to tightly control SigS levels. Finally, we demonstrate that the sroAB locus promotes virulence in a murine pneumonia model of infection. IMPORTANCE SigS is necessary for S. aureus virulence, immune evasion, and adaptation to chemical and environmental stressors. These processes are critically important for the ability of S. aureus to cause disease. However, the SigS-dependent transcriptome has not been identified, hindering our ability to identify downstream effectors of SigS that contribute to these pathogenic and adaptive phenotypes. Here, we identify a regulatory protein pair that is a major direct target of SigS, known as SroA and SroB. SroA also acts to stimulate SigS expression at the posttranscriptional level of RNA turnover, providing insight into intrinsically low levels of SigS. The discovery of SroA and SroB increases our understanding of SigS and the S. aureus pathogenesis process.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Camundongos , Staphylococcus aureus/metabolismo , Fatores de Transcrição/metabolismo , Infecções Estafilocócicas/microbiologia , Fator sigma/genética , Fator sigma/metabolismo , Estabilidade de RNA , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
8.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37298705

RESUMO

Antisense RNA was observed to elicit plant disease resistance and post-translational gene silencing (PTGS). The universal mechanism of RNA interference (RNAi) was shown to be induced by double-stranded RNA (dsRNA), an intermediate produced during virus replication. Plant viruses with a single-stranded positive-sense RNA genome have been instrumental in the discovery and characterization of systemic RNA silencing and suppression. An increasing number of applications for RNA silencing have emerged involving the exogenous application of dsRNA through spray-induced gene silencing (SIGS) that provides specificity and environmentally friendly options for crop protection and improvement.


Assuntos
Inativação Gênica , RNA de Cadeia Dupla , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética , Plantas/genética , Doenças das Plantas
9.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240427

RESUMO

Powdery mildew and rust fungi are major agricultural problems affecting many economically important crops and causing significant yield losses. These fungi are obligate biotrophic parasites that are completely dependent on their hosts for growth and reproduction. Biotrophy in these fungi is determined by the presence of haustoria, specialized fungal cells that are responsible for nutrient uptake and molecular dialogue with the host, a fact that undoubtedly complicates their study under laboratory conditions, especially in terms of genetic manipulation. RNA interference (RNAi) is the biological process of suppressing the expression of a target gene through double-stranded RNA that induces mRNA degradation. RNAi technology has revolutionized the study of these obligate biotrophic fungi by enabling the analysis of gene function in these fungal. More importantly, RNAi technology has opened new perspectives for the management of powdery mildew and rust diseases, first through the stable expression of RNAi constructs in transgenic plants and, more recently, through the non-transgenic approach called spray-induced gene silencing (SIGS). In this review, the impact of RNAi technology on the research and management of powdery mildew and rust fungi will be addressed.


Assuntos
Basidiomycota , Doenças das Plantas , Interferência de RNA , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/genética , Inativação Gênica , RNA de Cadeia Dupla/genética , Erysiphe
10.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569766

RESUMO

Our duty to conserve global natural ecosystems is increasingly in conflict with our need to feed an expanding population. The use of conventional pesticides not only damages the environment and vulnerable biodiversity but can also still fail to prevent crop losses of 20-40% due to pests and pathogens. There is a growing call for more ecologically sustainable pathogen control measures. RNA-based biopesticides offer an eco-friendly alternative to the use of conventional fungicides for crop protection. The genetic modification (GM) of crops remains controversial in many countries, though expression of transgenes inducing pathogen-specific RNA interference (RNAi) has been proven effective against many agronomically important fungal pathogens. The topical application of pathogen-specific RNAi-inducing sprays is a more responsive, GM-free approach to conventional RNAi transgene-based crop protection. The specific targeting of essential pathogen genes, the development of RNAi-nanoparticle carrier spray formulations, and the possible structural modifications to the RNA molecules themselves are crucial to the success of this novel technology. Here, we outline the current understanding of gene silencing pathways in plants and fungi and summarize the pioneering and recent work exploring RNA-based biopesticides for crop protection against fungal pathogens, with a focus on spray-induced gene silencing (SIGS). Further, we discuss factors that could affect the success of RNA-based control strategies, including RNA uptake, stability, amplification, and movement within and between the plant host and pathogen, as well as the cost and design of RNA pesticides.


Assuntos
Agentes de Controle Biológico , Praguicidas , Ecossistema , Interferência de RNA , RNA Interferente Pequeno/genética , Produtos Agrícolas/genética , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
11.
Mol Plant Microbe Interact ; 35(9): 803-813, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36102883

RESUMO

Rhizoctonia cerealis is a soilborne fungus that can cause sharp eyespot in wheat, resulting in massive yield losses found in many countries. Due to the lack of resistant cultivars, fungicides have been widely used to control this pathogen. However, chemical control is not environmentally friendly and is costly. Meanwhile, the lack of genetic transformation tools has hindered the functional characterization of virulence genes. In this study, we attempted to characterize the function of virulence genes by two transient methods, host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS), which use RNA interference to suppress the pathogenic development. We identified ten secretory orphan genes from the genome. After silencing these ten genes, only the RcOSP1 knocked-down plant significantly inhibited the growth of R. cerealis. We then described RcOSP1 as an effector that could impair wheat biological processes and suppress pathogen-associated molecular pattern-triggered immunity in the infection process. These findings confirm that HIGS and SIGS can be practical tools for researching R. cerealis virulence genes. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fungicidas Industriais , Triticum , Basidiomycota , Inativação Gênica , Moléculas com Motivos Associados a Patógenos , Doenças das Plantas/microbiologia , Rhizoctonia/genética , Triticum/microbiologia
12.
RNA Biol ; 19(1): 519-532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35442163

RESUMO

In the recent past, cross-kingdom movement of miRNAs, small (20-25 bases), and endogenous regulatory RNA molecules has emerged as one of the major research areas to understand the potential implications in modulating the plant's biotic stress response. The current review discussed the recent developments in the mechanism of cross-kingdom movement (long and short distance) and critical cross-talk between host's miRNAs in regulating gene function in bacteria, fungi, viruses, insects, and nematodes, and vice-versa during host-pathogen interaction and their potential implications in crop protection. Moreover, cross-kingdom movement during symbiotic interaction, the emerging role of plant's miRNAs in modulating animal's gene function, and feasibility of spray-induced gene silencing (SIGS) in combating biotic stresses in plants are also critically evaluated. The current review article analysed the horizontal transfer of miRNAs among plants, animals, and microbes that regulates gene expression in the host or pathogenic organisms, contributing to crop protection. Further, it highlighted the challenges and opportunities to harness the full potential of this emerging approach to mitigate biotic stress efficiently.


Assuntos
MicroRNAs , Animais , Fungos/genética , Inativação Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas/metabolismo , Estresse Fisiológico/genética
13.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613634

RESUMO

Isoamylase (ISA) is a debranching enzyme found in many plants, which hydrolyzes (1-6)-α-D glucosidic linkages in starch, amylopectin, and ß-dextrins, and is thought to be responsible for starch granule formation (ISA1 and ISA2) and degradation (ISA3). Lipid-modified PEI (lmPEI) was synthesized as a carrier for long double-stranded RNA (dsRNA, 250-bp), which targets the three isoamylase isoforms. The particles were applied to the plant via the foliar spray and were differentially effective in suppressing the expressions of ISA1 and ISA2 in the potato leaves, and ISA3 in the tubers. Plant growth was not significantly impaired, and starch levels in the tubers were not affected as well. Interestingly, the treated plants had significantly smaller starch granule sizes as well as increased sucrose content, which led to an early sprouting phenotype. We confirm the proposal of previous research that an increased number of small starch granules could be responsible for an accelerated turnover of glucan chains and, thus, the rapid synthesis of sucrose, and we propose a new relationship between ISA3 and the starch granule size. The implications of this study are in achieving a transgenic phenotype for endogenous plant genes using a systemic, novel delivery system, and foliar applications of dsRNA for agriculture.


Assuntos
Isoamilase , Solanum tuberosum , Isoamilase/genética , Isoamilase/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , RNA de Cadeia Dupla/genética , Amido/metabolismo , Fenótipo , Sacarose , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
14.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361711

RESUMO

Rhizoctonia solani is one of the important pathogenic fungi causing several serious crop diseases, such as maize and rice sheath blight. Current methods used to control the disease mainly depend on spraying fungicides because there is no immunity or high resistance available in crops. Spraying double-strand RNA (dsRNA) for induced-gene silencing (SIGS) is a new potentially sustainable and environmentally friendly tool to control plant diseases. Here, we found that fluorescein-labelled EGFP-dsRNA could be absorbed by R. solani in co-incubation. Furthermore, three dsRNAs, each targeting one of pathogenicity-related genes, RsPG1, RsCATA, and RsCRZ1, significantly downregulated the transcript levels of the target genes after co-incubation, leading to a significant reduction in the pathogenicity of the fungus. Only the spray of RsCRZ1 dsRNA, but not RsPG1 or RsCATA dsRNA, affected fungal sclerotium formation. dsRNA stability on leaf surfaces and its efficiency in entering leaf cells were significantly improved when dsRNAs were loaded on layered double hydroxide (LDH) nanosheets. Notably, the RsCRZ1-dsRNA-LDH approach showed stronger and more lasting effects than using RsCRZ1-dsRNA alone in controlling pathogen development. Together, this study provides a new potential method to control crop diseases caused by R. solani.


Assuntos
Oryza , Rhizoctonia , Rhizoctonia/genética , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , RNA de Cadeia Dupla/genética , Oryza/genética
15.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743077

RESUMO

RNA interference (RNAi) is a powerful tool that is being increasingly utilized for crop protection against viruses, fungal pathogens, and insect pests. The non-transgenic approach of spray-induced gene silencing (SIGS), which relies on spray application of double-stranded RNA (dsRNA) to induce RNAi, has come to prominence due to its safety and environmental benefits in addition to its wide host range and high target specificity. However, along with promising results in recent studies, several factors limiting SIGS RNAi efficiency have been recognized in insects and plants. While sprayed dsRNA on the plant surface can produce a robust RNAi response in some chewing insects, plant uptake and systemic movement of dsRNA is required for delivery to many other target organisms. For example, pests such as sucking insects require the presence of dsRNA in vascular tissues, while many fungal pathogens are predominately located in internal plant tissues. Investigating the mechanisms by which sprayed dsRNA enters and moves through plant tissues and understanding the barriers that may hinder this process are essential for developing efficient ways to deliver dsRNA into plant systems. In this review, we assess current knowledge of the plant foliar and cellular uptake of dsRNA molecules. We will also identify major barriers to uptake, including leaf morphological features as well as environmental factors, and address methods to overcome these barriers.


Assuntos
Insetos , RNA de Cadeia Dupla , Animais , Proteção de Cultivos , Inativação Gênica , Insetos/genética , Interferência de RNA , RNA de Cadeia Dupla/genética
16.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012499

RESUMO

RNA-based strategies for plant disease management offer an attractive alternative to agrochemicals that negatively impact human and ecosystem health and lead to pathogen resistance. There has been recent interest in using mycoviruses for fungal disease control after it was discovered that some cause hypovirulence in fungal pathogens, which refers to a decline in the ability of a pathogen to cause disease. Cryphonectria parasitica, the causal agent of chestnut blight, has set an ideal model of management through the release of hypovirulent strains. However, mycovirus-based management of plant diseases is still restricted by limited approaches to search for viruses causing hypovirulence and the lack of protocols allowing effective and systemic virus infection in pathogens. RNA interference (RNAi), the eukaryotic cell system that recognizes RNA sequences and specifically degrades them, represents a promising. RNA-based disease management method. The natural occurrence of cross-kingdom RNAi provides a basis for host-induced gene silencing, while the ability of most pathogens to uptake exogenous small RNAs enables the use of spray-induced gene silencing techniques. This review describes the mechanisms behind and the potential of two RNA-based strategies, mycoviruses and RNAi, for plant disease management. Successful applications are discussed, as well as the research gaps and limitations that remain to be addressed.


Assuntos
Micovírus , Vírus , Ecossistema , Micovírus/genética , Humanos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Plantas/genética , RNA , Interferência de RNA , Vírus/genética
17.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628126

RESUMO

Plant viruses are devastating plant pathogens that severely affect crop yield and quality. Plants have developed multiple lines of defense systems to combat viral infection. Gene silencing/RNA interference is the key defense system in plants that inhibits the virulence and multiplication of pathogens. The general mechanism of RNAi involves (i) the transcription and cleavage of dsRNA into small RNA molecules, such as microRNA (miRNA), or small interfering RNA (siRNA), (ii) the loading of siRNA/miRNA into an RNA Induced Silencing Complex (RISC), (iii) complementary base pairing between siRNA/miRNA with a targeted gene, and (iv) the cleavage or repression of a target gene with an Argonaute (AGO) protein. This natural RNAi pathway could introduce transgenes targeting various viral genes to induce gene silencing. Different RNAi pathways are reported for the artificial silencing of viral genes. These include Host-Induced Gene Silencing (HIGS), Virus-Induced Gene Silencing (VIGS), and Spray-Induced Gene Silencing (SIGS). There are significant limitations in HIGS and VIGS technology, such as lengthy and time-consuming processes, off-target effects, and public concerns regarding genetically modified (GM) transgenic plants. Here, we provide in-depth knowledge regarding SIGS, which efficiently provides RNAi resistance development against targeted genes without the need for GM transgenic plants. We give an overview of the defense system of plants against viral infection, including a detailed mechanism of RNAi, small RNA molecules and their types, and various kinds of RNAi pathways. This review will describe how RNA interference provides the antiviral defense, recent improvements, and their limitations.


Assuntos
MicroRNAs , Vírus de Plantas , Proteínas Argonautas/genética , Vírus de Plantas/genética , Plantas/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética , Complexo de Inativação Induzido por RNA/genética
18.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299307

RESUMO

Crop yield is severely affected by biotic and abiotic stresses. Plants adapt to these stresses mainly through gene expression reprogramming at the transcriptional and post-transcriptional levels. Recently, the exogenous application of double-stranded RNAs (dsRNAs) and RNA interference (RNAi) technology has emerged as a sustainable and publicly acceptable alternative to genetic transformation, hence, small RNAs (micro-RNAs and small interfering RNAs) have an important role in combating biotic and abiotic stresses in plants. RNAi limits the transcript level by either suppressing transcription (transcriptional gene silencing) or activating sequence-specific RNA degradation (post-transcriptional gene silencing). Using RNAi tools and their respective targets in abiotic stress responses in many crops is well documented. Many miRNAs families are reported in plant tolerance response or adaptation to drought, salinity, and temperature stresses. In biotic stress, the spray-induced gene silencing (SIGS) provides an intelligent method of using dsRNA as a trigger to silence target genes in pests and pathogens without producing side effects such as those caused by chemical pesticides. In this review, we focus on the potential of SIGS as the most recent application of RNAi in agriculture and point out the trends, challenges, and risks of production technologies. Additionally, we provide insights into the potential applications of exogenous RNAi against biotic stresses. We also review the current status of RNAi/miRNA tools and their respective targets on abiotic stress and the most common responsive miRNA families triggered by stress conditions in different crop species.


Assuntos
Produtos Agrícolas/genética , Interferência de RNA , Animais , Produção Agrícola/métodos , Proteção de Cultivos/métodos , Inativação Gênica , Controle de Insetos , Insetos/genética , Insetos/patogenicidade , MicroRNAs/genética , Defesa das Plantas contra Herbivoria/genética , RNA de Cadeia Dupla/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Estresse Fisiológico/genética
19.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360726

RESUMO

Fungal diseases pose a major threat to ornamental plants, with an increasing percentage of pathogen-driven host losses. In ornamental plants, management of the majority of fungal diseases primarily depends upon chemical control methods that are often non-specific. Host basal resistance, which is deficient in many ornamental plants, plays a key role in combating diseases. Despite their economic importance, conventional and molecular breeding approaches in ornamental plants to facilitate disease resistance are lagging, and this is predominantly due to their complex genomes, limited availability of gene pools, and degree of heterozygosity. Although genetic engineering in ornamental plants offers feasible methods to overcome the intrinsic barriers of classical breeding, achievements have mainly been reported only in regard to the modification of floral attributes in ornamentals. The unavailability of transformation protocols and candidate gene resources for several ornamental crops presents an obstacle for tackling the functional studies on disease resistance. Recently, multiomics technologies, in combination with genome editing tools, have provided shortcuts to examine the molecular and genetic regulatory mechanisms underlying fungal disease resistance, ultimately leading to the subsequent advances in the development of novel cultivars with desired fungal disease-resistant traits, in ornamental crops. Although fungal diseases constitute the majority of ornamental plant diseases, a comprehensive overview of this highly important fungal disease resistance seems to be insufficient in the field of ornamental horticulture. Hence, in this review, we highlight the representative mechanisms of the fungal infection-related resistance to pathogens in plants, with a focus on ornamental crops. Recent progress in molecular breeding, genetic engineering strategies, and RNAi technologies, such as HIGS and SIGS for the enhancement of fungal disease resistance in various important ornamental crops, is also described.


Assuntos
Resistência à Doença/genética , Fungos Mitospóricos/crescimento & desenvolvimento , Melhoramento Vegetal , Doenças das Plantas , Plantas Geneticamente Modificadas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia
20.
Int J Mol Sci ; 20(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650550

RESUMO

Biotic stresses do damage to the growth and development of plants, and yield losses for some crops. Confronted with microbial infections, plants have evolved multiple defense mechanisms, which play important roles in the never-ending molecular arms race of plant⁻pathogen interactions. The complicated defense systems include pathogen-associated molecular patterns (PAMP) triggered immunity (PTI), effector triggered immunity (ETI), and the exosome-mediated cross-kingdom RNA interference (CKRI) system. Furthermore, plants have evolved a classical regulation system mediated by miRNAs to regulate these defense genes. Most of the genes/small RNAs or their regulators that involve in the defense pathways can have very rapid evolutionary rates in the longitudinal and horizontal co-evolution with pathogens. According to these internal defense mechanisms, some strategies such as molecular switch for the disease resistance genes, host-induced gene silencing (HIGS), and the new generation of RNA-based fungicides, have been developed to control multiple plant diseases. These broadly applicable new strategies by transgene or spraying ds/sRNA may lead to reduced application of pesticides and improved crop yield.


Assuntos
Evolução Molecular , Genes de Plantas , Doenças das Plantas/genética , Resistência à Doença/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA