RESUMO
Chagas disease is caused by the intracellular protozoan parasite Trypanosoma cruzi. This disease affects mainly rural areas in Central and South America, where the insect vector is endemic. However, this disease has become a world health problem since migration has spread it to other continents. It is a complex disease with many reservoirs and vectors and high genetic variability. One of the host proteins involved in the pathogenesis is SLAMF1. This immune receptor acts during the infection of macrophages controlling parasite replication and thus affecting survival in mice but in a parasite strain-dependent manner. Therefore, we studied the role of SLAMF1 by quantitative proteomics in a macrophage in vitro infection and the different responses between Y and VFRA strains of Trypanosoma cruzi. We detected different significant up- or downregulated proteins involved in immune regulation processes, which are SLAMF1 and/or strain-dependent. Furthermore, independently of SLAMF1, this parasite induces different responses in macrophages to counteract the infection and kill the parasite, such as type I and II IFN responses, NLRP3 inflammasome activation, IL-18 production, TLR7 and TLR9 activation specifically with the Y strain, and IL-11 signaling specifically with the VFRA strain. These results have opened new research fields to elucidate the concrete role of SLAMF1 and discover new potential therapeutic approaches for Chagas disease.
Assuntos
Doença de Chagas , Macrófagos , Proteômica , Trypanosoma cruzi , Trypanosoma cruzi/metabolismo , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/imunologia , Proteômica/métodos , Doença de Chagas/parasitologia , Doença de Chagas/metabolismo , Doença de Chagas/imunologia , Antígenos CD/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , Receptores de Superfície Celular/metabolismo , Inflamassomos/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Glicoproteínas de MembranaRESUMO
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent forms of chronic liver disease in the United States and worldwide. Nonalcoholic steatohepatitis (NASH), the most advanced form of NAFLD, is characterized by hepatic steatosis associated with inflammation and hepatocyte death. No treatments are currently available for NASH other than lifestyle changes, and the disease lacks specific biomarkers. The signaling lymphocytic activation molecule family 1 (SLAMF1) protein is a self-ligand receptor that plays a role in orchestrating an immune response to some pathogens and cancers. We found that livers from humans and mice with NASH showed a more prominent immunohistochemistry staining for SLAMF1 than non-NASH controls. Furthermore, SLAMF1 levels are significantly increased in NASH plasma samples from mice and humans compared with their respective controls. In mice, the levels of SLAMF1 correlated significantly with the severity of the NASH phenotype. To test whether SLAMF 1 is expressed by hepatocytes, HepG2 cells and primary murine hepatocytes were treated with palmitic acid (PA) to induce a state of lipotoxicity mimicking NASH. We found that PA treatments of HepG2 cells and primary hepatocytes lead to significant increases in SLAMF1 levels. The downregulation of SLAMF1 in HepG2 cells improved the cell viability and reduced cytotoxicity. The in vivo data using mouse and human NASH samples suggests a potential role for this protein as a noninvasive biomarker for NASH. The in vitro data suggest a role for SLAMF1 as a potential therapeutic target to prevent hepatocyte death in response to lipotoxicity.NEW & NOTEWORTHY This study identified for the first time SLAMF1 as a mediator of hepatocyte death in nonalcoholic fatty liver disease (NASH) and as a marker of NASH in humans. There are no pharmacological treatments available for NASH, and diagnostic tools are limited to invasive liver biopsies. Therefore, since SLAMF1 levels correlate with disease progression and SLAMF1 mediates cytotoxic effects, this protein can be used as a therapeutic target and a clinical biomarker of NASH.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismoRESUMO
Signaling lymphocytic activating molecule family member 1 (SLAMF1 or CD150) is a cell surface glycoprotein expressed on various immune populations, regulating cell-cell interactions, activation, differentiation, and inflammatory responses and has been suggested as a potential target for inflammatory diseases. Signaling is believed to be mediated by high-affinity homophilic interactions; the recombinant soluble form of SLAMF1 has optimal activity in the range of 20 µg/mL. This contradicts with a rather weak homo-dimerization binding constant (KD) value reported previously; however, the analytical approach and data analysis suffered from various technical limitations at the time and therefore warrants re-examination. To address this apparent discrepancy, we determined the KD of soluble SLAMF1 using sedimentation velocity analytical ultracentrifuge (SV-AUC). A globally fitted monomer-dimer model properly explains the data from a wide concentration range obtained with both UV and fluorescence detection systems. The analysis suggests the dimerization KD value for human SLAMF1 is 0.48 µM. Additionally, our data show that SLAMF1 self-association is not driven by non-specific binding to glycans supporting the view of specific protein-protein interaction. We anticipate antibody biotherapeutics capable of modulating the biological consequences of SLAMF1 interactions will be readily identified.
Assuntos
Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/análise , Ultracentrifugação , Dimerização , HumanosRESUMO
The strategies by which intracellular pathogenic bacteria manipulate innate immunity to establish chronicity are poorly understood. Here, we show that Brucella abortus outer membrane protein Omp25 specifically binds the immune cell receptor SLAMF1 in vitro. The Omp25-dependent engagement of SLAMF1 by B. abortus limits NF-κB translocation in dendritic cells (DCs) with no impact on Brucella intracellular trafficking and replication. This in turn decreases pro-inflammatory cytokine secretion and impairs DC activation. The Omp25-SLAMF1 axis also dampens the immune response without affecting bacterial replication in vivo during the acute phase of Brucella infection in a mouse model. In contrast, at the chronic stage of infection, the Omp25/SLAMF1 engagement is essential for Brucella persistence. Interaction of a specific bacterial protein with an immune cell receptor expressed on the DC surface at the acute stage of infection is thus a powerful mechanism to support microbe settling in its replicative niche and progression to chronicity.
Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella abortus/imunologia , Células Dendríticas/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Inflamação , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Brucella abortus/genética , Brucella abortus/patogenicidade , Células Dendríticas/imunologia , Feminino , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Ligação Proteica , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genéticaRESUMO
SLAMF1/CD150 receptor is a founder of signaling lymphocyte activation molecule (SLAM) family of cell-surface receptors. It is widely expressed on cells within hematopoietic system. In hematologic malignancies CD150 cell surface expression is restricted to cutaneous T-cell lymphomas, few types of B-cell non-Hodgkin's lymphoma, near half of cases of chronic lymphocytic leukemia, Hodgkin's lymphoma, and multiple myeloma. Differential expression among various types of hematological malignancies allows considering CD150 as diagnostical and potential prognostic marker. Moreover, CD150 may be a target for antibody-based or measles virus oncolytic therapy. Due to CD150 signaling properties it is involved in regulation of malignant cell fate decision and tumor microenvironment in Hodgkin's lymphoma and chronic lymphocytic leukemia. This review summarizes evidence for the important role of CD150 in pathogenesis of hematologic malignancies.
Assuntos
Neoplasias Hematológicas , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Animais , HumanosRESUMO
The signaling lymphocyte activation molecule F1 (SLAMF1) is both a microbial sensor and entry receptor for measles virus (MeV). Herein, we describe a new role for SLAMF1 to mediate MeV endocytosis that is in contrast with the alternative, and generally accepted, model that MeV genome enters cells only after fusion at the cell surface. We demonstrated that MeV engagement of SLAMF1 induces dramatic but transient morphological changes, most prominently in the formation of membrane blebs, which were shown to colocalize with incoming viral particles, and rearrangement of the actin cytoskeleton in infected cells. MeV infection was dependent on these dynamic cytoskeletal changes as well as fluid uptake through a macropinocytosis-like pathway as chemical inhibition of these processes inhibited entry. Moreover, we identified a role for the RhoA-ROCK-myosin II signaling axis in this MeV internalization process, highlighting a novel role for this recently characterized pathway in virus entry. Our study shows that MeV can hijack a microbial sensor normally involved in bacterial phagocytosis to drive endocytosis using a complex pathway that shares features with canonical viral macropinocytosis, phagocytosis, and mechanotransduction. This uptake pathway is specific to SLAMF1-positive cells and occurs within 60 min of viral attachment. Measles virus remains a significant cause of mortality in human populations, and this research sheds new light on the very first steps of infection of this important pathogen.IMPORTANCE Measles is a significant disease in humans and is estimated to have killed over 200 million people since records began. According to current World Health Organization statistics, it still kills over 100,000 people a year, mostly children in the developing world. The causative agent, measles virus, is a small enveloped RNA virus that infects a broad range of cells during infection. In particular, immune cells are infected via interactions between glycoproteins found on the surface of the virus and SLAMF1, the immune cell receptor. In this study, we have investigated the steps governing entry of measles virus into SLAMF1-positive cells and identified endocytic uptake of viral particles. This research will impact our understanding of morbillivirus-related immunosuppression as well as the application of measles virus as an oncolytic therapeutic.
Assuntos
Endocitose , Vírus do Sarampo/fisiologia , Sarampo/virologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/fisiologia , Células A549 , Caveolinas/metabolismo , Clatrina/metabolismo , Citoesqueleto/ultraestrutura , Citoesqueleto/virologia , Dinamina II , Dinaminas/metabolismo , Células HEK293 , Humanos , Microdomínios da Membrana/virologia , Transdução de Sinais , Vírion/fisiologia , Ligação Viral , Internalização do VírusRESUMO
Tuberculosis, which is caused by intracellular mycobacterium Mycobacterium tuberculosis (Mtb), remains one of the most serious global public health concerns. The mechanisms by which innate immunity regulates the inflammatory responses and affects mycobacterial infection remain unclear. In this study, signaling lymphocyte-activation molecule family 1 (SLAMF1) was significantly upregulated in Mycobacterium bovis Bacille Calmette-Guérin (BCG)-infected RAW264.7 cells. Overexpression of SLAMF1 significantly increased the production of inflammatory factors TNF-α and IL-1ß, as well as chemokine MCP-1, both in vitro and in vivo upon mycobacteria BCG infection. By contrast, knockdown of SLAMF1 significantly decreased the production of TNF-α, IL-1ß, and MCP-1. Western blot analysis indicated that the NF-κB signaling pathway may contribute to the elevated inflammatory response promoted by SLAMF1, as evidenced by higher levels of phosphorylated p65 and IκBα detected with SLAMF1 overexpression. Furthermore, SLAMF1 upregulation facilitated bacterial clearance in infected RAW264.7 cells and in the lungs of infected mice. In conclusion, we demonstrated that BCG infection significantly upregulated SLAMF1, which enhanced inflammatory response by activating the NF-κB signaling pathway and facilitated bacterial clearance in BCG-infected RAW264.7 cells and mice.
Assuntos
Antígenos CD/genética , Mycobacterium bovis/metabolismo , Receptores de Superfície Celular/genética , Animais , Antígenos CD/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Proteínas I-kappa B/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/microbiologia , Camundongos , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Fosforilação , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Fator de Necrose Tumoral alfa/metabolismo , Regulação para CimaRESUMO
Acute myocardial infarction (MI) results in tissue damage to affected areas of the myocardium. The initial inflammatory response is the most damaging for residual cardiac function, while at later stages inflammation is a prerequisite for proper healing and scar formation. Balancing the extent and duration of inflammation during various stages after MI is thus pivotal for preserving cardiac function. Recently, a signaling lymphocytic activation molecule 1 (SLAMF1)-derived peptide (P7) was shown to reduce the secretion of inflammatory cytokines and protected against acute lipopolysaccharide-induced death in mice. In the present study, we experimentally induced MI by permanent ligation of the left anterior descending artery (LAD) in mice and explored the beneficial effect of immediately administering P7, with the aim of dampening the initial inflammatory phase without compromising the healing and remodeling phase. Blood samples taken 9 h post-LAD surgery and P7 administration dampened the secretion of inflammatory cytokines, but this dampening effect of P7 was diminished after 3 days. Echocardiography revealed less deterioration of cardiac contraction in mice receiving P7. In line with this, less myocardial damage was observed histologically in P7-treated mice. In conclusion, the administration of a SLAMF1-derived peptide (P7) immediately after induction of MI reduces the initial myocardial inflammation, reduces infarct expansion, and leads to less deterioration of cardiac contraction.
Assuntos
Modelos Animais de Doenças , Infarto do Miocárdio , Animais , Camundongos , Masculino , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Antígenos CD/metabolismo , Ligadura , Miocárdio/patologia , Miocárdio/metabolismo , Peptídeos/farmacologia , Receptores de Superfície Celular/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/patologiaRESUMO
BACKGROUND: Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a common complication of rheumatoid arthritis (RA) that result in significant morbidity and mortality. Understanding the molecular mechanisms underlying RA-ILD is crucial for effective prevention. This study aims to identify the specific molecule that mediate the causal association between RA and ILD, as well as to explore its potential mechanisms in the pathogenesis of RA-ILD. METHODS: Using two-sample Mendelian randomization (MR) analyses, we investigated the causal relationship among 16,987 blood genes, RA and ILD. Subsequently, a two-step MR technique was employed to identify significant genes that mediate the association between RA and ILD, and to quantify their proportion of mediation effect. To validate the genes as mediators, the replication MR analysis was conducted and the in vivo experiment was performed using an established animal model of RA-ILD. Furthermore, integrated bioinformatic analyses were conducted to elucidate the specific biological functions of the determined mediator in pathogenesis of RA-ILD. RESULTS: Nine genes, namely MAPK8IP2, TAF11, SLAMF1, DAB2IP, GLUL, SLC4A10, PRSS35, NFX1, and PLK3, were identified as mediators. Among them, SLAMF1 was validated as the most significant mediator, accounting for 4.693% of the mediating effect on the causal relationship between RA and ILD. Upregulated mRNA expression of SLAMF1 was observed in the animal model of RA-ILD compared to controls. Bioinformatic analyses revealed that SLAMF1 was overexpressed in patients with lung fibrosis and correlated with a poor prognosis. Specifically, SLAMF1 was found to be predominantly overexpressed in T cells in lung tissues of patients with lung fibrosis. Additionally, the functional role of SLAMF1 was associated with multiple immune cell infiltrations and the biological process of extracellular matrix synthesis in pulmonary tissues from patients with lung fibrosis. CONCLUSION: SLAMF1 may play a crucial role as a molecular mediator in the causal association between RA and ILD, and participate in multiple mechanisms underlying the pathogenesis of RA-ILD. This research provides insights into how the development of RA influences the risk of ILD and offers potential interventional targets against RA-ILD.
Assuntos
Artrite Reumatoide , Doenças Pulmonares Intersticiais , Análise da Randomização Mendeliana , Família de Moléculas de Sinalização da Ativação Linfocitária , Animais , Humanos , Masculino , Ratos , Artrite Reumatoide/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Doenças Pulmonares Intersticiais/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , TranscriptomaRESUMO
The porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly contagious disease in domestic swine. Signaling lymphocytic activation molecule family member 1 (SLAMF1) is a costimulatory factor that is involved in innate immunity, inflammation, and infection. Here, we demonstrate that overexpression of the SLAMF1 gene inhibited PRRSV replication significantly and reduced the levels of key signaling pathways, including MyD88, RIG-I, TLR2, TRIF, and inflammatory factors IL-6, IL-1ß, IL-8, TNF-ß, TNF-α, and IFN-α in vitro. However, the knockdown of the SLAMF1 gene could enhance replication of the PRRSV and the levels of key signaling pathways and inflammatory factors. Overall, our results identify a new, to our knowledge, antagonist of the PRRSV, as well as a novel antagonistic mechanism evolved by inhibiting innate immunity and inflammation, providing a new reference and direction for PRRSV disease resistance breeding.
RESUMO
Feline morbillivirus (FeMV) is a recently discovered virus belonging to the genus Morbillivirus of the virus family Paramyxoviridae. Often, the virus has been detected in urine of cats with a history of urinary disease and has a worldwide distribution. Currently, it is unclear which receptor the virus uses to enter the target cells. Furthermore, many aspects of FeMV biology in vivo, including tissue tropism, pathogenesis, and virus excretion in the natural host remain unclear. In this study we analyzed the replication of FeMV in various cell lines. Secondly, we tested if the presence of feline SLAMF1 (Signaling Lymphocytic Activation Molecule family 1/CD150, principal entry receptor for other members of the Morbillivirus genus) improved FeMV replication efficiency in vitro. Finally, to elucidate in vivo biology in cats, as a natural host for FeMV, we experimentally infected a group of cats and monitored clinical symptoms, viremia, and excretion of the virus during the course of 56 days. Our study showed that FeMV shares some features with other morbilliviruses like the use of the SLAMF1 receptor. For the first time, experimental infection of SPF cats showed that FeMV does not induce an acute clinical disease like other morbilliviruses but can induce lesions in the kidneys, including tubulointerstitial nephritis. Further investigations are needed to confirm the site and dynamics of replication of FeMV in the urinary tract and the longer-term impact of FeMV-induced lesions on the renal function. Whether FeMV infection can result in chronic kidney disease will require the monitoring of cats over a longer period.
Assuntos
Doenças do Gato , Infecções por Morbillivirus , Morbillivirus , Animais , Doenças do Gato/patologia , Gatos , Rim , Infecções por Morbillivirus/veterinária , ParamyxoviridaeRESUMO
Background: Rheumatoid arthritis (RA) is the most common inflammatory arthropathy. Immune dysregulation was implicated in the pathogenesis of RA. Thus, the aim of the research was to determine the immune related biomarkers in RA. Methods: We downloaded the gene expression data of RA in GSE89408 and GSE45291 from Gene Expression Omnibus public database (GEO). Differentially expressed genes (DEGs) were identified between RA and control groups. Infiltrating immune cells related genes were obtained by ssGSEA and weighted gene co-expression network analysis (WGCNA). We performed functional enrichment analysis of differentially expressed immunity-related genes (DEIRGs) by "clusterProfiler" R package, key genes screening by protein-protein interaction (PPI) network of DEIRGs. And mice collagen-induced arthritis (CIA) model was employed to verify these key genes. Results: A total of 1,885 up-regulated and 1,899 down-regulated DEGs were identified in RA samples. The ssGSEA analysis showed that the infiltration of 25 cells was significantly different. 603 immune related genes were obtained by WGCNA, and 270 DEIRGs were obtained by taking the intersection of DEGs and immune related genes. Enrichment analyses indicated that DEIRGs were associated with immunity related biological processes. 4 candidate biomarkers (CCR7, KLRK1, TIGIT and SLAMF1) were identified from the PPI network of DEIRGs and literature research.In mice CIA model, the immunohistochemical stain showed SLAMF1 has a significantly high expression in diseased joints. And flow cytometry analysis shows the expression of SLAMF1 on CIA mice-derived CTL cells, Th, NK cells, NKT cells, classical dendritic cell (cDCs) and monocytes/macrophages was also significantly higher than corresponding immune cells from HC mice. Conclusion: Our study identified SMLAF1 as a key biomarker in the development and progression of RA, which might provide new insight for exploring the pathogenesis of RA.
Assuntos
Artrite Experimental , Artrite Reumatoide , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Animais , Artrite Experimental/genética , Artrite Reumatoide/genética , Biomarcadores , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Receptores CCR7/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genéticaRESUMO
Neutrophils infected with Mycobacterium tuberculosis (Mtb) predominate in tuberculosis patients' lungs. Neutrophils phagocytose the pathogen, but the mechanism of pathogen elimination is controversial. Macroautophagy/autophagy, a crucial mechanism for several neutrophil functions, can be modulated by immunological mediators. The costimulatory molecule SLAMF1 can act as a microbial sensor in macrophages being also able to interact with autophagy-related proteins. Here, we demonstrate for the first time that human neutrophils express SLAMF1 upon Mtb-stimulation. Furthermore, SLAMF1 was found colocalizing with LC3B+ vesicles, and activation of SLAMF1 increased neutrophil autophagy induced by Mtb. Finally, tuberculosis patients' neutrophils displayed reduced levels of SLAMF1 and lower levels of autophagy against Mtb as compared to healthy controls. Altogether, these results indicate that SLAMF1 participates in neutrophil autophagy during active tuberculosis.Abbreviations: AFB: acid-fast bacilli; BafA1: bafilomycin A1; CLL: chronic lymphocytic leukemia; DPI: diphenyleneiodonium; EVs: extracellular vesicles; FBS: fetal bovine serum; HD: healthy donors; HR: high responder (tuberculosis patient); IFNG: interferon gamma; IL1B: interleukin 1 beta; IL17A: interleukin 17A; IL8: interleukin 8; LR: low responder (tuberculosis patient); mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK14/p38: mitogen-activated protein kinase 14; Mtb: Mycobacterium tuberculosis; Mtb-Ag: Mycobacterium tuberculosis, Strain H37Rv, whole cell lysate; NETs: neutrophils extracellular traps; PPD: purified protein derivative; ROS: reactive oxygen species; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; SLAMF1: signaling lymphocytic activation molecule family member 1; TB: tuberculosis; TLR: toll like receptor.
Assuntos
Autofagia , Neutrófilos , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Tuberculose , Humanos , Macrófagos/metabolismo , Mycobacterium tuberculosis , Neutrófilos/citologia , Neutrófilos/microbiologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Tuberculose/microbiologiaRESUMO
BACKGROUND: Inflammatory bowel disease (IBD) is associated with disturbed mucosal innate lymphoid cell (ILC) composition, which is correlated to the degree of intestinal inflammation. However, it remains unclear whether circulating ILCs are dysregulated in patients with IBD. METHODS: Blood samples from 53 patients with Crohn's disease (CD), 43 patients with ulcerative colitis (UC), and 45 healthy control subjects (HC) were analyzed by flow cytometry for markers of ILC subsets (ILC1, ILC2, and ILC precursors [ILCp]) and selected IBD-relevant proteins, as predicted by previous genome-wide association studies. A dimensionality reduction approach to analyzing the data was used to characterize circulating ILCs. RESULTS: The frequency of ILCp expressing the ILC3 activation markers NKp44 and CD56 was increased in CD versus HC and UC (NKp44) or in CD versus HC (CD56), whereas the CD45RA+ ILCp were reduced in CD versus UC. Furthermore, the activation marker HLA-DR was increased on ILC1 and ILC2 in CD versus HC. Interestingly, the IBD-related protein SLAMF1 was upregulated on ILC2 from both CD and UC samples as compared with HC samples. In active CD, SLAMF1+ ILC2 frequency was negatively correlated with disease severity (Harvey-Bradshaw index). The characterization of SLAMF1+ ILC2 revealed a higher expression of the ILC2 markers CRTH2, CD161, and GATA3 as compared with SLAMF1- ILC2. CONCLUSIONS: In line with the systemic nature of CD inflammation, our findings point toward the activation of ILCs in the blood of patients with CD. Furthermore, in active CD, circulating SLAMF1+ ILC2 are increased in patients with less active disease, introducing SLAMF1+ ILC2 as interesting therapeutic targets deserving further exploration.
Assuntos
Doença de Crohn/imunologia , Imunidade Inata , Linfócitos/imunologia , Biomarcadores , Colite Ulcerativa , Estudo de Associação Genômica Ampla , Humanos , InflamaçãoRESUMO
Innate lymphoid cells (ILCs) are tissue-resident lymphocytes differing from conventional T lymphocytes in having no antigen-specific receptors. ILCs include natural killer (NK) cells, helper-like ILC1s, ILC2s, and ILC3s, and lymphoid tissue-inducer (LTi) cells. Tumor ILCs are frequently found in various cancers, but their roles in cancer immunity and immunotherapy remain largely unclear. We report here the single-cell characterization of blood and gut helper-like ILC subsets in healthy conditions and in colorectal cancer (CRC). The healthy gut contains ILC1s, ILC3s, and ILC3/NKs, but no ILC2s. Additional tumor-specific ILC1-like and ILC2 subsets were identified in CRC patients. Signaling lymphocytic activation molecule family member 1 (SLAMF1) was found to be selectively expressed on tumor-specific ILCs, and higher levels of SLAMF1+ ILCs were observed in the blood of CRC patients. The SLAMF1-high group of CRC patients had a significantly higher survival rate than the SLAMF1-low group, suggesting that SLAMF1 is an anti-tumor biomarker in CRC.
Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Progressão da Doença , Imunidade Inata , Linfócitos/imunologia , Análise de Célula Única , Transcriptoma , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade Inata/genética , Intestinos/imunologia , Subpopulações de Linfócitos/imunologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Transcriptoma/genéticaRESUMO
Myeloid-derived suppressor cells (MDSCs) are immature heterogeneous myeloid cells that expand in pathologic conditions as cancer, trauma, and infection. Although characterization of MDSCs is continuously revisited, the best feature is their suppressor activity. There are many markers for MDSC identification, it is distinctive that they express inducible nitric oxide synthase (iNOS) and arginase 1, which can mediate immune suppression. MDSCs can have a medullary origin as a result of emergency myelopoiesis, but also can have an extramedullary origin. Early studies on Trypanosoma cruzi infection showed severe immunosuppression, and several mechanisms involving parasite antigens and host cell mediators were described as inhibition of IL-2 and IL-2R. Another mechanism of immunosuppression involving tumor necrosis factor/interferon γ-dependent nitric oxide production by inducible nitric oxide synthase was also described. Moreover, other studies showed that nitric oxide was produced by CD11b+ Gr-1+ MDSCs in the spleen, and later iNOS and arginase 1 expressed in CD11b+Ly6C+Ly6Glo monocytic MDSC were found in spleen and heart of T. cruzi infected mice that suppressed T cell proliferation. Uncontrolled expansion of monocytic MDSCs leads to L-arginine depletion which hinders nitric oxide production leading to death. Supplement of L-arginine partially reverts L-arginine depletion and survival, suggesting that L-arginine could be administered along with anti-parasitical drugs. On the other hand, pharmacological inhibition of MDSCs leads to death in mice, suggesting that some expansion of MDSCs is needed for an efficient immune response. The role of signaling molecules mediating immune suppression as reactive oxygen species, reactive nitrogen species, as well as prostaglandin E2, characteristics of MDSCs, in T. cruzi infection is not fully understood. We review and discuss the role of these reactive species mediators produced by MDSCs. Finally, we discuss the latest results that link the SLAMF1 immune receptor with reactive oxygen species. Interaction of the parasite with the SLAMF1 modulates parasite virulence through myeloid cell infectivity and reactive oxygen species production. We discuss the possible strategies for targeting MDSCs and SLAMF1 receptor in acute Trypanosoma cruzi infection in mice, to evaluate a possible translational application in human acute infections.
Assuntos
Doença de Chagas , Células Supressoras Mieloides , Trypanosoma cruzi , Animais , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Trypanosoma cruzi/metabolismoRESUMO
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by multiple cellular and molecular dysfunctions of the innate and adaptive immunity. Cytotoxic function of NK cells is compromised in patients with SLE. Herein, we characterized the phenotypic alterations of SLE NK cells in a comprehensive manner to further delineate the mechanisms underlying the cytotoxic dysfunction of SLE NK cells and identify novel potential therapeutic targets. Therefore, we examined PBMC from SLE patients and matched healthy controls by single-cell mass cytometry to assess the phenotype of NK cells. In addition, we evaluated the cell function of NK cells (degranulation and cytokine production) and the killing of B cell subpopulations in a B cell-NK cell in vitro co-culture model. We found that SLE NK cells expressed higher levels of CD38 and were not able to adequately upregulate SLAMF1 and SLAMF7 following activation. In addition, ligation of SLAMF7 with elotuzumab or of CD38 with daratumumab on SLE NK cells enhanced degranulation of both healthy and SLE NK cells and primed them to kill circulating plasma cells in an in vitro co-culture system. Overall, our data indicated that dysregulated expression of CD38, SLAMF1 and SLAMF7 on SLE NK cells is associated with an altered interplay between SLE NK cells and plasma cells, thus suggesting their contribution to the accumulation of (auto)antibody producing cells. Accordingly, targeting SLAMF7 and CD38 may represent novel therapeutic approaches in SLE by enhancing NK cell function and promoting elimination of circulating plasma cell.
Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Células Matadoras Naturais/imunologia , Lúpus Eritematoso Sistêmico , Plasmócitos/imunologia , Recuperação de Função Fisiológica , Adulto , Idoso , Feminino , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/imunologiaRESUMO
OBJECTIVE: The acquisition of chemoresistance to methotrexate (MTX) still remains one of the major challenges for choriocarcinoma treatment. Herein, we aimed to evaluate the potential role of Signaling Lymphocytic Activation Molecule Family Member 1 (SLAMF1) as a possible regulator of chemoresistance to MTX in choriocarcinoma. MATERIAL AND METHODS: MTX-resistant JEG3 and JAR sublines (JEG3/MTX, JAR/MTX) were used to study SLAMF1 function. CCK8 assay and soft agar assay were conducted to measure the cell viability and clonogenesis of choriocarcinoma cells, respectively; MDC incorporation assay was conducted for the quantification of intracellular autophagy; BrdU labeling was used to assess the proliferative potential of choriocarcinoma cells; SLAMF1 protein expression was analyzed by Western blotting. RESULTS: Upregulation of SLAMF1 expression was observed in MTX-resistant JEG3/MTX and JAR/MTX sublines compared to their parental JEG3 and JAR cell lines, respectively. Knockdown of SLAMF1 markedly attenuated cell viability and soft agar clonogenesis after incubation with MTX in JEG3/MTX and JAR/MTX cells. In contrast, constitutive expression of SLAMF1 rescued cell survival soft agar clonogenesis in JEG3 and JAR cells treated with MTX. Moreover, autophagy is apparently activated in MTX-resistant JEG3/MTX and JAR/MTX sublines compared to their parental cell lines. Autophagy inhibitor 3-methyladenine and bafilomycin A1 enhanced MTX-induced cytotoxicity in MTX-resistant JEG3 and JAR sublines. Further, SLAMF1 might activate autophagy-related mechanism to promote resistance to MTX in choriocarcinoma cells. Depletion of SLAMF1 suppressed autophagy and induced apoptosis in MTX-treated JEG3/MTX and JAR/MTX cells. CONCLUSION: SLAMF1 might promote MTX resistance via activating protective autophagy in choriocarcinoma cell lines. Targeting SLAMF1 might be a useful therapeutic strategy to sensitize choriocarcinoma cells to MTX-based regimens.
RESUMO
BACKGROUND: As cognitive function declines with age, identifying factors affecting the trajectory of cognitive decline is an indispensable step toward developing intervention strategies to improve the quality of the elderly life. OBJECTIVE: We performed a genome-wide association study (GWAS) focusing on memory function to explore single nucleotide polymorphisms (SNPs) associated with the rate of memory decline. METHODS: Seven hundred and nine eligible non-Hispanic Caucasians from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were included for analysis after quality control. GWAS was performed with linear regression. We subsequently tested whether the associations remained significant in subgroup analysis and also examined the impact of SNPs on the longitudinal changes in other neuropsychological measures and amyloid pathology. RESULTS: We identified rs13374761-A in SLAMF1 gene associated with less memory decline (MAFâ=â0.071, ß=â0.0103, pâ=â4.14×10-8). Subgroup analysis showed stability of results across groups with different diagnosis at baseline. Rs13374761-A also had protective effects on global cognition (pâ=â0.024), episodic memory (pâ=â0.024), and semantic memory (pâ=â0.042), and exerts protection against a decrease in CSF Aß42 concentration (pâ=â0.0463) and an increase in Aß loading in cerebral cortex (pâ=â0.00666) among minor allele carriers. CONCLUSION: A novel variant in gene SLAMF1 affects the rate of memory decline in the aged population. Given the protective effect of this variant, SLAMF1 should be further investigated as a potential preventive and therapeutic target for monitoring cognition trajectories.
Assuntos
Disfunção Cognitiva/genética , Transtornos da Memória/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteínas E/genética , Angiopatia Amiloide Cerebral/genética , Angiopatia Amiloide Cerebral/patologia , Disfunção Cognitiva/psicologia , Progressão da Doença , Feminino , Estudo de Associação Genômica Ampla , Heterozigoto , Humanos , Estudos Longitudinais , Masculino , Transtornos da Memória/psicologia , Pessoa de Meia-Idade , Neuroimagem , Testes Neuropsicológicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Polimorfismo de Nucleotídeo Único , População BrancaRESUMO
Despite that autoimmune diseases share similar immunogenetic mechanisms, studies comparing the protein composition in peripheral blood from patients with autoimmune endocrine diseases are limited. In this study, we applied proximity extension assay to measure proteins related to signaling and interactions within the immune system in peripheral blood from patients with new-onset (N-T1D) and long-standing (L-T1D) type 1 diabetes, Hashimoto's thyroiditis (HT), Graves' disease (GD), and autoimmune Addison's disease in addition to healthy controls (HC). Proteins in plasma and supernatants from cultured PBMC were measured by using a 92-plex Olink® INFLAMMATION panel. Soluble CDCP1 was more abundant in plasma from patients with N-T1D, L-T1D, HT, and GD than in HC. The L-T1D and HT groups had elevated plasma levels of SLAMF1 compared with HC. Patients and HC could not be distinguished by their protein composition in PBMC supernatants. The high-throughput multiplex technology enabled us to detect two low-abundant proteins that have been gradually connected to autoimmune diseases. Our study provides novel associations between CDCP1, SLAMF1, and autoimmune endocrine diseases, which might reflect a higher degree of inflammation and lymphocyte activation.