Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(10): e2118940119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238634

RESUMO

SignificanceBase excision repair (BER) is one of the major DNA repair pathways used to fix a myriad of cellular DNA lesions. The enzymes involved in BER, including DNA polymerase ß (Polß), have been identified and characterized, but how they act together to efficiently perform BER has not been fully understood. Through gel electrophoresis, mass spectrometry, and kinetic analysis, we discovered that the two enzymatic activities of Polß can be interlocked, rather than functioning independently from each other, when processing DNA intermediates formed in BER. The finding prompted us to hypothesize a modified BER pathway. Through conventional and time-resolved X-ray crystallography, we solved 11 high-resolution crystal structures of cross-linked Polß complexes and proposed a detailed chemical mechanism for Polß's 5'-deoxyribose-5-phosphate lyase activity.


Assuntos
Dano ao DNA , DNA Polimerase beta/metabolismo , Reparo do DNA , Cristalografia por Raios X , DNA/metabolismo , DNA Polimerase beta/química , Eletroforese em Gel de Poliacrilamida , Cinética , Espectrometria de Massas/métodos , Conformação Proteica , Bases de Schiff/química , Especificidade por Substrato
2.
Anal Bioanal Chem ; 415(18): 4319-4331, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36629896

RESUMO

The separation and identification of lipids in complex mixtures are critical to deciphering their cellular functions. Failure to resolve isobaric compounds (e.g., via high mass resolution or tandem mass spectrometry) can result in incorrect identifications in mass spectrometry experiments. In imaging mass spectrometry, unresolved peaks can also result in composite images of multiple compounds, giving inaccurate depictions of molecular distributions. Gas-phase ion/ion reactions can be used to selectively react with specific chemical functional groups on a target analyte, thereby extracting it from a complex mixture and shifting its m/z value to an unobstructed region of the mass range. Herein, we use selective Schiff base formation via a novel charge inversion ion/ion reaction to purify phosphatidylserines from other isobaric (i.e., same nominal mass) lipids and reveal their singular distributions in imaging mass spectrometry. The selective Schiff base formation between singly deprotonated phosphatidylserine (PS) lipid anions and doubly charged N,N,N',N'-tetramethyl-N,N'-bis(6-oxohexyl)hexane-1,6-diaminium (TMODA) cations is performed using a modified commercial dual source hybrid Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This process is demonstrated using the isobaric lipids [PS 40:6 - H]- (m/z 834.528) and [SHexCer d38:1 - H]- (m/z 834.576), which produces [PS 40:6 + TMODA - H - H2O]+ (m/z 1186.879), and [SHexCer d38:1 + TMODA - H]+ (m/z 1204.938) product ions following the gas-phase charge inversion reaction. These product ions differ by roughly 18 Da in mass and are easily separated by low mass resolution analysis, while the isobaric precursor ions require roughly 45,000 mass resolving power (full-width at half maximum) to separate. Imaging mass spectrometry using targeted gas-phase ion/ion reactions shows distinct spatial distributions for the separated lipid product ions relative to the composite images of the unseparated precursor ions.


Assuntos
Bases de Schiff , Espectrometria de Massas em Tandem , Bases de Schiff/química , Ânions , Cátions , Lipídeos
3.
Sensors (Basel) ; 23(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37050783

RESUMO

The aim of this electrochemical study was to ascertain which type of electrochemically deposited carbonyl functionalized polymer represents the most suitable electrode substrate for direct covalent immobilization of biological catalysts (enzymes). For this purpose, a triad of amperometric biosensors differing in the type of conductive polymers (poly-vanillin, poly-trans-cinnamaldehyde, and poly-4-hydroxybenzaldehyde) and in the functioning of selected enzymes (tyrosinase and alkaline phosphatase) has been compared for the biosensing of neurotransmitters (dopamine, epinephrine, norepinephrine, and serotonin) and phenyl phosphates (p-aminophenyl phosphate and hydroquinone diphosphate). The individual layers of the polymers were electrochemically deposited onto commercially available screen-printed carbon electrodes (type C110) using repetitive potential cycling in the linear voltammetric mode. Their characterization was subsequently performed by SEM imaging and attenuated total reflectance FTIR spectroscopy. Molecules of enzymes were covalently bonded to the free carbonyl groups in polymers via the Schiff base formation, in some cases even with the use of special cross-linkers. The as-prepared biosensors have been examined using cyclic voltammetry and amperometric detection. In this way, the role of the carbonyl groups embedded in the polymeric structure was defined with respect to the efficiency of binding enzymes, and consequently, via the final (electro)analytical performance.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Animais , Bovinos , Técnicas Eletroquímicas/métodos , Polímeros/química , Técnicas Biossensoriais/métodos , Eletrodos , Espectroscopia de Infravermelho com Transformada de Fourier , Reprodutibilidade dos Testes
4.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5502-5507, 2022 Oct.
Artigo em Zh | MEDLINE | ID: mdl-36471966

RESUMO

The present study explored the physiological mechanism of the effects of different pH treatments on the growth, physiological characteristics, and stachydrine biosynthesis of Leonurus japonicus to provide references for the cultivation and quality control of L. japonicus. Under hydroponic conditions, different pH treatments(pH 5,6,7,8) were set up. The growth, physiology, and the content of stachydrine and total alkaloids of L. japonicus, as well as the content of key intermediate products in stachydrine biosynthesis pathway(i.e., pyruvic acid, α-ketoglutaric acid, glutamic acid, and ornithine) were monitored to explore the physiological mechanism of the effects of pH on the growth and active components of L. japonicus. The results showed that L. japonicus. could grow normally in the pH 5-8 solution. The pH treatment of neutral acidity was more conducive to the accumulation of photosynthetic pigments and the increase in soluble protein in leaves of L. japonicus. to promote its growth and yield. However, since stachydrine is a nitrogen-containing pyrrolidine alkaloid, its synthesis involves the two key rate-limiting steps of nitrogen addition: reductive ammoniation reaction and Schiff base formation reaction. High pH treatments promote the synthesis and accumulation of substrates and products of the above two reactions, indicating that the alkaline environment can promote the nitrogen addition reaction, thereby promoting the biosynthesis and accumulation of stachydrine.


Assuntos
Alcaloides , Leonurus , Leonurus/química , Hidroponia , Nitrogênio , Concentração de Íons de Hidrogênio
5.
J Lipid Res ; 58(8): 1648-1660, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28588048

RESUMO

Sphingosine 1-phosphate (S1P), a bioactive lipid involved in various physiological processes such as cell proliferation and apoptosis, can be irreversibly cleaved by S1P lyase, yielding phosphoethanolamine and (2E)-hexadecenal (2EHD). The latter metabolite, an α,ß-unsaturated fatty aldehyde, may be susceptible to nucleophilic attack by cellular biomolecules. Hence, we studied whether 2EHD forms reaction products with GSH and proteins in vitro. Using LC-MS/MS and stable isotopically labeled reference material, we identified a total of nine novel reaction products of 2EHD in a cell-free approach: two GSH conjugates and seven l-amino acid adducts. Both GSH conjugates were also found in HepG2 cell lysates incubated with 2EHD. Likewise, we detected four out of seven amino acid adducts released from the model protein, BSA, and proteins extracted from HepG2 cells. On this occasion, the 2EHD Michael adduct with l-histidine proved to be the most prominent adduct. Most interestingly, inhibition of the enzymatically driven oxidative degradation of 2EHD resulted in increased levels of both GSH conjugates and protein adducts in HepG2 cell lysates. Hence, our data provide new insights into sphingolipid metabolism and will be useful to investigate certain disorders linked to an impaired fatty aldehyde metabolism in more detail.


Assuntos
Aldeídos/metabolismo , Glutationa/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas/metabolismo , Esfingosina/análogos & derivados , Células Hep G2 , Humanos , Proteínas/química , Esfingosina/metabolismo
6.
Molecules ; 22(4)2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28398262

RESUMO

The Schiff base reaction and aldol condensation that occur during sample preparation can lead to the reduction of aldehyde content in the analysis of traditional Korean rice wine, makgeolli. The contents of aldehydes were decreased, whereas those of hydroxy carbonyl compounds were increased by increasing the pH. In the presence of added amino acids, the levels of aldehydes in makgeolli were reduced as the amount of the amino acid alanine increased. Also, the contents of hydroxyl carbonyl compounds were reduced by alanine addition as compared to the control. Therefore, the determination of aldehydes can be affected by pH and the amount of amino acids, which can vary during fermentation and storage of alcoholic beverages because pH and amino acids affect Schiff base formation and aldol condensation.


Assuntos
Aldeídos/análise , Cromatografia Gasosa-Espectrometria de Massas , Bases de Schiff/química , Aldeídos/química , Aminoácidos/química , Concentração de Íons de Hidrogênio , Vinho/análise
7.
Toxicology ; 423: 95-104, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150805

RESUMO

Occupational medicamentosa-like dermatitis induced by trichloroethylene (OMLDT) is a hypersensitivity disease with autoimmune liver injury, which has increasingly become a serious occupational health problem in China. However, the pathogenesis of OMLDT remained undefined. In this study, 30 TCE-induced OMLDT patients, 58 exposure controls, and 40 non-exposure controls were recruited. We showed that the ratio of activated CD4+ T cells (downregulation of CD62 L) was dramatically increased in OMLDT patients compared to exposure and non-exposure control, suggesting that CD4+ T cells activation was a key cellular event in the development of OMLDT. In parallel, the expression of cytokine including IL-2, IFN-γ, TNF-α and IL-17A were increased obviously and IL-4 decreased in CD4+ T cells from OMLDT patients. in vitro assay, we found that trichloroethylene metabolites trichloroacetaldehyde (TCAH), not trichloroacetic acid (TCA) or Trichloroethanol (TCOH) could activate the naïve CD4+ T cells characterized by a rise in intracellular calcium, down-regulated CD62 L and subsequently trigger the secretion of IL-2, IFN-γ and TNF-α. Notably, the phosphorylation status of NF-κB and p38MAPK were elevated in OMLDT patients. Moreover, TCAH also could activate the p38MAPK and NF-κB, suggesting the role of p38MAPK and NF-κB pathways in the activation of CD4+ T cells. In addition, we found that the inhibition of Schiff base formation decreased the ability of TCAH to induce the activation of naïve CD4+ T cells and p38MAPK and NF-κB pathway. In conclusion, we revealed that the CD4+ T activation and increased the cytokines including IL-2, IFN-γ and TNF-α but decreased IL-4 in CD4+ T cells were associated with OMLDT. TCAH could activate naïve CD4+ T cells through NF-κB and p38MAPK activation induced by Schiff base formation, which might contribute to the development of OMLDT. These findings provide a new insight into the pathogenesis of OMLDT.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Hidrato de Cloral/análogos & derivados , Dermatite Alérgica de Contato/imunologia , Doenças Profissionais/imunologia , Linfócitos T CD4-Positivos/imunologia , Hidrato de Cloral/toxicidade , Citocinas/genética , Citocinas/imunologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Feminino , Humanos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Proteínas Quinases Ativadas por Mitógeno/imunologia , NF-kappa B/imunologia , Doenças Profissionais/induzido quimicamente , Bases de Schiff/imunologia
8.
Food Chem ; 240: 354-360, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946283

RESUMO

In this study, reactions of hydroxymethylfurfural (HMF) with selected amino acids (arginine, cysteine and lysine) were investigated in HMF-amino acid (high moisture) and Coffee-amino acid (low moisture) model systems at 5, 25 and 50°C. The results revealed that HMF reacted efficiently and effectively with amino acids in both high and low moisture model systems. High-resolution mass spectrometry (HRMS) analyses of the reaction mixtures confirmed the formations of Michael adduct and Schiff base of HMF with amino acids. Calculated pseudo-first order reaction rate constants were in the following order; kCysteine>kArginine>kLysine for high moisture model systems. Comparing to these rate constants, the kCysteine decreased whereas, kArginine and kLysine increased under the low moisture conditions of Coffee-amino acid model systems. The temperature dependence of the rate constants was found to obey the Arrhenius law in a temperature range of 5-50°C under both low and high moisture conditions.


Assuntos
Aminoácidos/química , Furaldeído/análogos & derivados , Furaldeído/química , Cinética , Compostos de Sulfidrila
9.
J Agric Food Chem ; 66(23): 5812-5820, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29758984

RESUMO

Reactive dicarbonyl species (RCS) such as methylglyoxal (MGO) and glyoxal (GO) are common intermediates in protein damage, leading to the formation of advanced glycation end products (AGEs) through nonenzymatic glycation. (+)-Catechin, a natural plant extract from tea, has been evaluated for its ability in trapping GO and MGO. However, (+)-catechin is also reported to have both antioxidant ability and pro-oxidant properties. Until now, whether (+)-catechin can inhibit the formation of nonenzymatic glycation and the mechanism of the inhibition in nucleoprotein nonenzymatic glycation is still unclear. In the present study, histone H1 and MGO were used to establish an in vitro (100 mM phosphate buffer solution (PBS), pH 7.4, 37 °C) protein glycation model to study the trapping ability of (+)-catechin. Our data show that MGO caused dose-dependent protein damage, and the content of MGO-induced Schiff base formation was inhibited by (+)-catechin when the molecular ratio of catechin:MGO was 1:6. The formation of Nε-carboxymethyllysine (CML) was reduced significantly when the ratio of (+)-catechin and MGO was 1:1, which was similar to the inhibition effect of aminoguanidine (AG). The formation of CML under in vitro conditions can be inhibited by low concentration (12.5-100 µM) of (+)-catechin but not with high concentration (200-800 µM) of (+)-catechin. The reason is that the high concentration of (+)-catechin did not inhibit CML formations due to H2O2 produced by (+)-catechin. In the presence of catalase, catechin can inhibit MGO-induced CML formation. In conclusion, the trapping ability of (+)-catechin may be more effective at the early stage of nonenzymatic glycation. However, a high concentration (200-800 µM) of (+)-catechin may not inhibit the formation of CML because it induced the increase of H2O2 formation.


Assuntos
Catequina/administração & dosagem , Histonas/síntese química , Lisina/análogos & derivados , Aldeído Pirúvico/administração & dosagem , Catequina/química , Produtos Finais de Glicação Avançada/síntese química , Peróxido de Hidrogênio/síntese química , Lisina/síntese química , Bases de Schiff/síntese química
10.
ACS Med Chem Lett ; 8(3): 321-326, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28337324

RESUMO

We report the discovery of a new potent allosteric effector of sickle cell hemoglobin, GBT440 (36), that increases the affinity of hemoglobin for oxygen and consequently inhibits its polymerization when subjected to hypoxic conditions. Unlike earlier allosteric activators that bind covalently to hemoglobin in a 2:1 stoichiometry, 36 binds with a 1:1 stoichiometry. Compound 36 is orally bioavailable and partitions highly and favorably into the red blood cell with a RBC/plasma ratio of ∼150. This partitioning onto the target protein is anticipated to allow therapeutic concentrations to be achieved in the red blood cell at low plasma concentrations. GBT440 (36) is in Phase 3 clinical trials for the treatment of sickle cell disease (NCT03036813).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA