Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Methods ; 227: 37-47, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729455

RESUMO

RNA modification serves as a pivotal component in numerous biological processes. Among the prevalent modifications, 5-methylcytosine (m5C) significantly influences mRNA export, translation efficiency and cell differentiation and are also associated with human diseases, including Alzheimer's disease, autoimmune disease, cancer, and cardiovascular diseases. Identification of m5C is critically responsible for understanding the RNA modification mechanisms and the epigenetic regulation of associated diseases. However, the large-scale experimental identification of m5C present significant challenges due to labor intensity and time requirements. Several computational tools, using machine learning, have been developed to supplement experimental methods, but identifying these sites lack accuracy and efficiency. In this study, we introduce a new predictor, MLm5C, for precise prediction of m5C sites using sequence data. Briefly, we evaluated eleven RNA sequence-derived features with four basic machine learning algorithms to generate baseline models. From these 44 models, we ranked them based on their performance and subsequently stacked the Top 20 baseline models as the best model, named MLm5C. The MLm5C outperformed the-state-of-the-art predictors. Notably, the optimization of the sequence length surrounding the modification sites significantly improved the prediction performance. MLm5C is an invaluable tool in accelerating the detection of m5C sites within the human genome, thereby facilitating in the characterization of their roles in post-transcriptional regulation.


Assuntos
5-Metilcitosina , Aprendizado de Máquina , RNA , Humanos , 5-Metilcitosina/metabolismo , 5-Metilcitosina/química , RNA/genética , RNA/química , RNA/metabolismo , Biologia Computacional/métodos , Processamento Pós-Transcricional do RNA , Algoritmos
2.
Int J Mol Sci ; 20(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013619

RESUMO

Anticancer peptides (ACPs) are promising therapeutic agents for targeting and killing cancer cells. The accurate prediction of ACPs from given peptide sequences remains as an open problem in the field of immunoinformatics. Recently, machine learning algorithms have emerged as a promising tool for helping experimental scientists predict ACPs. However, the performance of existing methods still needs to be improved. In this study, we present a novel approach for the accurate prediction of ACPs, which involves the following two steps: (i) We applied a two-step feature selection protocol on seven feature encodings that cover various aspects of sequence information (composition-based, physicochemical properties and profiles) and obtained their corresponding optimal feature-based models. The resultant predicted probabilities of ACPs were further utilized as feature vectors. (ii) The predicted probability feature vectors were in turn used as an input to support vector machine to develop the final prediction model called mACPpred. Cross-validation analysis showed that the proposed predictor performs significantly better than individual feature encodings. Furthermore, mACPpred significantly outperformed the existing methods compared in this study when objectively evaluated on an independent dataset.


Assuntos
Antineoplásicos/química , Peptídeos/química , Software , Máquina de Vetores de Suporte , Antineoplásicos/farmacologia , Fenômenos Químicos , Humanos , Peptídeos/farmacologia , Curva ROC , Reprodutibilidade dos Testes , Navegador
3.
Comput Struct Biotechnol J ; 21: 1995-2008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950221

RESUMO

The vital cellular functions in Gram-positive bacteria are controlled by signaling molecules known as quorum sensing peptides (QSPs), considered promising therapeutic interventions for bacterial infections. In the bacterial system QSPs bind to membrane-coupled receptors, which then auto-phosphorylate and activate intracellular response regulators. These response regulators induce target gene expression in bacteria. One of the most reliable trends in drug discovery research for virulence-associated molecular targets is the use of peptide drugs or new functionalities. In this perspective, computational methods act as auxiliary aids for biologists, where methodologies based on machine learning and in silico analysis are developed as suitable tools for target peptide identification. Therefore, the development of quick and reliable computational resources to identify or predict these QSPs along with their receptors and inhibitors is receiving considerable attention. The databases such as Quorumpeps and Quorum Sensing of Human Gut Microbes (QSHGM) provide a detailed overview of the structures and functions of QSPs. The tools and algorithms such as QSPpred, QSPred-FL, iQSP, EnsembleQS and PEPred-Suite have been used for the generic prediction of QSPs and feature representation. The availability of compiled key resources for utilizing peptide features based on amino acid composition, positional preferences, and motifs as well as structural and physicochemical properties, including biofilm inhibitory peptides, can aid in elucidating the QSP and membrane receptor interactions in infectious Gram-positive pathogens. Herein, we present a comprehensive survey of diverse computational approaches that are suitable for detecting QSPs and QS interference molecules. This review highlights the utility of these methods for developing potential biomarkers against infectious Gram-positive pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA