Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.776
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2318382121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502702

RESUMO

The huge carbon stock in humus layers of the boreal forest plays a critical role in the global carbon cycle. However, there remains uncertainty about the factors that regulate below-ground carbon sequestration in this region. Notably, based on evidence from two independent but complementary methods, we identified that exchangeable manganese is a critical factor regulating carbon accumulation in boreal forests across both regional scales and the entire boreal latitudinal range. Moreover, in a novel fertilization experiment, manganese addition reduced soil carbon stocks, but only after 4 y of additions. Our results highlight an underappreciated mechanism influencing the humus carbon pool of boreal forests.


Assuntos
Manganês , Taiga , Carbono , Solo , Sequestro de Carbono , Florestas
2.
Proc Natl Acad Sci U S A ; 121(1): e2307984120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38109563

RESUMO

Many studies anticipate that carbon capture and sequestration (CCS) will be essential to decarbonizing the U.S. economy. However, prior work has not estimated the time required to develop, approve, and implement a geologic sequestration site in the United States. We generate such an estimate by identifying six clearance points that must be passed before a sequestration site can become operational. For each clearance point (CP), we elicit expert judgments of the time required in the form of probability distributions and then use stochastic simulation to combine and sum the results. We find that, on average, there is a 90% chance that the time required lies between 5.5 and 9.6 y, with an upper bound of 12 y. Even using the most optimistic expert judgements, the lower bound on time is 2.7 y, and the upper bound is 8.3 y. Using the most pessimistic judgements, the lower bound is 3.5 y and the upper bound is 19.2 y. These estimates suggest that strategies must be found to safely accelerate the process. We conclude the paper by discussing seven potential strategies.

3.
Proc Natl Acad Sci U S A ; 121(8): e2312152121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346195

RESUMO

Subsurface sandstone reservoirs sealed by overlying, low-permeability layers provide capacity for long-term sequestration of anthropogenic waste. Leakage can occur if reservoir pressures rise sufficiently to fracture the seal. Such pressures can be generated within the reservoir by vigorous injection of waste or, over thousands of years, by natural processes. In either case, the precise role of intercalated mudstones in the long-term evolution of reservoir pressure remains unclear; these layers have variously been viewed as seals, as pressure sinks, or as pressure sources. Here, we use the geological record of episodic fluid venting in the Levant Basin to provide striking evidence for the pressure-source hypothesis. We use a Bayesian framework to combine recently published venting data, which record critical subsurface pressures since ∼2 Ma, with a stochastic model of pressure evolution to infer a pressure-recharge rate of ∼30 MPa/Myr. To explain this large rate, we quantify and compare a range of candidate mechanisms. We find that poroelastic pressure diffusion from mudstones provides the most plausible explanation for these observations, amplifying the ∼3 MPa/Myr recharge caused primarily by tectonic compression. Since pressurized mudstones are ubiquitous in sedimentary basins, pressure diffusion from mudstones is likely to promote seal failure globally.

4.
Proc Natl Acad Sci U S A ; 121(31): e2321245121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39008689

RESUMO

Beef production has been identified as a significant source of anthropogenic greenhouse gas (GHG) emissions in the agricultural sector. United States and Canada account for about a quarter of the world's beef supply. To compare the GHG emission contributions of alternative beef production systems, we conducted a meta-analysis of 32 studies that were conducted between 2001 and 2023. Results indicated that GHG emissions from beef production in North America varied almost fourfold from 10.2 to 37.6 with an average of 21.4 kg CO2e/kg carcass weight (CW). Studies that considered soil C sequestration (C-seq) reported the highest mitigation potential in GHG emissions (80%), followed by growth enhancement technology (16%), diet modification (6%), and grazing management improvement (7%). Our study highlights the implications of using carbon intensity per economic activity (i.e., GHG emissions per monetary unit), compared to the more common metric of intensity on per weight of product basis (GHG emissions per kg CW) for comparisons across differentiated beef cattle products. While a positive association was found between the proportion of lifespan on grassland and the conventional weight-based indicator, grass-finished beef was found to have lower carbon intensity per economic activity than feedlot-finished beef. Our study emphasizes the need to incorporate land use and management effects and soil C-seq as fundamental aspects of beef GHG emissions and mitigation assessments.


Assuntos
Gases de Efeito Estufa , Carne Vermelha , Animais , Bovinos , Gases de Efeito Estufa/análise , Carne Vermelha/economia , Canadá , Criação de Animais Domésticos/métodos , Criação de Animais Domésticos/economia , Estados Unidos , Agricultura/economia , Agricultura/métodos , Efeito Estufa , Mudança Climática
5.
Proc Natl Acad Sci U S A ; 120(41): e2304988120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782782

RESUMO

Previous evaluations on the biophysical potential of forest carbon sink have focused on forestation area distribution and the associated carbon stock for equilibrium-state forests after centuries-long growth. These approaches, however, have limited relevance for climate policies because they ignore the near-term and mid-term decadal carbon uptake dynamics and suitable forest species for forestation. This study developed a forestation roadmap to support China's "carbon neutrality" objective in 2060 by addressing three key questions of forestation: where, with what forest species, and when to afforest. The results yielded a high-confidence potential forestation map for China at a resolution of 1 km with the identified optimal native forest type or species. Our analysis revealed an additional 78 Mha suitable for forestation up to the 2060s, a 43% increase on the current forest area. Selecting forest species for maximal carbon stock in addition to maximizing local environmental suitability enabled almost a doubling in forest carbon sink potential. Progressive forestation of this area can fix a considerable amount of CO2 and compensate for the carbon sink decline in existing forests. Altogether, the entire forest ecosystem can support a persistent biophysical carbon sink potential of 0.4 Pg C y-1 by 2060 and 0.2 Pg C y-1 by 2100, offsetting 7 to 14% of the current national fossil CO2 emissions. Our research provides an example of building a forestation roadmap toward a sustained forest carbon sink, which creates a critical time window for the emission cuts required by the goal of carbon neutrality.


Assuntos
Ecossistema , Árvores , Carbono/análise , Dióxido de Carbono/análise , Florestas , China , Sequestro de Carbono
6.
Proc Natl Acad Sci U S A ; 120(16): e2217695120, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040411

RESUMO

We describe a scalable, economical solution to the carbon dioxide problem. CO2 is captured from the atmosphere by plants, and the harvested vegetation is then buried in an engineered dry biolandfill. Plant biomass can be preserved for hundreds to thousands of years by burial in a dry environment with sufficiently low thermodynamic "Water Activity," which is the relative humidity in equilibrium with the biomass. Maintaining a dry environment within the engineered dry biolandfill is assisted by salt that preserves biomass, which has been known since Biblical times. A "Water Activity" <60%, assisted by salt, will not support life, suppressing anaerobic organisms, thus preserving the biomass for thousands of years. Current agricultural costs, and biolandfill costs, indicate US$60/tonne of sequestered CO2 which corresponds to ~US$0.53 per gallon of gasoline. The technology is scalable owing to the large area of land available for nonfood biomass sources. If biomass production is scaled to the level of a major crop, existing CO2 can be extracted from the atmosphere, and will simultaneously sequester a significant fraction of world CO2 emissions.

7.
Proc Natl Acad Sci U S A ; 120(22): e2302251120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216531

RESUMO

In coevolution between plants and insects, reciprocal selection often leads to phenotype matching between chemical defense and herbivore offense. Nonetheless, it is not well understood whether distinct plant parts are differentially defended and how herbivores adapted to those parts cope with tissue-specific defense. Milkweed plants produce a diversity of cardenolide toxins and specialist herbivores have substitutions in their target enzyme (Na+/K+-ATPase), each playing a central role in milkweed-insect coevolution. The four-eyed milkweed beetle (Tetraopes tetrophthalmus) is an abundant toxin-sequestering herbivore that feeds exclusively on milkweed roots as larvae and less so on milkweed leaves as adults. Accordingly, we tested the tolerance of this beetle's Na+/K+-ATPase to cardenolide extracts from roots versus leaves of its main host (Asclepias syriaca), along with sequestered cardenolides from beetle tissues. We additionally purified and tested the inhibitory activity of dominant cardenolides from roots (syrioside) and leaves (glycosylated aspecioside). Tetraopes' enzyme was threefold more tolerant of root extracts and syrioside than leaf cardenolides. Nonetheless, beetle-sequestered cardenolides were more potent than those in roots, suggesting selective uptake or dependence on compartmentalization of toxins away from the beetle's enzymatic target. Because Tetraopes has two functionally validated amino acid substitutions in its Na+/K+-ATPase compared to the ancestral form in other insects, we compared its cardenolide tolerance to that of wild-type Drosophila and CRISPR-edited Drosophila with Tetraopes' Na+/K+-ATPase genotype. Those two amino acid substitutions accounted for >50% of Tetraopes' enhanced enzymatic tolerance of cardenolides. Thus, milkweed's tissue-specific expression of root toxins is matched by physiological adaptations in its specialist root herbivore.


Assuntos
Alcaloides , Asclepias , Besouros , Animais , Herbivoria , Adaptação Fisiológica , Besouros/fisiologia , Cardenolídeos/química , Asclepias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Drosophila/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(6): e2217607120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36730189

RESUMO

The spleen clears altered red blood cells (RBCs) from circulation, contributing to the balance between RBC formation (erythropoiesis) and removal. The splenic RBC retention and elimination occur predominantly in open circulation where RBCs flow through macrophages and inter-endothelial slits (IESs). The mechanisms underlying and interconnecting these processes significantly impact clinical outcomes. In sickle cell disease (SCD), blockage of intrasplenic sickled RBCs is observed in infants splenectomized due to acute splenic sequestration crisis (ASSC). This life-threatening RBC pooling and organ swelling event is plausibly triggered or enhanced by intra-tissular hypoxia. We present an oxygen-mediated spleen-on-a-chip platform for in vitro investigations of the homeostatic balance in the spleen. To demonstrate and validate the benefits of this general microfluidic platform, we focus on SCD and study the effects of hypoxia on splenic RBC retention and elimination. We observe that RBC retention by IESs and RBC-macrophage adhesion are faster in blood samples from SCD patients than those from healthy subjects. This difference is markedly exacerbated under hypoxia. Moreover, the sickled RBCs under hypoxia show distinctly different phagocytosis processes from those non-sickled RBCs under hypoxia or normoxia. We find that reoxygenation significantly alleviates RBC retention at IESs, and leads to rapid unsickling and fragmentation of the ingested sickled RBCs inside macrophages. These results provide unique mechanistic insights into how the spleen maintains its homeostatic balance between splenic RBC retention and elimination, and shed light on how disruptions in this balance could lead to anemia, splenomegaly, and ASSC in SCD and possible clinical manifestations in other hematologic diseases.


Assuntos
Anemia Falciforme , Baço , Humanos , Microfluídica , Eritrócitos , Hipóxia
9.
Proc Natl Acad Sci U S A ; 120(1): e2210561119, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584294

RESUMO

Brown algae annually convert gigatons of carbon dioxide into carbohydrates, including the complex extracellular matrix polysaccharide fucoidan. Due to its persistence in the environment, fucoidan is potentially a pathway for marine carbon sequestration. Rates of fucoidan secretion by brown algae remain unknown due to the challenge of identifying and quantifying complex polysaccharides in seawater. We adapted the techniques of anion exchange chromatography, enzyme-linked immunosorbent assay, and biocatalytic enzyme-based assay for detection and quantification of fucoidan. We found the brown alga Fucus vesiculosus at the Baltic Sea coast of south-west Finland to secrete 0.3% of their biomass as fucoidan per day. Dissolved fucoidan concentrations in seawater adjacent to algae reached up to 0.48 mg L-1. Fucoidan accumulated during incubations of F. vesiculosus, significantly more in light than in darkness. Maximum estimation by acid hydrolysis indicated fucoidan secretion at a rate of 28 to 40 mg C kg-1 h-1, accounting for 44 to 50% of all exuded dissolved organic carbon. Composed only of carbon, oxygen, hydrogen, and sulfur, fucoidan secretion does not consume nutrients enabling carbon sequestration independent of algal growth. Extrapolated over a year, the algae sequester more carbon into secreted fucoidan than their biomass. The global utility of fucoidan secretion is an alternative pathway for carbon dioxide removal by brown algae without the need to harvest or bury algal biomass.


Assuntos
Dióxido de Carbono , Phaeophyceae , Dióxido de Carbono/metabolismo , Polissacarídeos/metabolismo , Phaeophyceae/metabolismo , Oceanos e Mares
10.
J Biol Chem ; 300(7): 107413, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810698

RESUMO

Ataxin-2 (Atx2) is a polyglutamine (polyQ) tract-containing RNA-binding protein, while its polyQ expansion may cause protein aggregation that is implicated in the pathogenesis of neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2). However, the molecular mechanism underlying how Atx2 aggregation contributes to the proteinopathies remains elusive. Here, we investigated the influence of Atx2 aggregation on the assembly and functionality of cellular processing bodies (P-bodies) by using biochemical and fluorescence imaging approaches. We have revealed that polyQ-expanded (PQE) Atx2 sequesters the DEAD-box RNA helicase (DDX6), an essential component of P-bodies, into aggregates or puncta via some RNA sequences. The N-terminal like-Sm (LSm) domain of Atx2 (residues 82-184) and the C-terminal helicase domain of DDX6 are responsible for the interaction and specific sequestration. Moreover, sequestration of DDX6 may aggravate pre-mRNA mis-splicing, and interfere with the assembly of cellular P-bodies, releasing the endoribonuclease MARF1 that promotes mRNA decay and translational repression. Rescuing the DDX6 protein level can recover the assembly and functionality of P-bodies, preventing targeted mRNA from degradation. This study provides a line of evidence for sequestration of the P-body components and impairment of the P-body homeostasis in dysregulating RNA metabolism, which is implicated in the disease pathologies and a potential therapeutic target.


Assuntos
Ataxina-2 , RNA Helicases DEAD-box , Homeostase , Peptídeos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Ataxina-2/metabolismo , Ataxina-2/genética , Peptídeos/metabolismo , Peptídeos/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Células HEK293 , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/genética , Agregados Proteicos , Splicing de RNA , Domínios Proteicos , Precursores de RNA/metabolismo , Precursores de RNA/genética
11.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35899779

RESUMO

In animals and plants, stem-cell niches are local microenvironments that are tightly regulated to preserve their unique identity while communicating with adjacent cells that will give rise to specialized cell types. In the primary root of Arabidopsis thaliana, two transcription factors, BRAVO and WOX5, among others, are expressed in the stem-cell niche. Intriguingly, BRAVO, a repressor of quiescent center divisions, confines its own gene expression to the stem-cell niche, as evidenced in a bravo mutant background. Here, we propose through mathematical modeling that BRAVO confines its own expression domain to the stem-cell niche by attenuating a WOX5-dependent diffusible activator of BRAVO. This negative feedback drives WOX5 activity to be spatially restricted as well. The results show that WOX5 diffusion and sequestration by binding to BRAVO are sufficient to drive the experimentally observed confined BRAVO expression at the stem-cell niche. We propose that the attenuation of a diffusible activator can be a general mechanism acting at other stem-cell niches to spatially confine genetic activity to a small region while maintaining signaling within them and with the surrounding cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Meristema/metabolismo , Nitrilas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Nicho de Células-Tronco/genética
12.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36281807

RESUMO

Plants develop throughout their lives: seeds become seedlings that mature and form fruits and seeds. Although the underlying mechanisms that drive these developmental phase transitions have been well elucidated for shoots, the extent to which they affect the root is less clear. However, root anatomy does change as some plants mature; meristems enlarge and radial thickening occurs. Here, in Arabidopsis thaliana, we show that overexpressing miR156A, a gene that promotes the juvenile phase, increased the density of the root system, even in grafted plants in which only the rootstock had the overexpression genotype. In the root, overexpression of miR156A resulted in lower levels of PLETHORA 2, a protein that affects formation of the meristem and elongation zone. Crossing in an extra copy of PLETHORA 2 partially rescued the effects of miR156A overexpression on traits affecting root architecture, including meristem length and the rate of lateral root emergence. Consistent with this, PLETHORA 2 also inhibited the root-tip expression of another miR156 gene, miR156C. We conclude that the system driving phase change in the shoot affects developmental progression in the root, and that PLETHORA 2 participates in this network.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Meristema/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Arabidopsis/metabolismo , Plântula/genética , MicroRNAs/genética , MicroRNAs/metabolismo
13.
Bioessays ; 45(9): e2200241, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37518819

RESUMO

Reorganization of cell organelle-deprived host red blood cells by the apicomplexan malaria parasite Plasmodium falciparum enables their cytoadherence to endothelial cells that line the microvasculature. This increases the time red blood cells infected with mature developmental stages remain within selected organs such as the brain to avoid the spleen passage, which can lead to severe complications and cumulate in patient death. The Maurer's clefts are a novel secretory organelle of parasite origin established by the parasite in the cytoplasm of the host red blood cell in order to facilitate the establishment of cytoadherence by conducting the trafficking of immunovariant adhesins to the host cell surface. Another important function of the organelle is the sorting of other proteins the parasite traffics into its host cell. Although the organelle is of high importance for the pathology of malaria, additional putative functions, structure, and genesis remain shrouded in mystery more than a century after its discovery. In this review, we highlight our current knowledge about the Maurer's clefts and other novel secretory organelles established within the host cell cytoplasm by human-pathogenic malaria parasites and other parasites that reside within human red blood cells.


Assuntos
Parasitos , Animais , Humanos , Parasitos/metabolismo , Interações Hospedeiro-Parasita , Células Endoteliais/metabolismo , Proteínas de Protozoários/química , Eritrócitos/parasitologia , Organelas/metabolismo , Plasmodium falciparum/metabolismo , Transporte Proteico
14.
Drug Resist Updat ; 76: 101100, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38885537

RESUMO

AIMS: Lansoprazole is one of the many proton pump inhibitors (PPIs) that acts more strongly with ABCB1 and ABCG2. The present study is to investigate the potential of lansoprazole on reversal of ABCB1/G2-mediated MDR in cancer, in vitro and in vivo. METHODS: Reversal studies and combination evaluation were conducted to determine the synergistic anti-MDR effects on lansoprazole. Lysosomal staining was used to determination of lansoprazole on ABCB1-mediated lysosomal sequestration. Substrate accumulation and efflux assays, ATPase activity, and molecular docking were conducted to evaluate lansoprazole on ABCB1/G2 functions. Western blot and immunofluorescence were used to detect lansoprazole on ABCB1/G2 expression and subcellular localization. MDR nude mice models were established to evaluate the effects of lansoprazole on MDR in vivo. RESULTS: Lansoprazole attenuated ABCB1/G2-mediated MDR and exhibited synergistic effects with substrate drugs in MDR cells. In vivo experiments demonstrated that lansoprazole attenuated ABCB1/G2-mediated MDR and exhibited synergistic effects that augmented the sensitivity of substrate anticancer drugs in ABCB1/G2-mediated settings without obvious toxicity. Lansoprazole impeded lysosomal sequestration mediated by ABCB1, leading to a substantial increase in intracellular accumulation of substrate drugs. The effects of lansoprazole were not attributable to downregulation or alterations in subcellular localization of ABCB1/G2. Lansoprazole promoted the ATPase activity of ABCB1/G2 and competitively bound to the substrate-binding region of ABCB1/G2. CONCLUSIONS: These findings present novel therapeutic avenues whereby the combination of lansoprazole and chemotherapeutic agents mitigates MDR mediated by ABCB1/G2 overexpression.

15.
Genes Dev ; 31(18): 1858-1869, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021243

RESUMO

The piRNA pathway represses transposable elements in the gonads and thereby plays a vital role in protecting the integrity of germline genomes of animals. Mature piRNAs are processed from longer transcripts, piRNA precursors (pre-piRNAs). In Drosophila, processing of pre-piRNAs is initiated by piRNA-guided Slicer cleavage or the endonuclease Zucchini (Zuc). As Zuc does not have any sequence or structure preferences in vitro, it is not known how piRNA precursors are selected and channeled into the Zuc-dependent processing pathway. We show that a heterologous RNA that lacks complementary piRNAs is processed into piRNAs upon recruitment of several piRNA pathway factors. This processing requires Zuc and the helicase Armitage (Armi). Aubergine (Aub), Argonaute 3 (Ago3), and components of the nuclear RDC complex, which are required for normal piRNA biogenesis in germ cells, are dispensable. Our approach allows discrimination of proteins involved in the transcription and export of piRNA precursors from components required for the cytoplasmic processing steps. piRNA processing correlates with localization of the substrate RNA to nuage, a distinct membraneless cytoplasmic compartment, which surrounds the nucleus of germ cells, suggesting that sequestration of RNA to this subcellular compartment is both necessary and sufficient for selecting piRNA biogenesis substrates.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endorribonucleases/metabolismo , RNA Helicases/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Interferente Pequeno/biossíntese , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endorribonucleases/genética , Feminino , Células Germinativas/metabolismo , Ovário/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , RNA Helicases/genética
16.
J Biol Chem ; 299(8): 105019, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422193

RESUMO

Poly(A)-binding protein nuclear 1 (PABPN1) is an RNA-binding protein localized in nuclear speckles, while its alanine (Ala)-expanded variants accumulate as intranuclear aggregates in oculopharyngeal muscular dystrophy. The factors that drive PABPN1 aggregation and its cellular consequences remain largely unknown. Here, we investigated the roles of Ala stretch and poly(A) RNA in the phase transition of PABPN1 using biochemical and molecular cell biology methods. We have revealed that the Ala stretch controls its mobility in nuclear speckles, and Ala expansion leads to aggregation from the dynamic speckles. Poly(A) nucleotide is essential to the early-stage condensation that thereby facilitates speckle formation and transition to solid-like aggregates. Moreover, the PABPN1 aggregates can sequester CFIm25, a component of the pre-mRNA 3'-UTR processing complex, in an mRNA-dependent manner and consequently impair the function of CFIm25 in alternative polyadenylation. In conclusion, our study elucidates a molecular mechanism underlying PABPN1 aggregation and sequestration, which will be beneficial for understanding PABPN1 proteinopathy.


Assuntos
Distrofia Muscular Oculofaríngea , Poliadenilação , Humanos , Alanina/metabolismo , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , RNA/metabolismo
17.
Ecol Lett ; 27(1): e14340, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38017619

RESUMO

Herbivores that sequester toxins are thought to have cracked the code of plant defences. Nonetheless, coevolutionary theory predicts that plants should evolve toxic variants that also negatively impact specialists. We propose and test the selective sequestration hypothesis, that specialists preferentially sequester compounds that are less toxic to themselves while maintaining toxicity to enemies. Using chemically distinct plants, we show that monarch butterflies sequester only a subset of cardenolides from milkweed leaves that are less potent against their target enzyme (Na+ /K+ -ATPase) compared to several dominant cardenolides from leaves. However, sequestered compounds remain highly potent against sensitive Na+ /K+ -ATPases found in most predators. We confirmed this differential toxicity with mixtures of purified cardenolides from leaves and butterflies. The genetic basis of monarch adaptation to sequestered cardenolides was also confirmed with transgenic Drosophila that were CRISPR-edited with the monarch's Na+ /K+ -ATPase. Thus, the monarch's selective sequestration appears to reduce self-harm while maintaining protection from enemies.


Assuntos
Asclepias , Borboletas , Animais , Borboletas/genética , Larva , Asclepias/química , Cardenolídeos/toxicidade , Adenosina Trifosfatases
18.
Br J Haematol ; 204(1): 315-323, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37822168

RESUMO

Despite the efficacy of splenectomy for chronic immune thrombocytopenia (ITP), its considerable failure rate and its possible related complications prove the need for further research into potential predictors of response. The platelet sequestration site determined by 111 In-labelled autologous platelet scintigraphy has been proposed to predict splenectomy outcome, but without standardisation in clinical practice. Here, we conducted a single-centre study by analysing a cohort of splenectomised patients with ITP in whom 111 In-scintigraphy was performed at La Paz University Hospital in Madrid to evaluate the predictive value of the platelet kinetic studies. We also studied other factors that could impact the splenectomy outcome, such as patient and platelet characteristics. A total of 51 patients were splenectomised, and 82.3% responded. The splenic sequestration pattern predicted a higher rate of complete response up to 12 months after splenectomy (p = 0.005), with 90% sensitivity and 77% specificity. Neither age, comorbidities, therapy lines nor previous response to them showed any association with response. Results from the platelet characteristics analysis revealed a significant loss of sialic acid in platelets from the non-responding patients compared with those who maintained a response (p = 0.0017). Our findings highlight the value of splenic sequestration as an independent predictor of splenectomy response.


Assuntos
Hiperesplenismo , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Púrpura Trombocitopênica Idiopática/cirurgia , Esplenectomia , Cinética , Plaquetas/fisiologia
19.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35142363

RESUMO

TDP-43 (also known as TARDBP) is a nuclear splicing factor functioning in pre-mRNA processing. Its C-terminal 35-kDa fragment (TDP-35) forms inclusions or aggregates in cytoplasm, and sequesters full-length TDP-43 into the inclusions through binding with RNA. We extended the research to investigate whether TDP-35 inclusions sequester other RNA-binding proteins (RBPs) and how RNA-binding specificity has a role in this sequestration process. We have characterized T-cell restricted intracellular antigen-1 (TIA1) and other RBPs that can be sequestered into the TDP-35 inclusions through specific RNA binding, and found that this sequestration leads to the dysfunction of TIA1 in maturation of target pre-mRNA. Moreover, we directly visualized the dynamic sequestration of TDP-43 by the cytoplasmic TDP-35 inclusions by live-cell imaging. Our results demonstrate that TDP-35 sequesters some specific RBPs and this sequestration is assisted by binding with RNA in a sequence-specific manner. This study provides further evidence in supporting the hijacking hypothesis for RNA-assisted sequestration and will be beneficial to further understanding of the TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica , Proteinopatias TDP-43 , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Corpos de Inclusão/metabolismo , RNA/genética , RNA/metabolismo , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteinopatias TDP-43/metabolismo
20.
Biochem Biophys Res Commun ; 691: 149313, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38035405

RESUMO

In Escherichia coli, the SulA protein is synthesized during the SOS response to arrest cell division. Two possible models of SulA action were proposed: the sequestration and the capping. In current paper, to clarify which model better reflects the SulA effect on cell division upon the SOS response, the FtsZ/SulA ratio was estimated inside cells based on fusion of both FtsZ and SulA to fluorescent protein mNeonGreen. This allowed to quantify this ratio by fluorescence microscopy as well as western blotting; moreover, the effect of SulA on FtsZ distribution patterns in cells was analyzed based on fluorescence microscopy images. The SulA concentration in cells under the SOS response was shown to be several times (about 10) lower than that of FtsZ. The effect of SulA was unequal to corresponding decrease in FtsZ concentration. These results are supported by uneven FtsZ distribution in cells under the SOS response. Together the results of current work indicate that the division arrest by SulA protein in E. coli cells could not be explained by the sequestration model.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Resposta SOS em Genética , Proteínas do Citoesqueleto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA