Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.519
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
EMBO J ; 42(6): e111858, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36562188

RESUMO

Phytosulfokine (PSK) is a plant pentapeptide hormone that fulfills a wide range of functions. Although PSK has frequently been reported to function in the inverse regulation of growth and defense in response to (hemi)biotrophic pathogens, the mechanisms involved remain largely unknown. Using the tomato (Solanum lycopersicum) and Pseudomonas syringae pv. tomato (Pst) DC3000 pathogen system, we present compelling evidence that the PSK receptor PSKR1 interacts with the calcium-dependent protein kinase CPK28, which in turn phosphorylates the key enzyme of nitrogen assimilation glutamine synthetase GS2 at two sites (Serine-334 and Serine-360). GS2 phosphorylation at S334 specifically regulates plant defense, whereas S360 regulates growth, uncoupling the PSK-induced effects on defense responses and growth regulation. The discovery of these sites will inform breeding strategies designed to optimize the growth-defense balance in a compatible manner.


Assuntos
Solanum lycopersicum , Fosforilação , Glutamato-Amônia Ligase/metabolismo , Peptídeos/metabolismo , Reguladores de Crescimento de Plantas
2.
Proc Natl Acad Sci U S A ; 121(28): e2400737121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968127

RESUMO

In recent years, the exploration of genome three-dimensional (3D) conformation has yielded profound insights into the regulation of gene expression and cellular functions in both animals and plants. While animals exhibit a characteristic genome topology defined by topologically associating domains (TADs), plants display similar features with a more diverse conformation across species. Employing advanced high-throughput sequencing and microscopy techniques, we investigated the landscape of 26 histone modifications and RNA polymerase II distribution in tomato (Solanum lycopersicum). Our study unveiled a rich and nuanced epigenetic landscape, shedding light on distinct chromatin states associated with heterochromatin formation and gene silencing. Moreover, we elucidated the intricate interplay between these chromatin states and the overall topology of the genome. Employing a genetic approach, we delved into the role of the histone modification H3K9ac in genome topology. Notably, our investigation revealed that the ectopic deposition of this chromatin mark triggered a reorganization of the 3D chromatin structure, defining different TAD-like borders. Our work emphasizes the critical role of H3K9ac in shaping the topology of the tomato genome, providing valuable insights into the epigenetic landscape of this agriculturally significant crop species.


Assuntos
Epigenoma , Histonas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Histonas/metabolismo , Histonas/genética , Epigênese Genética , Genoma de Planta , Cromatina/metabolismo , Cromatina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Heterocromatina/metabolismo , Heterocromatina/genética , Código das Histonas/genética
3.
Proc Natl Acad Sci U S A ; 120(31): e2211117120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487084

RESUMO

Potato (Solanum sp., family Solanaceae) is the most important noncereal food crop globally. It has over 100 wild relatives in the Solanum section Petota, which features species with both sexual and asexual reproduction and varying ploidy levels. A pangenome of Solanum section Petota composed of 296 accessions was constructed including diploids and polyploids compared via presence/absence variation (PAV). The Petota core (genes shared by at least 97% of the accessions) and shell genomes (shared by 3 to 97%) are enriched in basic molecular and cellular functions, while the cloud genome (genes present in less than 3% of the member accessions) showed enrichment in transposable elements (TEs). Comparison of PAV in domesticated vs. wild accessions was made, and a phylogenetic tree was constructed based on PAVs, grouping accessions into different clades, similar to previous phylogenies produced using DNA markers. A cladewise pangenome approach identified abiotic stress response among the core genes in clade 1+2 and clade 3, and flowering/tuberization among the core genes in clade 4. The TE content differed between the clades, with clade 1+2, which is composed of species from North and Central America with reproductive isolation from species in other clades, having much lower TE content compared to other clades. In contrast, accessions with in vitro propagation history were identified and found to have high levels of TEs. Results indicate a role for TEs in adaptation to new environments, both natural and artificial, for Solanum section Petota.


Assuntos
Solanum tuberosum , Solanum , Elementos de DNA Transponíveis , Filogenia , Ploidias
4.
Proc Natl Acad Sci U S A ; 120(3): e2210300120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36634142

RESUMO

Rhizogenic Agrobacterium strains comprise biotrophic pathogens that cause hairy root disease (HRD) on hydroponically grown Solanaceae and Cucurbitaceae crops, besides being widely explored agents for the creation of hairy root cultures for the sustainable production of plant-specialized metabolites. Hairy root formation is mediated through the expression of genes encoded on the T-DNA of the root-inducing (Ri) plasmid, of which several, including root oncogenic locus B (rolB), play a major role in hairy root development. Despite decades of research, the exact molecular function of the proteins encoded by the rol genes remains enigmatic. Here, by means of TurboID-mediated proximity labeling in tomato (Solanum lycopersicum) hairy roots, we identified the repressor proteins TOPLESS (TPL) and Novel Interactor of JAZ (NINJA) as direct interactors of RolB. Although these interactions allow RolB to act as a transcriptional repressor, our data hint at another in planta function of the RolB oncoprotein. Hence, by a series of plant bioassays, transcriptomic and DNA-binding site enrichment analyses, we conclude that RolB can mitigate the TPL functioning so that it leads to a specific and partial reprogramming of phytohormone signaling, immunity, growth, and developmental processes. Our data support a model in which RolB manipulates host transcription, at least in part, through interaction with TPL, to facilitate hairy root development. Thereby, we provide important mechanistic insights into this renowned oncoprotein in HRD.


Assuntos
Agrobacterium , Proteínas Repressoras , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Plasmídeos , Produtos Agrícolas/genética , Imunidade Vegetal , Raízes de Plantas/metabolismo
5.
Plant J ; 119(5): 2514-2537, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970620

RESUMO

Soil salinity is a major environmental stressor affecting agricultural productivity worldwide. Understanding plant responses to salt stress is crucial for developing resilient crop varieties. Wild relatives of cultivated crops, such as wild tomato, Solanum pimpinellifolium, can serve as a useful resource to further expand the resilience potential of the cultivated germplasm, S. lycopersicum. In this study, we employed high-throughput phenotyping in the greenhouse and field conditions to explore salt stress responses of a S. pimpinellifolium diversity panel. Our study revealed extensive phenotypic variations in response to salt stress, with traits such as transpiration rate, shoot mass, and ion accumulation showing significant correlations with plant performance. We found that while transpiration was a key determinant of plant performance in the greenhouse, shoot mass strongly correlated with yield under field conditions. Conversely, ion accumulation was the least influential factor under greenhouse conditions. Through a Genome Wide Association Study, we identified candidate genes not previously associated with salt stress, highlighting the power of high-throughput phenotyping in uncovering novel aspects of plant stress responses. This study contributes to our understanding of salt stress tolerance in S. pimpinellifolium and lays the groundwork for further investigations into the genetic basis of these traits, ultimately informing breeding efforts for salinity tolerance in tomato and other crops.


Assuntos
Estudo de Associação Genômica Ampla , Fenótipo , Estresse Salino , Solanum , Solanum/genética , Solanum/fisiologia , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia
6.
Plant J ; 118(2): 388-404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38150324

RESUMO

The intercellular space or apoplast constitutes the main interface in plant-pathogen interactions. Apoplastic subtilisin-like proteases-subtilases-may play an important role in defence and they have been identified as targets of pathogen-secreted effector proteins. Here, we characterise the role of the Solanaceae-specific P69 subtilase family in the interaction between tomato and the vascular bacterial wilt pathogen Ralstonia solanacearum. R. solanacearum infection post-translationally activated several tomato P69s. Among them, P69D was exclusively activated in tomato plants resistant to R. solanacearum. In vitro experiments showed that P69D activation by prodomain removal occurred in an autocatalytic and intramolecular reaction that does not rely on the residue upstream of the processing site. Importantly P69D-deficient tomato plants were more susceptible to bacterial wilt and transient expression of P69B, D and G in Nicotiana benthamiana limited proliferation of R. solanacearum. Our study demonstrates that P69s have conserved features but diverse functions in tomato and that P69D is involved in resistance to R. solanacearum but not to other vascular pathogens like Fusarium oxysporum.


Assuntos
Ralstonia solanacearum , Solanaceae , Solanum lycopersicum , Solanum lycopersicum/genética , Nicotiana/genética , Ralstonia solanacearum/fisiologia , Doenças das Plantas/microbiologia
7.
Plant J ; 117(2): 561-572, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921015

RESUMO

Potato (Solanum tuberosum) is a significant non-grain food crop in terms of global production. However, its yield potential might be raised by identifying means to release bottlenecks within photosynthetic metabolism, from the capture of solar energy to the synthesis of carbohydrates. Recently, engineered increases in photosynthetic rates in other crops have been directly related to increased yield - how might such increases be achieved in potato? To answer this question, we derived the photosynthetic parameters Vcmax and Jmax to calibrate a kinetic model of leaf metabolism (e-Photosynthesis) for potato. This model was then used to simulate the impact of manipulating the expression of genes and their protein products on carbon assimilation rates in silico through optimizing resource investment among 23 photosynthetic enzymes, predicting increases in photosynthetic CO2 uptake of up to 67%. However, this number of manipulations would not be practical with current technologies. Given a limited practical number of manipulations, the optimization indicated that an increase in amounts of three enzymes - Rubisco, FBP aldolase, and SBPase - would increase net assimilation. Increasing these alone to the levels predicted necessary for optimization increased photosynthetic rate by 28% in potato.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Fotossíntese , Produtos Agrícolas/metabolismo , Luz Solar , Ribulose-Bifosfato Carboxilase/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
8.
Plant J ; 117(1): 7-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37844152

RESUMO

Plant intracellular immune receptors, primarily nucleotide-binding, leucine-rich repeat proteins (NLRs), detect pathogen effector proteins and activate NLR-triggered immunity (NTI). Recently, 'sensor' NLRs have been reported to function with 'helper' NLRs to activate immunity. We investigated the role of two helper NLRs, Nrc2 and Nrc3, on immunity in tomato to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) mediated by the sensor NLR Prf and the Pto kinase. An nrc2/nrc3 mutant no longer activated Prf/Pto-mediated NTI to Pst containing the effectors AvrPto and AvrPtoB. An nrc3 mutant showed intermediate susceptibility between wild-type plants and a Prf mutant, while an nrc2 mutant developed only mild disease. These observations indicate that Nrc2 and Nrc3 act additively in Prf-/Pto-mediated immunity. We examined at what point Nrc2 and Nrc3 act in the Prf/Pto-mediated immune response. In the nrc2/3 mutant, programmed cell death (PCD) normally induced by constitutively active variants of AvrPtoB, Pto, or Prf was abolished, but that induced by M3Kα or Mkk2 was not. PCD induced by a constitutively active Nrc3 was also abolished in a Nicotiana benthamiana line with reduced expression of Prf. MAPK activation triggered by expression of AvrPto in the wild-type tomato plants was completely abolished in the nrc2/3 mutant. These results indicate that Nrc2 and Nrc3 act with Prf/Pto and upstream of MAPK signaling. Nrc2 and Nrc3 were not required for PCD triggered by Ptr1, another sensor NLR-mediating Pst resistance, although these helper NLRs do appear to be involved in resistance to certain Pst race 1 strains.


Assuntos
Proteínas Serina-Treonina Quinases , Solanum lycopersicum , Proteínas Serina-Treonina Quinases/metabolismo , Solanum lycopersicum/genética , Pseudomonas syringae/fisiologia , Apoptose , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Bactérias/metabolismo
9.
Plant J ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032095

RESUMO

Type 2C protein phosphatases (PP2Cs) are emerging as important regulators of plant immune responses, although little is known about how they might impact nucleotide-binding, leucine-rich repeat (NLR)-triggered immunity (NTI). We discovered that expression of the PP2C immunity-associated candidate 14 gene (Pic14) is induced upon activation of the Pto/Prf-mediated NTI response in tomato. Pto/Prf recognizes the effector AvrPto translocated into plant cells by the pathogen Pseudomonas syringae pv. tomato (Pst) and activate a MAPK cascade and other responses which together confer resistance to bacterial speck disease. Pic14 encodes a PP2C with an N-terminal kinase-interacting motif (KIM) and a C-terminal phosphatase domain. Upon inoculation with Pst-AvrPto, Pto/Prf-expressing tomato plants with loss-of-function mutations in Pic14 developed less speck disease, specifically in older leaves, compared to wild-type plants. Transient expression of Pic14 in leaves of Nicotiana benthamiana and tomato inhibited cell death typically induced by Pto/Prf and the MAPK cascade members M3Kα and Mkk2. The cell death-suppressing activity of Pic14 was dependent on the KIM and the catalytic phosphatase domain. Pic14 inhibited M3Kα- and Mkk2-mediated activation of immunity-associated MAPKs and Pic14 was shown to be an active phosphatase that physically interacts with and dephosphorylates Mkk2 in a KIM-dependent manner. Together, our results reveal Pic14 as an important negative regulator of Pto/Prf-triggered immunity by interacting with and dephosphorylating Mkk2.

10.
Plant J ; 119(1): 595-603, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38576107

RESUMO

Wild species are an invaluable source of new traits for crop improvement. Over the years, the tomato community bred cultivated lines that carry introgressions from different species of the tomato tribe to facilitate trait discovery and mapping. The next phase in such projects is to find the genes that drive the identified phenotypes. This can be achieved by genotyping a few thousand individuals resulting in fine mapping that can potentially identify the causative gene. To couple trait discovery and fine mapping, we are presenting large, recombination-rich, Backcross Inbred Line (BIL) populations involving an unexplored accession of the wild, green-fruited species Solanum pennellii (LA5240; the 'Lost' Accession) with two modern tomato inbreds: LEA, determinate, and TOP, indeterminate. The LEA and TOP BILs are in BC2F6-8 generation and include 1400 and 500 lines, respectively. The BILs were genotyped with 5000 SPET markers, showing that in the euchromatic regions there was one recombinant every 17-18 Kb while in the heterochromatin a recombinant every 600-700 Kb (TOP and LEA respectively). To gain perspective on the topography of recombination we compared five independent members of the Self-pruning gene family with their respective neighboring genes; based on PCR markers, in all cases we found recombinants. Further mapping analysis of two known morphological mutations that segregated in the BILs (self-pruning and hairless) showed that the maximal delimited intervals were 73 Kb and 210 Kb, respectively, and included the known causative genes. The 'Lost'_BILs provide a solid framework to study traits derived from a drought-tolerant wild tomato.


Assuntos
Mapeamento Cromossômico , Solanum lycopersicum , Solanum , Solanum/genética , Solanum lycopersicum/genética , Fenótipo , Locos de Características Quantitativas/genética , Genótipo , Cruzamentos Genéticos , Cromossomos de Plantas/genética , Endogamia
11.
Plant J ; 117(2): 541-560, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37932864

RESUMO

Carotenoids are isoprenoid pigments indispensable for photosynthesis. Moreover, they are the precursor of apocarotenoids, which include the phytohormones abscisic acid (ABA) and strigolactones (SLs) as well as retrograde signaling molecules and growth regulators, such as ß-cyclocitral and zaxinone. Here, we show that the application of the volatile apocarotenoid ß-ionone (ß-I) to Arabidopsis plants at micromolar concentrations caused a global reprogramming of gene expression, affecting thousands of transcripts involved in stress tolerance, growth, hormone metabolism, pathogen defense, and photosynthesis. This transcriptional reprogramming changes, along with induced changes in the level of the phytohormones ABA, jasmonic acid, and salicylic acid, led to enhanced Arabidopsis resistance to the widespread necrotrophic fungus Botrytis cinerea (B.c.) that causes the gray mold disease in many crop species and spoilage of harvested fruits. Pre-treatment of tobacco and tomato plants with ß-I followed by inoculation with B.c. confirmed the effect of ß-I in increasing the resistance to this pathogen in crop plants. Moreover, we observed reduced susceptibility to B.c. in fruits of transgenic tomato plants overexpressing LYCOPENE ß-CYCLASE, which contains elevated levels of endogenous ß-I, providing a further evidence for its effect on B.c. infestation. Our work unraveled ß-I as a further carotenoid-derived regulatory metabolite and indicates the possibility of establishing this natural volatile as an environmentally friendly bio-fungicide to control B.c.


Assuntos
Arabidopsis , Norisoprenoides , Solanum lycopersicum , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/metabolismo , Resistência à Doença/genética , Transcriptoma , Ácido Abscísico , Botrytis/metabolismo , Plantas Geneticamente Modificadas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
12.
Plant J ; 118(6): 2037-2054, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577750

RESUMO

Knotted1-like homeodomain (KNOX) proteins are essential in regulating plant organ differentiation. Land plants, including tomato (Solanum lycopersicum), have two classes of the KNOX protein family, namely, class I (KNOX I) and class II KNOX (KNOX II). While tomato KNOX I proteins are known to stimulate chloroplast development in fruit, affecting fruit coloration, the role of KNOX II proteins in this context remains unclear. In this study, we employ CRISPR/Cas9 to generate knockout mutants of the KNOX II member, SlKN5. These mutants display increased leaf complexity, a phenotype commonly associated with reduced KNOX II activity, as well as enhanced accumulation of chloroplasts and chlorophylls in smaller cells within young, unripe fruit. RNA-seq data analyses indicate that SlKN5 suppresses the transcriptions of genes involved in chloroplast biogenesis, chlorophyll biosynthesis, and gibberellin catabolism. Furthermore, protein-protein interaction assays reveal that SlKN5 physically interacts with three transcriptional repressors from the BLH1-clade of BEL1-like homeodomain (BLH) protein family, SlBLH4, SlBLH5, and SlBLH7, with SlBLH7 showing the strongest interaction. CRISPR/Cas9-mediated knockout of these SlBLH genes confirmed their overlapping roles in suppressing chloroplast biogenesis, chlorophyll biosynthesis, and lycopene cyclization. Transient assays further demonstrate that the SlKN5-SlBLH7 interaction enhances binding capacity to regulatory regions of key chloroplast- and chlorophyll-related genes, including SlAPRR2-like1, SlCAB-1C, and SlGUN4. Collectively, our findings elucidate that the KNOX II SlKN5-SlBLH regulatory modules serve to inhibit fruit greening and subsequently promote lycopene accumulation, thereby fine-tuning the color transition from immature green fruit to mature red fruit.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Cloroplastos/metabolismo , Sistemas CRISPR-Cas , Clorofila/metabolismo , Plantas Geneticamente Modificadas
13.
Plant J ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226395

RESUMO

Long non-coding RNAs (lncRNAs) play crucial roles in various biological processes in plants. However, the functional mechanism of lncRNAs in fruit ripening, particularly the transition from unripe to ripe stages, remains elusive. One such lncRNA1840, reported by our group, was found to have important role in tomato fruit ripening. In the present study, we gain insight into its functional role in fruit ripening. CRISPR-Cas9 mediated lncRNA1840 mutants caused the delayed tomato fruit ripening. Notably, loss function of lncRNA1840 did not directly impact ethylene signaling but rather delay ethylene synthesis. Transcriptomic analysis revealed differences in the expression of ripening related genes in lncRNA1840 mutants, suggesting that it is involved in gene regulation of fruit ripening. We used Chromatin Isolation by RNA Purification (ChIRP)-Seq to identify lncRNA1840 binding sites on chromatin. ChIRP-seq suggested that lncRNA1840 had occupancy on 40 genes, but none of them is differentially expressed genes in transcriptomic analysis, which indicated lncRNA1840 might indirectly modulate the gene expression. ChIRP-mass spectrometry analysis identified potential protein interactors of lncRNA1840, Pre-mRNA processing splicing factor 8, highlighting its involvement in post-transcriptional regulatory pathways. In summary, lncRNA1840 is key player in tomato plant growth and fruit ripening, with multifaceted roles in gene expression and regulatory networks.

14.
Plant J ; 119(2): 960-981, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761363

RESUMO

Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Poliamina Oxidase , Solanum lycopersicum , Xilema , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Xilema/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plantas Geneticamente Modificadas , Desenvolvimento Vegetal/genética , Poliaminas/metabolismo , Espermina/análogos & derivados
15.
Plant Physiol ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074178

RESUMO

Type 2C protein phosphatases (PP2Cs) constitute a large family in most plant species but relatively few of them have been implicated in immunity. To identify and characterize PP2C phosphatases that affect tomato (Solanum lycopersicum) immunity, we used CRISPR/Cas9 to generate loss-of-function mutations in 11 PP2C-encoding genes whose expression is altered in response to immune elicitors or pathogens. We report that two closely related PP2C phosphatases, Pic3 (PP2C immunity-associated candidate 3) and Pic12, are involved in regulating resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Loss-of-function mutations in Pic3 led to enhanced resistance to Pst in older but not younger leaves, whereas such mutations in Pic12 resulted in enhanced resistance in both older and younger leaves. Overexpression of Pic3 and Pic12 proteins in leaves of Nicotiana benthamiana inhibited resistance to Pst, and this effect was dependent on Pic3/12 phosphatase activity and an N-terminal palmitoylation motif associated with localization to the cell periphery. Pic3, but not Pic12, had a slight negative effect on flagellin-associated reactive oxygen species generation, although their involvement in the response to Pst appeared independent of flagellin. RNA-sequencing analysis of Rio Grande (RG)-PtoR wild-type plants and two independent RG-pic3 mutants revealed that the enhanced disease resistance in RG-pic3 older leaves is associated with increased transcript abundance of multiple defense related genes. RG-pic3/RG-pic12 double mutant plants exhibited stronger disease resistance than RG-pic3 or RG-pic12 single mutants. Together, our results reveal that Pic3 and Pic12 negatively regulate tomato immunity in an additive manner through flagellin-independent pathways.

16.
Plant J ; 115(1): 205-219, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36999610

RESUMO

Low temperature and abscisic acid (ABA) are the two main factors that induce anthocyanin synthesis; however, their potential relationships in governing anthocyanin biosynthesis in Solanum lycopersicum (tomato) seedlings remains unclear. Our study revealed the involvement of the transcription factor SlAREB1 in the low-temperature response of tomato seedlings via the ABA-dependent pathway, for a specific temperature range. The overexpression of SlAREB1 enhanced the expression of anthocyanin-related genes and the accumulation of anthocyanins, especially under low-temperature conditions, whereas silencing SlAREB1 dramatically reduced gene expression and anthocyanin accumulation. There is a direct interaction between SlAREB1 and the promoters of SlDFR and SlF3'5'H, which are structural genes that impact anthocyanin biosynthesis. SlAREB1 can regulate anthocyanins through controlling SlDFR and SlF3'5'H expression. Accordingly, SlAREB1 takes charge of regulating anthocyanin biosynthesis in tomato seedlings via the ABA-dependent pathway at low temperatures.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Antocianinas , Temperatura , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Plant J ; 116(3): 728-743, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37492018

RESUMO

Diurnal rhythms are known to regulate the expression of a large number of genes, coordinating plant growth and development with diel changes in light and temperature. However, the impact of RNA metabolism on rhythmic gene oscillations in plant is not yet fully understood. To address this question, we performed transcriptome and degradome profiling on tomato leaves at 6 time points during one 24 h cycle, using RNA-seq and genome-wide mapping of uncapped and cleavage transcripts (GMUCT). Time-series profiling of RNA-seq revealed 9342 diurnal-oscillated genes, which were enriched in various metabolic processes. To quantify the general level of RNA degradation for each gene, we utilized the Proportion Uncapped (PU) metric, which represents the GMUCT/RNA-seq ratio. Oscillated PU analysis revealed that 3885 genes were regulated by rhythmic RNA degradation. The RNA decay of these diurnal genes was highly coordinated with mRNA downregulation during oscillation, highlighting the critical role of internal transcription-degradation balance in rhythmic gene oscillation. Furthermore, we identified 2190 genes undergoing co-translational RNA decay (CTRD) with 5' phosphate read ends enriched at the boundary of ribosomes stalling at translational termination sites. Interestingly, diurnal-changed mRNAs with large amplitudes tended to be co-translationally decay, suggesting that CTRD contributed to the rapid turnover of diurnal mRNAs. Finally, we also identified several genes, whose miRNA cleavage efficiency oscillated in a diurnal manner. Taken together, these findings uncovered the vital functions of RNA metabolism, including rhythmic RNA degradation, CTRD, and miRNA cleavage, in modulating the diurnal mRNA oscillations during diel change at post-transcriptional level in tomato.


Assuntos
MicroRNAs , Solanum lycopersicum , Solanum lycopersicum/genética , Ritmo Circadiano/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética
18.
Plant J ; 116(5): 1342-1354, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37614094

RESUMO

Miraculin-like proteins (MLPs), members of the Kunitz trypsin inhibitor (KTI) family that are present in various plants, have been discovered to have a role in defending plants against pathogens. In this study, we identified a gene StMLP1 in potato that belongs to the KTI family. We found that the expression of StMLP1 gradually increases during Ralstonia solanacearum (R. solanacearum) infection. We characterized the promoter of StMLP1 as an inducible promoter that can be triggered by R. solanacearum and as a tissue-specific promoter with specificity for vascular bundle expression. Our findings demonstrate that StMLP1 exhibits trypsin inhibitor activity, and that its signal peptide is essential for proper localization and function. Overexpression of StMLP1 in potato can enhance the resistance to R. solanacearum. Inhibiting the expression of StMLP1 during infection accelerated the infection by R. solanacearum to a certain extent. In addition, the RNA-seq results of the overexpression-StMLP1 lines indicated that StMLP1 was involved in potato immunity. All these findings in our study reveal that StMLP1 functions as a positive regulator that is induced and specifically expressed in vascular bundles in response to R. solanacearum infection.


Assuntos
Ralstonia solanacearum , Solanum tuberosum , Solanum tuberosum/genética , Ralstonia solanacearum/fisiologia , Inibidores da Tripsina/metabolismo , Feixe Vascular de Plantas , Plantas , Doenças das Plantas
19.
Plant J ; 115(6): 1746-1757, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37326247

RESUMO

3-Dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) is a key rate-limiting enzyme that catalyzes the synthesis of the shikimate, which is an important metabolic intermediate in plants and animals. However, the function of SlDQD/SDH family genes in tomato (Solanum lycopersicum) fruit metabolites is still unknown. In the present study, we identified a ripening-associated SlDQD/SDH member, SlDQD/SDH2, that plays a key role in shikimate and flavonoid metabolism. Overexpression of this gene resulted in an increased content of shikimate and flavonoids, while knockout of this gene by CRISPR/Cas9 mediated gene editing led to a significantly lower content of shikimate and flavonoids by downregulation of flavonoid biosynthesis-related genes. Moreover, we showed that SlDQD/SDH2 confers resistance against Botrytis cinerea attack in post-harvest tomato fruit. Dual-luciferase reporter and EMSA assays indicated that SlDQD/SDH2 is a direct target of the key ripening regulator SlTAGL1. In general, this study provided a new insight into the biosynthesis of flavonoid and B. cinerea resistance in fruit tomatoes.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Botrytis/metabolismo , Flavonoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Plant J ; 113(2): 402-415, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36562774

RESUMO

Photoperiod plays a critical role in controlling the formation of sexual or vegetative reproductive organs in potato. Although StPHYF-silenced plants overcome day-length limitations to tuberize through a systemic effect on tuberigen StSP6A expression in the stolon, the comprehensive regulatory network of StPHYF remains obscure. Therefore, the present study investigated the transcriptomes of StPHYF-silenced plants and observed that, in addition to known components of the photoperiodic tuberization pathway, florigen StSP3D and other flowering-related genes were activated in StPHYF-silenced plants, exhibiting an early flowering response. Additionally, grafting experiments uncovered the long-distance effect of StPHYF silencing on gene expression in the stolon, including the circadian clock components, flowering-associated MADSs, and tuberization-related regulatory genes. Similar to the AtFT-AtAP1 regulatory module in Arabidopsis, the present study established that the AP1-like StMADS1 functions downstream of the tuberigen activation complex (TAC) and that suppressing StMADS1 inhibits tuberization in vitro and delays tuberization in vivo. Moreover, the expression of StSP6A was downregulated in StMADS1-silenced plants, implying the expression of StSP6A may be feedback-regulated by StMADS1. Overall, these results reveal that the regulatory network of StPHYF controls flowering and tuberization and targets the crucial tuberization factor StMADS1 through TAC, thereby providing a better understanding of StPHYF-mediated day-length perception during potato reproduction.


Assuntos
Arabidopsis , Fitocromo , Solanum tuberosum , Fitocromo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Transcriptoma , Tubérculos/metabolismo , Folhas de Planta/metabolismo , Fotoperíodo , Arabidopsis/genética , Reprodução , Regulação da Expressão Gênica de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA