Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.531
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Trends Immunol ; 45(7): 549-563, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38910097

RESUMO

Owing to its remarkable ease of use, ultrasound has recently been explored for stimulating or amplifying immune responses during cancer therapy, termed 'sono-immunotherapy'. Ultrasound can cause immunogenic cell death in cancer cells via thermal and nonthermal effects to regulate the tumor microenvironment, thereby priming anticancer immunity; by integrating well-designed biomaterials, novel sono-immunotherapy approaches with augmented efficacy can also be developed. Here, we review the advances in sono-immunotherapy for cancer treatment and summarize existing limitations along with potential trends. We offer emerging insights into this realm, which might prompt breakthroughs and expand its potential applications to other diseases.


Assuntos
Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Animais , Microambiente Tumoral/imunologia , Terapia por Ultrassom/métodos
2.
Nano Lett ; 24(29): 8996-9003, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38995813

RESUMO

Interventional therapy is widely regarded as a highly promising treatment approach for nonsurgical liver cancer. However, the development of drug resistance and tolerance to hypoxic environments after embolization can lead to increased angiogenesis, enhanced tumor cell stemness, and greater invasiveness, resulting in metastasis and recurrence. To address these challenges, a novel approach involving the use of lecithin and DSPE-PEG comodified Ca2+ loaded (NH4)2S2O8 (LDCNSO) drug in combination with transcatheter arterial embolization (TAE) has been proposed. The sono-blasting effect of LDCNSO under ultrasound triggers a cascading amplification of oxidative stress, by releasing sulfate radical (·SO4-), hydroxyl radical (·OH), and superoxide (·O2-), inducing Ca2+ overload, and reducing glutathione (GSH) levels, which eventually leads to apoptosis. LDCNSO alongside TAE has demonstrated remarkable therapeutic efficacy in the rabbit orthotopic cancer model, resulting in significant inhibition of tumor growth. This research provides valuable insights for the effective treatment of orthotopic tumors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Humanos , Coelhos , Apoptose/efeitos dos fármacos , Embolização Terapêutica/métodos , Linhagem Celular Tumoral , Glutationa/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico
3.
J Biol Inorg Chem ; 29(3): 303-314, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38727821

RESUMO

This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ∆) were determined as 0.43 for Si1a, 0.94 for Q-Si1a, 0.58 for S-Si1a, and 0.49 for B-Sia1. In sono-photochemical studies, the Φ∆ values were reached to 0.67 for Si1a, 1.06 for Q-Si1a, 0.65 for S-Si1a, and 0.67 for B-Sia1. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.


Assuntos
Sobrevivência Celular , Indóis , Compostos de Organossilício , Neoplasias da Próstata , Bases de Schiff , Oxigênio Singlete , Humanos , Indóis/química , Indóis/farmacologia , Bases de Schiff/química , Bases de Schiff/farmacologia , Masculino , Oxigênio Singlete/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Células PC-3 , Fotoquimioterapia , Processos Fotoquímicos , Linhagem Celular Tumoral , Estrutura Molecular
4.
Pancreatology ; 24(4): 584-591, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693041

RESUMO

OBJECTIVES: We aimed to assess the diagnostic utility of an immunohistochemical panel including calcium-binding protein P, p53, Ki-67, and SMAD family member 4 and K-ras mutation for diagnosing pancreatic solid lesion specimens obtained by endoscopic ultrasound-guided fine-needle biopsy and to confirm their usefulness in histologically inconclusive cases. METHODS: Immunohistochemistry and peptide nucleic acid-clamping polymerase chain reaction for K-ras mutation were performed on 96 endoscopic ultrasound-guided fine-needle biopsy specimens. The diagnostic efficacy of each marker and the combination of markers was calculated. The diagnostic performances of these markers were evaluated in 27 endoscopic ultrasound-guided fine-needle biopsy specimens with histologically inconclusive diagnoses. A classification tree was constructed. RESULTS: K-ras mutation showed the highest accuracy and consistency. Positivity in more than two or three of the five markers showed high diagnostic accuracy (94.6 % and 93.6 %, respectively), and positivity for more than three markers showed the highest accuracy for inconclusive cases (92.0 %). A classification tree using K-ras mutation, Ki-67, S100P, and SMAD4 showed high diagnostic performance, with only two misclassifications in inconclusive cases. CONCLUSIONS: K-ras mutation detection via peptide nucleic acid-clamping polymerase chain reaction is a stable and accurate method for distinguishing between pancreatic ductal adenocarcinoma and non-pancreatic ductal adenocarcinoma lesions. A classification tree using K-ras mutation, Ki-67, S100P, and SMAD4 helps increase the diagnostic accuracy of cases that are histologically difficult to diagnose.


Assuntos
Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Antígeno Ki-67 , Mutação , Neoplasias Pancreáticas , Proteína Smad4 , Humanos , Proteína Smad4/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Antígeno Ki-67/genética , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Reação em Cadeia da Polimerase/métodos , Adulto , Proteínas Proto-Oncogênicas p21(ras)/genética , Ácidos Nucleicos Peptídicos , Imuno-Histoquímica , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética
5.
Food Microbiol ; 122: 104563, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839237

RESUMO

Thermosonication (UT) prestress treatments combining with varied fermentation patterns has been revealed as an effective method to regulate post-acidification as exerted by Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii), but sono-biochemical controlling mechanisms remain elusive. This study employed physiological and transcriptomic analysis to explore the response mechanism of L. delbrueckii to UT-induced microstress (600 W, 33 kHz, 10 min). UT stress-induced inhibition of acidification of L. delbrueckii during (post)-fermentation was first confirmed, relying on the UT process parameters such as stress exposure duration and UT power. The significantly enhanced membrane permeability in cells treated by 600 W for 10 min than the microbes stressed by 420 W for 20 min suggested the higher dependence of UT-derived stresses on the treatment durations, relative to the ultrasonic powers. In addition, ultrasonication treatment-induced changes in cell membrane integrity enhanced and/or disrupted permeability of L. delbrueckii, resulting in an imbalance in intracellular conditions associated with corresponding alterations in metabolic behaviors and fermentation efficiencies. UT-prestressed inoculum exhibited a 21.46% decrease in the membrane potential during the lag phase compared to untreated samples, with an intracellular pH of 5.68 ± 0.12, attributed to the lower activities of H+-ATPase and lactate dehydrogenase due to UT stress pretreatments. Comparative transcriptomic analysis revealed that UT prestress influenced the genes related to glycolysis, pyruvate metabolism, fatty acid synthesis, and ABC transport. The genes encoding 3-oxoacyl-[acyl-carrier-protein] reductases I, II, and III, CoA carboxylase, lactate dehydrogenase, pyruvate oxidase, glucose-6-phosphate isomerase, and glycerol-3-phosphate dehydrogenase were downregulated, thus identifying the relevance of the UT microstresses-downregulated absorption and utilization of carbohydrates with the attenuated fatty acid production and energy metabolisms. These findings could contribute to provide a better understanding of the inactivated effects on the post-acidification of L. delbrueckii by ultrasonic pretreatments, thus providing theoretical basis for the targeted optimization of acidification inhibition efficiencies for yogurt products during chilled preservation processes.


Assuntos
Fermentação , Perfilação da Expressão Gênica , Lactobacillus delbrueckii , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/genética , Concentração de Íons de Hidrogênio , Transcriptoma , Sonicação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
6.
Small ; 19(10): e2206078, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549674

RESUMO

Novel sonosensitizers with intrinsic characteristics for tumor diagnosis, efficient therapy, and tumor microenvironment regulation are appealing in current sonodynamic therapy. Herein, a manganese (Mn)-layered double hydroxide-based defect-rich nanoplatform is presented as a new type of sono-chemo sensitizer, which allows ultrasound to efficiently trigger reactive oxygen species generation for enhanced sono/chemo-dynamic therapy. Moreover, such a nanoplatform is able to relieve tumor hypoxia and achieve augmented singlet oxygen production via catalyzing endogenous H2 O2 into O2 . On top of these actions, the released Mn2+ ions and immune-modulating agent significantly intensify immune activation and reverse the immunosuppressive tumor microenvironment to the immunocompetent one. Consequently, this nanoplatform exhibits excellent anti-tumor efficacy and effectively suppresses both primary and distant tumor growth, demonstrating a new strategy to functionalize nanoparticles as sono-chemo sensitizers for synergistic combination cancer therapy.


Assuntos
Neoplasias , Hipóxia Tumoral , Neoplasias/terapia , Terapia por Ultrassom , Animais , Camundongos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Nanopartículas Metálicas
7.
Mol Pharm ; 20(2): 875-885, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36689197

RESUMO

Chlorin e6 (Ce6) has been extensively researched and developed as an antitumor therapy. Ce6 is a highly effective photosensitizer and sonosensitizer with promising future applications in photodynamic therapy, dynamic acoustic therapy, and combined acoustic and light therapy for tumors. Ce6 is also being studied for other applications in fluorescence navigation, antibacterials, and plant growth regulation. Here we review the role and research status of Ce6 in tumor therapy and the problems and challenges of its clinical application. Other biomedical effects of Ce6 are also briefly discussed. Despite the difficulties in clinical application, Ce6 has significant advantages in photodynamic therapy (PDT)/sonodynamic therapy (SDT) against cancer and offers several possibilities in clinical utility.


Assuntos
Clorofilídeos , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Linhagem Celular Tumoral
8.
Nanotechnology ; 34(15)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715368

RESUMO

A simple cost-effective sono-chemical method was used for the synthesis of gCN/TeO2-ZnO ternary (2%, 5%, and 10%) nanocomposites, having crystallite size of 12 nm. FE-SEM and transmission electron microscopy images revealed the formation of core-shell type nanocomposites with an average size of 50 nm. Further,E. coliMTCC 443 strain is used as a model organism to study the antibacterial activity of the prepared nanocomposites, using disc diffusion method. Among all the concentrations, 2% gCN/TeO2-ZnO showed maximum zone of inhibition of 23 ± 0.10 mm and its antibacterial activity is like third-generation antibiotic cefotaxime. In addition, the prepared nanocomposites were used as nanofertilizer for the growth of gram seeds Chickpea (Cicer arietinum). The effect of nanocomposite concentration and its sterilising properties are studied on the rate of germination of Chickpea using bothin vitroandin vivostudies (pot study). The root length of the gCN/TeO2-ZnO treated plants showed increase in seed germination (3.30 cm) compared to untreated plants (3.22 cm). In addition, enhancement in the shoot length about 28% is noticed in pot studies, compared to control batch samples. The accumulation of nanomaterial in plant roots was confirmed using SEM-EDX and ICP-MS. Finally, a 14-day experiment was conducted to ascertain the role of gCN/TeO2-ZnO in the controlled release of nutrients from the synthesised nanofertilizer. Owing to its excellent water holding capacity, sterilizing properties, and low toxicity this material can be used as a growth promoter in plants.


Assuntos
Antibacterianos , Óxido de Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Óxido de Zinco/química , Preparações de Ação Retardada , Análise Espectral , Microscopia Eletrônica de Transmissão
9.
Br J Anaesth ; 130(2): 226-233, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36088136

RESUMO

BACKGROUND: Ultrasound-guided regional anaesthesia relies on the visualisation of key landmark, target, and safety structures on ultrasound. However, this can be challenging, particularly for inexperienced practitioners. Artificial intelligence (AI) is increasingly being applied to medical image interpretation, including ultrasound. In this exploratory study, we evaluated ultrasound scanning performance by non-experts in ultrasound-guided regional anaesthesia, with and without the use of an assistive AI device. METHODS: Twenty-one anaesthetists, all non-experts in ultrasound-guided regional anaesthesia, underwent a standardised teaching session in ultrasound scanning for six peripheral nerve blocks. All then performed a scan for each block; half of the scans were performed with AI assistance and half without. Experts assessed acquisition of the correct block view and correct identification of sono-anatomical structures on each view. Participants reported scan confidence, experts provided a global rating score of scan performance, and scans were timed. RESULTS: Experts assessed 126 ultrasound scans. Participants acquired the correct block view in 56/62 (90.3%) scans with the device compared with 47/62 (75.1%) without (P=0.031, two data points lost). Correct identification of sono-anatomical structures on the view was 188/212 (88.8%) with the device compared with 161/208 (77.4%) without (P=0.002). There was no significant overall difference in participant confidence, expert global performance score, or scan time. CONCLUSIONS: Use of an assistive AI device was associated with improved ultrasound image acquisition and interpretation. Such technology holds potential to augment performance of ultrasound scanning for regional anaesthesia by non-experts, potentially expanding patient access to these techniques. CLINICAL TRIAL REGISTRATION: NCT05156099.


Assuntos
Anestesia por Condução , Bloqueio Nervoso , Humanos , Bloqueio Nervoso/métodos , Inteligência Artificial , Ultrassonografia de Intervenção/métodos , Anestesia por Condução/métodos , Ultrassonografia
10.
J Environ Manage ; 326(Pt A): 116584, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403318

RESUMO

In this study, the photocatalytic activity of ZnO was effectively improved via its combination with spinel cobalt ferrite (SCF) nanoparticles. The catalytic performance of ZnO@SCF (ZSCF) was investigated in coupling with UV irradiation and ultrasound (US), as a heterogeneous sono-photocatalytic process, for the decontamination of phenanthrene (PHE) from contaminated soil. Soil washing tests were conducted in a batch environment, after extraction assisted by using Tween 80. Several characterization techniques such as XRD, FESEM-EDS, BET, TEM, UV-vis DRS, PL and VSM were utilized to determine the features of the as-prepared catalysts. ZSCF showed an excellent catalytic activity toward degradation of PHE in the presence of US and UV with a significant synergic effect. It was found that more than 93% of PHE (35 mg/L) and 87.5% of TOC could be eliminated by the integrated ZSCF/US/UV system under optimum operational conditions (pH: 8.0, ZSCF: 1.5 g/L, UV power: 6.0 W and US power: 70 W) within 90 min of reaction. After five times of use, ZSCF illustrated good reusability in the decontamination of PHE (87%) and TOC (79%). Quenching tests revealed the contribution of h+, HO• and e- species during PHE degradation over ZSCF/UV/US and an S-scheme photocatalytic mechanisms was proposed for the possible charge transfer routes under the ZSCF system. This study provides the important role of SCF in enhancing the ZnO photocatalytic activity due to its high performance, easy recovery and excellent durability, which it make an efficient and promising catalyst in environmental clean-up applications.


Assuntos
Tensoativos , Óxido de Zinco , Solo
11.
Environ Res ; 212(Pt A): 113147, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35341750

RESUMO

Among the contaminants found in groundwater, arsenic poses a great threat to human health and the ecosystem. Therefore, it is vital to eliminate arsenic from water sources. This study utilizes one of the most efficient and emerging decontamination techniques known as the sono-electrocoagulation method. In recent years, sono-electrocoagulation has attracted many scientists due to its unique features, such as being cost-effective, rapid process, and high efficiency. The required groundwater samples were artificially synthesized in the laboratory, where the anode and cathode were determined to be Fe, Ti/PbO2, and Al, respectively. During the experiment, the impact of pH (5,6,7,8), various initial concentrations (100, 200, 300,400, 500, 600 µg/l), exposure times of 5,10,15,20,25 min, electrode distances of 1.5,2,2.5,3,3.5 cm and different current intensities of 5,10,15,20,25 mA/cm2 were examined. The ambient temperature of the laboratory was kept at 30 and 40 °C. Furthermore, this study showed that the system containing Ti/PbO2 as the anode and Al as the cathode electrodes removed arsenic contamination more effectively in the base environment. The performance of arsenic removal was directly related to current intensity, pH, and time. Nevertheless, time elapse played a negative factor due to the corrosion of the electrodes' surface and the dissolution of floating materials in the solution. With the surge of arsenic concentration from 100 to 300 mg/L, the arsenic removal efficiency increased from 61.9 to 98.5 percent, where the maximum removal efficiency due to the rise of the current intensity was 84.16 percent. The sono-electrocoagulation method reduced the risk of carcinogenic and non-carcinogenicity from 5.15E-03 to 7.73E-05 and 26.71 to 0.40. Accordingly, it was found that a combination of ultrasonic and electrocoagulation processes is a promising approach for arsenic removal.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Ecossistema , Eletrocoagulação/métodos , Humanos , Medição de Risco , Água , Purificação da Água/métodos
12.
Environ Res ; 204(Pt A): 112032, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516980

RESUMO

A novel FeVO4/BiVO4 heterojunction photocatalyst was synthesized by hydrothermal method. The FeVO4/BiVO4 nanostructures were characterized by XRD, SEM, XPS, UV-vis, and photoluminescence spectroscopy. The effects of catalyst dosage, contaminant concentration, initial hydrogen peroxide (H2O2) concentration, and pH value on the degradation of levofloxacin were investigated and several repeated experiments were conducted to evaluate the stability and reproducibility. The optimized process parameters were used for mineralization experiments. Reactive oxygen species, degradation intermediates, and possible catalytic mechanisms were also investigated. The results showed that the sonophotocatalytic performance of the FeVO4/BiVO4 heterojunction catalyst was better than that of sonocatalysis and photocatalysis. In addition, the Type II heterojunction formed by the material still had good stability in the degradation of levofloxacin after 5 cycles. The possible degradation pathway and mechanism of levofloxacin by sonophotocatalysis were put forward. This work develops new sono-photo hybrid process for potential application in the field of wastewater treatment.


Assuntos
Peróxido de Hidrogênio , Levofloxacino , Catálise , Cinética , Reprodutibilidade dos Testes
13.
Environ Res ; 215(Pt 1): 114294, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36113573

RESUMO

The rapidly expanding global energy demand is forcing a release of regulated pollutants into water that is threatening human health. Among various wastewater remediating processes, electrocoagulation (EC) has scored a monumental success over conventional processes because it combines coagulation, sedimentation, floatation and electrochemical oxidation processes that can effectively decimate numerous stubborn pollutants. The EC processes have gained some attention through various academic and industrial publications, however critical evaluation of EC processes, choices of EC processes for various pollutants, process parameters, mechanisms, commercial EC technologies and performance enhancement via other degradation processes (DPs) integration have not been comprehensively covered to date. Therefore, the major objective of this paper is to provide a comprehensive review of 20 years of literature covering EC fundamentals, key process factors for a reactor design, process implementation, current challenges and performance enhancement by coupling EC with pivotal pollutant DPs including, electro/photo-Fenton (E/P-F), photocatalysis, sono-chemical treatment, ozonation, indirect electrochemical/advanced oxidation (AO), and biosorption that have substantially reduced metals, pathogens, toxic compound BOD, COD, colors in wastewater. The results suggest that the optimum treatment time, current density, pulse frequency, shaking speed and spaced electrode improve the pollutants removal efficiency. An elegant process design can prevent electrode passivation which is a critical limitation of EC technology. EC coupling (up or downstream) with other DPs has resulted in the removal of organic pollutants and heavy metals with a 20% improved efficiency by EC-EF, removal of 85.5% suspended solid, 76.2% turbidity, 88.9% BOD, 79.7% COD and 93% color by EC-electroflotation, 100% decolorization by EC-electrochemical-AO, reduction of 78% COD, 81% BOD, 97% color by EC-ozonation and removal of 94% ammonia, 94% BOD, 95% turbidity, >98% phosphorus by aerated EC and peroxicoagulation. The major wastewater purification achievements, future potential and challenges are described to model the future EC integrated systems.


Assuntos
Poluentes Ambientais , Metais Pesados , Ozônio , Poluentes Químicos da Água , Purificação da Água , Amônia , Eletrocoagulação/métodos , Humanos , Fósforo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
14.
J Nanobiotechnology ; 20(1): 525, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496387

RESUMO

Glioblastoma (GBM) is the most aggressive brain tumor, which owns the characteristics of high recurrence, low survival rate and poor prognosis because of the existence of blood brain barrier (BBB) and complicated brain tumor microenvironment. Currently, immunotherapy has attracted much attention on account of favorable therapeutic effect. In this study, we designed a cRGD-modified cancer cell membrane (CM) coated calcium carbonate nanoparticle to deliver interleukin-12 messenger RNA (IL-12 mRNA@cRGD-CM-CaCO3 NPs). The cRGD-modified CM as the shell can endow the nanoparticles with BBB crossing and tumor homing/homotypic targeting effect in the brain tumor microenvironment. IL-12 mRNA-loaded calcium carbonate nanoparticles as the core allow synergistic immunotherapy of necroptosis-induced immune response and IL-12 mRNA transfection under ultrasound irradiation. The as-prepared biomimetic nanoparticles showed superior target and immunotherapeutic outcomes, suggesting that this biomimetic nanoplatform provides a feasible strategy for promoting BBB-penetrating and antitumor immunity.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Carbonato de Cálcio , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Interleucina-12/administração & dosagem , Interleucina-12/uso terapêutico , RNA Mensageiro , Microambiente Tumoral
15.
Adv Exp Med Biol ; 1356: 117-140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35146620

RESUMO

Ultrasound-guided regional anaesthesia (UGRA) involves the targeted deposition of local anaesthesia to inhibit the function of peripheral nerves. Ultrasound allows the visualisation of nerves and the surrounding structures, to guide needle insertion to a perineural or fascial plane end point for injection. However, it is challenging to develop the necessary skills to acquire and interpret optimal ultrasound images. Sound anatomical knowledge is required and human image analysis is fallible, limited by heuristic behaviours and fatigue, while its subjectivity leads to varied interpretation even amongst experts. Therefore, to maximise the potential benefit of ultrasound guidance, innovation in sono-anatomical identification is required.Artificial intelligence (AI) is rapidly infiltrating many aspects of everyday life. Advances related to medicine have been slower, in part because of the regulatory approval process needing to thoroughly evaluate the risk-benefit ratio of new devices. One area of AI to show significant promise is computer vision (a branch of AI dealing with how computers interpret the visual world), which is particularly relevant to medical image interpretation. AI includes the subfields of machine learning and deep learning, techniques used to interpret or label images. Deep learning systems may hold potential to support ultrasound image interpretation in UGRA but must be trained and validated on data prior to clinical use.Review of the current UGRA literature compares the success and generalisability of deep learning and non-deep learning approaches to image segmentation and explains how computers are able to track structures such as nerves through image frames. We conclude this review with a case study from industry (ScanNav Anatomy Peripheral Nerve Block; Intelligent Ultrasound Limited). This includes a more detailed discussion of the AI approach involved in this system and reviews current evidence of the system performance.The authors discuss how this technology may be best used to assist anaesthetists and what effects this may have on the future of learning and practice of UGRA. Finally, we discuss possible avenues for AI within UGRA and the associated implications.


Assuntos
Anestesia por Condução , Inteligência Artificial , Humanos , Nervos Periféricos , Ultrassonografia , Ultrassonografia de Intervenção
16.
Drug Dev Ind Pharm ; 48(12): 683-693, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36533708

RESUMO

OBJECTIVE: The purpose of this work was to improve EP solubility by using a sono-crystalization approach to reduce particle size and hence, increase the dissolution rate. Significance Eplerenone (EP) is an antagonist of the aldosterone receptor and is used for the treatment of hypertension and chronic heart failure. EP was classed as biopharmaceutical classification (BCS) class II because of its poor solubility and high permeability, which retards dissolution rate and drug absorption, and decreases bioavailability. METHODS: Three-factors and two-level (23) multifactorial design have been employed to study the effect of independent variables which are drug concentration; (X1), stabilizer type (X2), and stabilizer concentration (X3) on responses; saturated solubility of EP in distilled water (Y1), saturated solubility in acidic media pH 1.2 (Y2), particle size (Y3), and polydispersity index, PDI (Y4). Also, they were characterized by Fourier transformed infrared spectroscopy (FTIR), Powder X-ray diffraction (PXRD), Differential scanning calorimetry (DSC), and yield percentage. The optimum formula was further subjected to an in-vitro release study. RESULTS: The optimized formulation showed a saturated solubility of EP as 1.29, and 1.86 (mg/ml) in distilled water and acidic media (pH 1.2) respectively. Also, the particle size of 133 nm, and PDI of 0.824 with a small percentage of the difference between the observed and predicted values. Ninety-one percent of EP was released within 10 min., and it was completely released within 45 min. with a significantly higher release rate compared to raw drug. CONCLUSION: This work resulted in a satisfactory enhancement of solubility and dissolution rate which, is suitable for further in-vivo analysis.


Assuntos
Nanopartículas , Água , Solubilidade , Solventes/química , Eplerenona , Cristalização , Água/química , Tamanho da Partícula , Varredura Diferencial de Calorimetria , Disponibilidade Biológica , Difração de Raios X , Nanopartículas/química
17.
J Environ Manage ; 324: 116333, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208514

RESUMO

The present work proposes an ultrasound (US) assisted electro-Fenton (EF) process for eliminating penicillin G (PNG) and ciprofloxacin (CIP) from aqueous solutions and the process was further optimized by response surface methodology (RSM)- Box-Behnken design (BBD). The impact of pH, hydrogen peroxide (H2O2) concentration, applied voltage, initial pollutant concentration, and operating time were studied. The capability application of the electro-Fenton (EF) and US processes was compared separately and in combination under the optimum conditions of pH of 4, a voltage of 15 V, the initial antibiotic concentration of 20.7 mg/L, H2O2 concentration of 0.8 mg/L, and the operating time of 75 min. The removal efficiency of PNG and CIP using the sono-electro-Fenton (SEF) process, as the results revealed, was approximately 96% and 98%, respectively. The experiments on two scavengers demonstrated that ⦁OH contributes significantly to the CIP and PNG degradation by SEF, whereas ⦁O-2 corresponds to only a negligible amount. The total organic carbon (TOC) and chemical oxygen demand (COD) analyses were used to assess the mineralization of CIP and PNG. The efficiency of COD and TOC removal was reached at 73.25% and 62.5% for CIP under optimized operating circumstances, and at 61.52% and 72% for PNG, respectively. These findings indicate that a sufficient rate of mineralization was obtained by SEF treatment for the mentioned pollutants. The reaction kinetics of CIP and PNG degradation by the SEF process were found to follow a pseudo-first-order kinetic model. In addition, the human health risk assessment of natural water containing CIP and PNG that was purified by US, EF, and SEF processes was done for the first time. According to the findings, the non-carcinogenic risk (HQ) caused by drinking purified water by all three systems was calculated in the acceptable range. Thus, SEF is a proper system to remove various antibiotics in potable water and reduces their human health risks.


Assuntos
Água Potável , Poluentes Químicos da Água , Humanos , Peróxido de Hidrogênio/química , Antibacterianos/química , Poluentes Químicos da Água/química , Oxirredução , Ciprofloxacina/química , Medição de Risco
18.
J Environ Manage ; 320: 115926, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940007

RESUMO

The color and Chemical Oxygen Demand (COD) reduction in distillery industrial effluent (DIW) was investigated utilizing photo (UV), sono (US), electrocoagulation (EC), UV + US, UV + EC, US + EC, and US + UV + EC technologies. The empirical study demonstrated that the UV + US + EC process removed almost 100% of color and 95.63% of COD from DIW while consuming around 6.97 kWh m-3 of electrical energy at the current density of 0.175 A dm-2, COD of 3600 mg L-1, UV power of 32 W, US power of 100 W, electrode pairings of Fe/Fe, inter-electrode distance of 0.75 cm, pH of 7, and reaction time of 4 h, respectively. The values found were much greater than those produced using UV, US, EC, UV + US, UV + EC, and US + EC methods. The influence of various control variables such as treatment time (1-5 h), current density (0.075-2.0 A dm-2), COD (1800-6000 mg L-1), inter-electrode distance (0.75-3.0 cm), electrode pairings (Fe/Fe, Fe/Al, Al/Fe, Al/Al), UV (8-32 W), and US (20-100 W) on the color and COD reduction were investigated to determine the optimum operating conditions. It was observed that, an increase in treatment time, current density, UV and US power, decrease in the COD, and inter-electrode distance with Fe/Fe electrode combination improved the COD removal efficiency. The UV and US + EC processes' synergy index was investigated and reported. The results showed that, the US + UV + EC treatment combination was effective in treating industrial effluent and wastewater.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eletrocoagulação/métodos , Eletrodos , Concentração de Íons de Hidrogênio , Resíduos Industriais , Eliminação de Resíduos Líquidos/métodos
19.
Artigo em Inglês | MEDLINE | ID: mdl-35838490

RESUMO

The increasing production of oily wastewater as a by-product of industry has become a major environmental problem. Therefore, this article investigates the removal of mineral oil from oily wastewater by a circulating flow sono-electrocoagulation. The Box-Behnken design was used to study the effects of characteristic electrocoagulation and ultrasonic parameters on mineral oil removal efficiency. A total of 34 different experimental setups were performed at a laboratory scale. A reduced cubic regression model with derived coefficients was developed to describe the mineral oil removal rate. The experimental results show that circulating flow sono-electrocoagulation with iron electrodes can effectively reduce mineral oil by 93.3% under the optimum conditions of 10.948 cycles, a current density of 107.12 A m-2 and a flow rate of 0.468 L s-1. The experimental observations agreed well with the modeled values, and the model was verified experimentally. Under the optimal conditions, the average operating cost was 0.77 EUR/m3.


Assuntos
Águas Residuárias , Purificação da Água , Eletrodos , Concentração de Íons de Hidrogênio , Resíduos Industriais , Óleo Mineral , Óleos , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
20.
J Environ Sci Health B ; 57(8): 670-679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899411

RESUMO

A field experiment was conducted to study the dissipation behavior and decontamination of iprovalicarb and copper oxychloride in grapes. After thorough validation, the analysis was carried out by employing LC-MS/MS for iprovalicarb and AAS for copper oxychloride. The dissipation pattern of residues followed a linear first-order kinetics model for both the test fungicides. The half-life values for iprovalicarb were 9.5-13.5 days, and for copper oxychloride was 24.5 days. Based on the study, a pre-harvest interval (PHI) of 17 days is proposed for the formulation. In decontamination studies, combination treatment of 0.1% sodium bicarbonate + ultrasonication and 2% lemon water + ultrasonication has shown the highest reduction of iprovalicarb (90.02% reduction) and copper oxychloride (80.14% reduction) residues, respectively. The safety evaluation data suggest that the daily exposure at all the sampling points was less than the maximum permissible intake (MPI) calculated indicating, safety to consumers. This study will be useful for promoting effective residue management and the safe use of these chemicals for controlling fungal diseases in grapes.


Assuntos
Fungicidas Industriais , Resíduos de Praguicidas , Vitis , Carbamatos , Cromatografia Líquida , Cobre , Descontaminação , Fungicidas Industriais/análise , Fungicidas Industriais/farmacologia , Cinética , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem , Valina/análogos & derivados , Vitis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA