Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(33): 10148-10154, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39136291

RESUMO

Two-dimensional (2D) material resonators have emerged as promising platforms for advanced nanomechanical applications due to their exceptional mechanical properties, tunability, and nonlinearities. We explored the strong mechanical mode coupling between two adjacent 3R-WSe2 nanodrums at room temperature. Combining a piezoelectric material, as noncentrosymmetric 3R-WSe2, and vibration manipulation is the building block for phononic experiments with 2D materials. By strategically placing gate grids beneath each resonator and mapping the spatial distribution of these modes, we demonstrate the ability to transit between localized modes in individual membranes to delocalized, strongly coupled modes that span the entire suspended region. The coherent coupling is strongly tunable with simple gate voltage, and remarkable resonance splitting was achieved, corresponding to up to 5% of the vibration frequency. These results showcase the potential of 2D material resonators for efficient information exchange, paving the way for novel applications in quantum technologies and nanoscale sensing.

2.
Nano Lett ; 24(29): 8795-8800, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38985646

RESUMO

Long-life interlayer excitons (IXs) in transition metal dichalcogenide (TMD) heterostructure are promising for realizing excitonic condensates at high temperatures. Critical to this objective is to separate the IX ground state (the lowest energy of IX state) emission from other states' emissions. Filtering the IX ground state is also essential in uncovering the dynamics of correlated excitonic states, such as the excitonic Mott insulator. Here, we show that the IX ground state in the WSe2/MoS2 heterobilayer can be separated from other states by its spatial profile. The emissions from different moiré IX modes are identified by their different energies and spatial distributions, which fits well with the rate-diffusion model for cascading emission. Our results show spatial filtering of the ground state mode and enrich the toolbox to realize correlated states at elevated temperatures.

3.
Nano Lett ; 24(9): 2789-2797, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407030

RESUMO

Two-dimensional materials are expected to play an important role in next-generation electronics and optoelectronic devices. Recently, twisted bilayer graphene and transition metal dichalcogenides have attracted significant attention due to their unique physical properties and potential applications. In this study, we describe the use of optical microscopy to collect the color space of chemical vapor deposition (CVD) of molybdenum disulfide (MoS2) and the application of a semantic segmentation convolutional neural network (CNN) to accurately and rapidly identify thicknesses of MoS2 flakes. A second CNN model is trained to provide precise predictions on the twist angle of CVD-grown bilayer flakes. This model harnessed a data set comprising over 10,000 synthetic images, encompassing geometries spanning from hexagonal to triangular shapes. Subsequent validation of the deep learning predictions on twist angles was executed through the second harmonic generation and Raman spectroscopy. Our results introduce a scalable methodology for automated inspection of twisted atomically thin CVD-grown bilayers.

4.
Small ; : e2400463, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733217

RESUMO

The widely studied class of two-dimensional (2D) materials known as transition metal dichalcogenides (TMDs) are now well-poised to be employed in real-world applications ranging from electronic logic and memory devices to gas and biological sensors. Several scalable thin film synthesis techniques have demonstrated nanoscale control of TMD material thickness, morphology, structure, and chemistry and correlated these properties with high-performing, application-specific device metrics. In this review, the particularly versatile two-step conversion (2SC) method of TMD film synthesis is highlighted. The 2SC technique relies on deposition of a solid metal or metal oxide precursor material, followed by a reaction with a chalcogen vapor at an elevated temperature, converting the precursor film to a crystalline TMD. Herein, the variables at each step of the 2SC process including the impact of the precursor film material and deposition technique, the influence of gas composition and temperature during conversion, as well as other factors controlling high-quality 2D TMD synthesis are considered. The specific advantages of the 2SC approach including deposition on diverse substrates, low-temperature processing, orientation control, and heterostructure synthesis, among others, are featured. Finally, emergent opportunities that take advantage of the 2SC approach are discussed to include next-generation electronics, sensing, and optoelectronic devices, as well as catalysis for energy-related applications.

5.
Small ; 20(17): e2307728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263806

RESUMO

Herein, the structure of integrated M3D inverters are successfully demonstrated where a chemical vapor deposition (CVD) synthesized monolayer WSe2 p-type nanosheet FET is vertically integrated on top of CVD synthesized monolayer MoS2 n-type film FET arrays (2.5 × 2.5 cm) by semiconductor industry techniques, such as transfer, e-beam evaporation (EBV), and plasma etching processes. A low temperature (below 250 °C) is employed to protect the WSe2 and MoS2 channel materials from thermal decomposition during the whole fabrication process. The MoS2 NMOS and WSe2 PMOS device fabricated show an on/off current ratio exceeding 106 and the integrated M3D inverters indicate an average voltage gain of ≈9 at VDD = 2 V. In addition, the integrated M3D inverter demonstrates an ultra-low power consumption of 0.112 nW at a VDD of 1 V. Statistical analysis of the fabricated inverters devices shows their high reliability, rendering them suitable for large-area applications. The successful demonstration of M3D inverters based on large-scale 2D monolayer TMDs indicate their high potential for advancing the application of 2D TMDs in future integrated circuits.

6.
Chemistry ; 30(21): e202400150, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38302733

RESUMO

In this study we develop a strategy to insulate 6,6 -Phenyl C61 butyric acid methyl ester (PCBM) on the basal plane of transition metal dichalcogenides (TMDs). Concretely single layers of MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2 and ultrathin MoO2 and WO2 were grown via chemical vapor deposition (CVD). Then, the thiol group of a PCBM modified with cysteine reacts with the chalcogen vacancies on the basal plane of TMDs, yielding PCBM-MoS2, PCBM-MoSe2, PCBM-WS2, PCBM-WSe2, PCBM-WTe2, PCBM-MoO2 and PCBM-WO2. Afterwards, all the hybrid materials were characterized using several techniques, including XPS, Raman spectroscopy, TEM, AFM, and cyclic voltammetry. Furthermore, PCBM causes a unique optical and electrical impact in every TMDs. For MoS2 devices, the conductivity and photoluminescence (PL) emission achieve a remarkable enhancement of 1700 % and 200 % in PCBM-MoS2 hybrids. Similarly, PCBM-MoTe2 hybrids exhibit a 2-fold enhancement in PL emission at 1.1 eV. On the other hand, PCBM-MoSe2, PCBM-WSe2 and PCBM-WS2 hybrids exhibited a new interlayer exciton at 1.29-1.44, 1.7 and 1.37-154 eV along with an enhancement of the photo-response by 2400, 3200 and 600 %, respectively. Additionally, PCBM-WTe2 and PCBM-WO2 showed a modest photo-response, in sharp contrast with pristine WTe2 or WO2 which archive pure metallic character.

7.
Nanotechnology ; 35(12)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38061057

RESUMO

In this article, a 0.7 nm thick monolayer MoS2nanosheet gate-all-around field effect transistors (NS-GAAFETs) with conformal high-κmetal gate deposition are demonstrated. The device with 40 nm channel length exhibits a high on-state current density of ~410µAµm-1with a large on/off ratio of 6 × 108at drain voltage = 1 V. The extracted contact resistance is 0.48 ± 0.1 kΩµm in monolayer MoS2NS-GAAFETs, thereby showing the channel-dominated performance with the channel length scaling from 80 to 40 nm. The successful demonstration of device performance in this work verifies the integration potential of transition metal dichalcogenides for future logic transistor applications.

8.
Nanotechnology ; 35(42)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38991511

RESUMO

In this study, we report the successful synthesis of few-layer parallel PtSe2ribbons on an Au foil employing a surface melting strategyviathe chemical vapor deposition growth method at 650 °C. The controlled formation of parallel ribbons was directed by the Au steps generated through antimony treatment. These ribbons exhibit an average length of exceeding 100µm and a width of approximately 100 nm across a substantial area. Electrocatalysis measurements showcase the catalytic performance of PtSe2ribbons grown on Au foil, which can be further augmented through subsequent oxidation treatment. This investigation introduces an effective growth method for few-layer ribbons at low temperatures and broadens the scope of employing the substrate-guided strategies for the synthesis of one-dimensional materials. Additionally, it underscores the potential of PtSe2ribbons as an electrocatalyst for hydrogen evolution.

9.
Proc Natl Acad Sci U S A ; 118(10)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658375

RESUMO

The valence band maxima of most group VI transition metal dichalcogenide thin films remain at the Γ point all of the way from bulk to bilayer. In this paper, we develop a continuum theory of the moiré minibands that are formed in the valence bands of Γ-valley homobilayers by a small relative twist. Our effective theory is benchmarked against large-scale ab initio electronic structure calculations that account for lattice relaxation. As a consequence of an emergent [Formula: see text] symmetry, we find that low-energy Γ-valley moiré holes differ qualitatively from their K-valley counterparts addressed previously; in energetic order, the first three bands realize 1) a single-orbital model on a honeycomb lattice, 2) a two-orbital model on a honeycomb lattice, and 3) a single-orbital model on a kagome lattice.

10.
Sensors (Basel) ; 24(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257677

RESUMO

With the emergence of novel sensing materials and the increasing opportunities to address safety and life quality priorities of our society, gas sensing is experiencing an outstanding growth. Among the characteristics required to assess performances, the overall speed of response and recovery is adding to the well-established stability, selectivity, and sensitivity features. In this review, we focus on fast detection with chemiresistor gas sensors, focusing on both response time and recovery time that characterize their dynamical response. We consider three classes of sensing materials operating in a chemiresistor architecture, exposed to the most investigated pollutants, such as NH3, NO2, H2S, H2, ethanol, and acetone. Among sensing materials, we first selected nanostructured metal oxides, which are by far the most used chemiresistors and can provide a solid ground for performance improvement. Then, we selected nanostructured carbon sensing layers (carbon nanotubes, graphene, and reduced graphene), which represent a promising class of materials that can operate at room temperature and offer many possibilities to increase their sensitivities via functionalization, decoration, or blending with other nanostructured materials. Finally, transition metal dichalcogenides are presented as an emerging class of chemiresistive layers that bring what has been learned from graphene into a quite large portfolio of chemo-sensing platforms. For each class, studies since 2019 reporting on chemiresistors that display less than 10 s either in the response or in the recovery time are listed. We show that for many sensing layers, the sum of both response and recovery times is already below 10 s, making them promising devices for fast measurements to detect, e.g., sudden bursts of dangerous emissions in the environment, or to track the integrity of packaging during food processing on conveyor belts at pace with industrial production timescales.

11.
Nano Lett ; 23(1): 198-204, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538369

RESUMO

Dark excitons in transition-metal dichalcogenides, with their long lifetimes and strong binding energies, provide potential platforms from photonic and optoelectronic applications to quantum information science even at room temperature. However, their spatial heterogeneity and sensitivity to strain is not yet understood. Here, we combine tip-enhanced photoluminescence spectroscopy with atomic force induced strain control to nanoimage dark excitons in WSe2 and their response to local strain. Dark exciton emission is facilitated by out-of-plane picocavity Purcell enhancement giving rise to spatially highly localized emission, providing for higher spatial resolution compared to bright exciton nanoimaging. Further, tip-antenna-induced dark exciton emission is enhanced in areas of higher strain associated with bubbles. In addition, active force control shows dark exciton emission to be more sensitive to strain with both compressive and tensile lattice deformation facilitating emission. This interplay between localized strain and Purcell effects provides novel pathways for nanomechanical exciton emission control.

12.
Nano Lett ; 23(13): 5894-5901, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368991

RESUMO

Oxidation of transition metal dichalcogenides (TMDs) occurs readily under a variety of conditions. Therefore, understanding the oxidation processes is necessary for successful TMD handling and device fabrication. Here, we investigate atomic-scale oxidation mechanisms of the most widely studied TMD, MoS2. We find that thermal oxidation results in α-phase crystalline MoO3 with sharp interfaces, voids, and crystallographic alignment with the underlying MoS2. Experiments with remote substrates prove that thermal oxidation proceeds via vapor-phase mass transport and redeposition, a challenge to forming thin, conformal films. Oxygen plasma accelerates the kinetics of oxidation relative to the kinetics of mass transport, forming smooth and conformal oxides. The resulting amorphous MoO3 can be grown with subnanometer to several-nanometer thickness, and we calibrate the oxidation rate for different instruments and process parameters. Our results provide quantitative guidance for managing both the atomic scale structure and thin-film morphology of oxides in the design and processing of TMD devices.

13.
Nano Lett ; 23(9): 3754-3761, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37094221

RESUMO

Defect engineering of van der Waals semiconductors has been demonstrated as an effective approach to manipulate the structural and functional characteristics toward dynamic device controls, yet correlations between physical properties with defect evolution remain underexplored. Using proton irradiation, we observe an enhanced exciton-to-trion conversion of the atomically thin WS2. The altered excitonic states are closely correlated with nanopore induced atomic displacement, W nanoclusters, and zigzag edge terminations, verified by scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. Density functional theory calculation suggests that nanopores facilitate formation of in-gap states that act as sinks for free electrons to couple with excitons. The ion energy loss simulation predicts a dominating electron ionization effect upon proton irradiation, providing further evidence on band perturbations and nanopore formation without destroying the overall crystallinity. This study provides a route in tuning the excitonic properties of van der Waals semiconductors using an irradiation-based defect engineering approach.

14.
Nano Lett ; 23(20): 9212-9218, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37788809

RESUMO

Optically dark excitons determine a wide range of properties of photoexcited semiconductors yet are hard to access via conventional time-resolved spectroscopies. Here, we develop a time-resolved ultrafast photocurrent technique (trPC) to probe the formation dynamics of optically dark excitons. The nonlinear nature of the trPC makes it particularly sensitive to the formation of excitons occurring at the femtosecond time scale after the excitation. As a proof of principle, we extract the interlayer exciton formation time of 0.4 ps at 160 µJ/cm2 fluence in a MoS2/MoSe2 heterostructure and show that this time decreases with fluence. In addition, our approach provides access to the dynamics of carriers and their interlayer transport. Overall, our work establishes trPC as a technique to study dark excitons in various systems that are hard to probe by other approaches.

15.
Small ; 19(18): e2205778, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36732842

RESUMO

The piezo-phototronic effect shows promise with regards to improving the performance of 2D semiconductor-based flexible optoelectronics, which will potentially open up new opportunities in the electronics field. Mechanical exfoliation and chemical vapor deposition (CVD) influence the piezo-phototronic effect on a transparent, ultrasensitive, and flexible van der Waals (vdW) heterostructure, which allows the use of intrinsic semiconductors, such as 2D transition metal dichalcogenides (TMD). The latest and most promising 2D TMD-based photodetectors and piezo-phototronic devices are discussed in this review article. As a result, it is possible to make flexible piezo-phototronic photodetectors, self-powered sensors, and higher strain tolerance wearable and implantable electronics for health monitoring and generation of piezoelectricity using just a single semiconductor or vdW heterostructures of various nanomaterials. A comparison is also made between the functionality and distinctive properties of 2D flexible electronic devices with a range of applications made from 2D TMDs materials. The current state of the research about 2D TMDs can be applied in a variety of ways in order to aid in the development of new types of nanoscale optoelectronic devices. Last, it summarizes the problems that are currently being faced, along with potential solutions and future prospects.

16.
Small ; 19(29): e2300262, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37029707

RESUMO

Polymorphic phases and collective phenomena-such as charge density waves (CDWs)-in transition metal dichalcogenides (TMDs) dictate the physical and electronic properties of the material. Most TMDs naturally occur in a single given phase, but the fine-tuning of growth conditions via methods such as molecular beam epitaxy (MBE) allows to unlock otherwise inaccessible polymorphic structures. Exploring and understanding the morphological and electronic properties of new phases of TMDs is an essential step to enable their exploitation in technological applications. Here, scanning tunneling microscopy (STM) is used to map MBE-grown monolayer (ML) TaTe2 . This work reports the first observation of the 1H polymorphic phase, coexisting with the 1T, and demonstrates that their relative coverage can be controlled by adjusting synthesis parameters. Several superperiodic structures, compatible with CDWs, are observed to coexist on the 1T phase. Finally, this work provides theoretical insight on the delicate balance between Te…Te and Ta-Ta interactions that dictates the stability of the different phases. The findings demonstrate that TaTe2 is an ideal platform to investigate competing interactions, and indicate that accurate tuning of growth conditions is key to accessing metastable states in TMDs.

17.
Small ; 19(37): e2301126, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37226688

RESUMO

With conventional electronics reaching performance and size boundaries, all-optical processes have emerged as ideal building blocks for high speed and low power consumption devices. A promising approach in this direction is provided by valleytronics in atomically thin semiconductors, where light-matter interaction allows to write, store, and read binary information into the two energetically degenerate but non-equivalent valleys. Here, nonlinear valleytronics in monolayer WSe2 is investigated and show that an individual ultrashort pulse with a photon energy tuned to half of the optical band-gap can be used to simultaneously excite (by coherent optical Stark shift) and detect (by a rotation in the polarization of the emitted second harmonic) the valley population.

18.
J Pediatr ; 257: 113304, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36528053

RESUMO

OBJECTIVE: Determine the clinical safety and feasibility of implementing a telemedicine and medication delivery service (TMDS) to address gaps in nighttime access to health care for children in low-resource settings. STUDY DESIGN: We implemented a TMDS called 'MotoMeds' in Haiti as a prospective cohort study. A parent/guardian of a sick child ≤ 10 years contacted the call center (6 PM-5 AM). A nurse provider used decision support tools to triage cases (mild, moderate, or severe). Severe cases were referred to emergency care. For nonsevere cases, providers gathered clinical findings to generate an assessment and plan. For cases within the delivery zone, a provider and driver were dispatched and the provider performed a paired in-person exam as a reference standard for the virtual call center exam. Families received a follow-up call at 10 days. Data were analyzed for clinical safety and feasibility. RESULTS: A total of 391 cases were enrolled from September 9, 2019, to January 19, 2021. Most cases were nonsevere (92%; 361); household visits were completed for 89% (347) of these cases. Among the 30 severe cases, 67% (20) sought referred care. Among all cases, respiratory problems were the most common complaint (63%; 246). At 10 days, 95% (329) of parents reported their child had "improved" or "recovered". Overall, 99% (344) rated the TMDS as "good" or "great". The median phone consultation time was 20 minutes, time to household arrival was 73 minutes, and total case time was 114 minutes. CONCLUSION: The TMDS was a feasible health care delivery model. Although many cases were likely self-limiting, the TMDS was associated with high rates of reported improvement in clinical status at 10 days. TRIAL REGISTRATION: clinicaltrials.gov: NCT03943654.


Assuntos
Telemedicina , Criança , Humanos , Estudos de Viabilidade , Projetos Piloto , Estudos Prospectivos , Encaminhamento e Consulta
19.
Nanotechnology ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055987

RESUMO

This work presents a high-performance surface plasmon resonance (SPR)-based biosensor for glucose detection. While adding a metal-organic framework (MOF) layer, UiO-66, to the biosensor improves selectivity and enables direct detection without additional receptors, it does not significantly enhance sensitivity. A SPR-based biosensor is proposed to overcome this limitation by introducing a layer of 2D-transition metal dichalcogenides (2D-TMD) and decorating the UiO-66 structure with gold nanoparticles (UiO-66AuNP). The optical properties of the biosensor for glucose detection in urine are investigated by employing the finite difference time domain (FDTD) method with Kretschmann configuration at a wavelength of 633 nm, and its performance is effectively improved by incorporating 2D-TMD and AuNP layers into the biosensor structure. Notably, the SPR-based biosensor with the decorated UiO-66 layer exhibits a further change in the SPR angle in the presence of glucose-containing urine. Using computational studies, various performance parameters, such as the biosensors' signal-to-noise ratio (SNR) and quality factor (QF), are evaluated in addition to sensitivity. The maximum sensitivity achieved is 309.3°/RIU for the BK7/Ag/PtSe2/WSe2/MoS2/UiO-66AuNP/sensing medium structure. The exceptional performance of the proposed biosensor structure demonstrates its suitability for precise glucose detection in urine while also opening new avenues for developing bioreceptor-free SPR-based sensors.

20.
Nanotechnology ; 34(38)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37336199

RESUMO

The superior properties, such as large interlayer spacing and the ability to host large alkali-metal ions, of two-dimensional (2D) materials based on transition metal di-chalcogenides (TMDs) enable next-generation battery development beyond lithium-ion rechargeable batteries. In addition, compelling but rarely inspected TMD alloys provide additional opportunities to tailor bandgap and enhance thermodynamic stability. This study explores the sodium-ion (Na-ion) and potassium-ion (K-ion) storage behavior of cation-substituted molybdenum tungsten diselenide (MoWSe2), a TMD alloy. This research also investigates upper potential suspension to overcome obstacles commonly associated with TMD materials, such as capacity fading at high current rates, prolonged cycling conditions, and voltage polarization during conversion reaction. The voltage cut-off was restricted to 1.5 V, 2.0 V, and 2.5 V to realize the material's Na+and K+ion storage behavior. Three-dimensional (3D) surface plots of differential capacity analysis up to prolonged cycles revealed the convenience of voltage suspension as a viable method for structural preservation. Moreover, the cells with higher potential cut-off values conveyed improved cycling stability, higher and stable coulombic efficiency for Na+and K+ion half-cells, and increased capacity retention for Na+ion half-cells, respectively, with half-cells cycled at higher voltage ranges.


Assuntos
Potássio , Sódio , Cátions , Ligas , Fontes de Energia Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA