RESUMO
Enzalutamide, a second-generation antiandrogen, is commonly prescribed for the therapy of advanced prostate cancer, but enzalutamide-resistant, lethal, or incurable disease invariably develops. To understand the molecular mechanism(s) behind enzalutamide resistance, here, we comprehensively analyzed a range of prostate tumors and clinically relevant models by gene expression array, immunohistochemistry, and Western blot, which revealed that enzalutamide-resistant prostate cancer cells and tumors overexpress the pseudokinase, Tribbles 2 (TRIB2). Inhibition of TRIB2 decreases the viability of enzalutamide-resistant prostate cancer cells, suggesting a critical role of TRIB2 in these cells. Moreover, the overexpression of TRIB2 confers resistance in prostate cancer cells to clinically relevant doses of enzalutamide, and this resistance is lost upon inhibition of TRIB2. Interestingly, we found that TRIB2 downregulates the luminal markers androgen receptor and cytokeratin 8 in prostate cancer cells but upregulates the neuronal transcription factor BRN2 (Brain-2) and the stemness factor SOX2 (SRY-box 2) to induce neuroendocrine characteristics. Finally, we show that inhibition of either TRIB2 or its downstream targets, BRN2 or SOX2, resensitizes resistant prostate cancer cells to enzalutamide. Thus, TRIB2 emerges as a potential new regulator of transdifferentiation that confers enzalutamide resistance in prostate cancer cells via a mechanism involving increased cellular plasticity and lineage switching.
Assuntos
Benzamidas , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Nitrilas , Feniltioidantoína , Neoplasias da Próstata , Benzamidas/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Plasticidade Celular , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismoRESUMO
Tribbles homolog 2 (TRIB2) functions as an adapter protein that regulates signal transductions involved in a variety of cellular functions, including tumorigenesis. However, the role of TRIB2 in the proliferation of vascular smooth muscle cells (VSMCs) and the underlying expression mechanisms remain unclear. The present study investigated the role of TRIB2 in VSMC proliferation and revealed that TRIB2 expression increases following vascular injury and platelet-derived growth factor (PDGF)-BB-stimulated VSMCs. We found that pretreatment with diphenyleneiodonium (a nicotinamide adenine dinucleotide phosphate oxidase inhibitor), U0126 (an inhibitor of mitogen-activated protein kinase kinase 1 [MEK1]), or siRNA targeting the gene encoding early growth response 1 (EGR-1) significantly inhibits PDGF-BB-induced TRIB2 expression in VSMCs. Furthermore, TRIB2 knockdown significantly inhibits PDGF-BB-induced proliferation of VSMCs but does not affect the phosphorylation of AKT. However, phosphorylation of ERK1 and expression of proliferating cell nuclear antibody are significantly suppressed in VSMCs by PDGF-BB stimulation. Thus, PDGF-BB-induced TRIB2 expression is mediated by ROS/ERK/EGR-1 pathways and plays a critical role in VSMC proliferation via modulation of ERK activity. We propose TRIB2 as a promising therapeutic target for the prevention of neointima formation and vascular disease.
Assuntos
Proliferação de Células , Músculo Liso Vascular , Transdução de Sinais , Animais , Ratos , Becaplermina/metabolismo , Becaplermina/farmacologia , Movimento Celular , Proliferação de Células/genética , Células Cultivadas , Sistema de Sinalização das MAP Quinases , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismoRESUMO
Tribbles homolog 2 (TRIB2) plays an important role in the follicular development of female mammals. However, its expression and function in the yak (Bos grunniens) are still unclear. In this study, we predicted the molecular characteristics of TRIB2, and revealed its expression pattern in yak (Bos grunniens) tissues and ovarian granulosa cells. We cloned the full length of the yak TRIB2 gene obtained by RT-PCR was 1368 bp and the coding sequence (CDS) was 624 bp, encoding 207 amino acids (AA). Homology analysis showed that the yak TRIB2 is highly conserved among species. TRIB2 was detected to be extensively expressed in seven tissues of the yak liver, spleen, lung, kidney, ovary, oviduct and uterus by qPCR. The expression of TRIB2 mRNA in the ovary during gestation was significantly lower than that in the non-pregnant (p < 0.05). At each stage of follicle development, the TRIB2 mRNA in granulosa cells showed a significant upward trend with the development of follicles. The expression of TRIB2 gradually decreased with the increase of the culture time of the granulosa cells in vitro. In conclusion, these results suggest that TRIB2 may play an important role in the follicular development of yaks.
Assuntos
Ovário , Útero , Bovinos/genética , Feminino , Animais , Sequência de Aminoácidos , Ovário/metabolismo , Útero/metabolismo , Células da Granulosa/metabolismo , RNA Mensageiro/genética , Mamíferos/genética , Mamíferos/metabolismoRESUMO
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play crucial regulatory roles in many biological processes, including the growth and development of skeletal muscle. miRNA-100-5p is often associated with tumor cell proliferation and migration. This study aimed to uncover the regulatory mechanism of miRNA-100-5p in myogenesis. In our study, we found that the miRNA-100-5p expression level was significantly higher in muscle tissue than in other tissues in pigs. Functionally, this study shows that miR-100-5p overexpression significantly promotes the proliferation and inhibits the differentiation of C2C12 myoblasts, whereas miR-100-5p inhibition results in the opposite effects. Bioinformatic analysis predicted that Trib2 has potential binding sites for miR-100-5p at the 3'UTR region. A dual-luciferase assay, qRT-qPCR, and Western blot confirmed that Trib2 is a target gene of miR-100-5p. We further explored the function of Trib2 in myogenesis and found that Trib2 knockdown markedly facilitated proliferation but suppressed the differentiation of C2C12 myoblasts, which is contrary to the effects of miR-100-5p. In addition, co-transfection experiments demonstrated that Trib2 knockdown could attenuate the effects of miR-100-5p inhibition on C2C12 myoblasts differentiation. In terms of the molecular mechanism, miR-100-5p suppressed C2C12 myoblasts differentiation by inactivating the mTOR/S6K signaling pathway. Taken together, our study results indicate that miR-100-5p regulates skeletal muscle myogenesis through the Trib2/mTOR/S6K signaling pathway.
Assuntos
MicroRNAs , Transdução de Sinais , Animais , Suínos , Linhagem Celular , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética , Proliferação de Células/genéticaRESUMO
Tribbles pseudokinases, Tribbles homolog 1 (TRIB1), Tribbles homolog 2 (TRIB2), and Tribbles homolog 3 (TRIB3), bind to constitutive photomorphogenesis protein 1 (COP1) E3 ligase to mediate the regulation of ß-catenin expression. The interaction mechanism between COP1 E3 ligase and ß-catenin has not been addressed to date. Based on the functional presence of TRIBs in wingless-related integration site (WNT) signaling, we analyzed their interaction patterns with ß-catenin and COP1. Here, through in silico approaches, we ascribe the COP1 binding pattern against TRIBs and ß-catenin. TRIB1 (355-DQIVPEY-361), TRIB2 (326-DQLVPDV-332), and TRIB3 (333-AQVVPDG-339) peptides revealed a shallow binding pocket at the COP1 interface to accommodate the V-P sequence motif. Reinvigoration of the comparative binding pattern and subtle structural analysis via docking, molecular dynamics simulations, molecular mechanics Poisson-Boltzmann surface area, topological, and tunnel analysis revealed that both ß-catenin phosphodegron (DSGXXS) and TRIB (D/E/AQXVPD/E) motifs occupied a common COP1 binding site. Current study suggests a structural paradigm of TRIB homologs bearing a conserved motif that may compete with ß-catenin phosphodegron signature for binding to WD40 domain of COP1. Thorough understanding of the structural basis for TRIB-mediated regulation of WNT/ß-catenin signaling may help in devising more promising therapeutic strategy for liver and colorectal cancers.
Assuntos
Ubiquitina-Proteína Ligases , beta Catenina , Sítios de Ligação , Simulação de Dinâmica Molecular , Transdução de Sinais , Ubiquitina-Proteína Ligases/química , beta Catenina/genética , beta Catenina/metabolismoRESUMO
BACKGROUND & AIMS: Hepatic stellate cells (HSCs) play critical roles in liver fibrosis and hepatocellular carcinoma (HCC). Tribbles homolog 2 (TRIB2) is an oncogene implicated in a variety of cancers, including liver cancer. However, the biological function and regulatory mechanism of TRIB2 in HSCs are poorly understood. In addition, little is known about its role in liver fibrosis progression to HCC. Here, we revealed the clinical significance of TRIB2 in liver fibrosis and HCC development. METHODS: We investigated TRIB2 promoting liver fibrosis in vitro and in vivo. In mouse model of liver fibrosis and HCC, we measured hepatic fibrosis and HCC level through knockdown TRIB2 with shRNA. In addition, we performed western blotting, real-time quantitative PCR, immunofluorescence and co-immunoprecipitation assay to study TRIB2 function in LX-2 cells. RESULTS: TRIB2 expression was strongly upregulated in human fibrotic liver tissues and HCC tissues. TRIB2 colocalized with α-smooth muscle actin (α-SMA) in fibrotic and HCC liver tissues. Knockdown of TRIB2 inhibited HSC activation and liver fibrosis in vitro and in vivo. TRIB2 promoted Yes-associated protein (YAP) stabilization, nuclear localization, and subsequent fibrotic gene expression independent of the MST-LATS phosphorylation cascade in HSCs. TRIB2 interacted with YAP to recruit phosphatase 1A (PP1A), promoting PP1A-mediated YAP dephosphorylation. TRIB2 knockdown potently attenuated the development of fibrosis-associated liver cancer. CONCLUSIONS: TRIB2 is an attractive target for hepatic fibrosis and fibrosis-associated liver cancer treatment.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Carcinoma Hepatocelular/patologia , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Monoéster Fosfórico HidrolasesRESUMO
Members of the Tribbles (TRIB) family of pseudokinases are critical components of intracellular signal transduction pathways in physiological and pathological processes. TRIBs, including TRIB2, have been previously shown as signaling mediators and scaffolding proteins regulating numerous cellular events such as proliferation, differentiation and cell death through protein stability and activity. However, the signaling network associated with TRIB2 and its binding partners in granulosa cells during ovarian follicular development is not fully defined. We previously reported that TRIB2 is differentially expressed in growing dominant follicles while downregulated in ovulatory follicles following the luteinizing hormone (LH) surge or human chorionic gonadotropin (hCG) injection. In the present study, we used the yeast two-hybrid screening system and in vitro coimmunoprecipitation assays to identify and confirm TRIB2 interactions in granulosa cells (GCs) of dominant ovarian follicles (DFs), which yielded individual candidate binding partners including calmodulin 1 (CALM1), inhibin subunit beta A (INHBA), inositol polyphosphate phosphatase-like 1 (INPPL1), 5'-nucleotidase ecto (NT5E), stearoyl-CoA desaturase (SCD), succinate dehydrogenase complex iron sulfur subunit B (SDHB) and Ras-associated protein 14 (RAB14). Further analyses showed that all TRIB2 binding partners are expressed in GCs of dominant follicles but are differentially regulated throughout the different stages of follicular development. CRISPR/Cas9-driven inhibition along with pQE-driven overexpression of TRIB2 showed that TRIB2 differently regulates expression of binding partners, which reveals the importance of TRIB2 in the control of gene expression linked to various biological processes such as proliferation, differentiation, cell migration, apoptosis, calcium signaling and metabolism. These data provide a larger view of potential TRIB2-regulated signal transduction pathways in GCs and provide strong evidence that TRIB2 may act as a regulator of target genes during ovarian follicular development.
Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Animais , Biomarcadores , Bovinos , Regulação para Baixo , Feminino , Folículo Ovariano/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-HíbridoRESUMO
Long noncoding RNAs (lncRNAs) are crucial regulatory factors in the development and progression of human malignancies. The purpose of this study was to investigate the potential mechanism of ZEB1-AS1 in pancreatic cancer (PC). The expression of ZEB1-AS1 in PC tissues and cells was assessed by RT-qPCR. The overall survival rate was evaluated using the Kaplan-Meier analysis. The association between ZEB1-AS1 and miR-505 was verified by dual-luciferase reporter assay. CCK-8 assay was employed to analyze PC cell viability. Transwell assay was employed to detect the migration and invasion of PC cells. Our results revealed that ZEB1-AS1 expression was significantly upregulated in PC tissues and cells, and the high expression of ZEB1-AS1 indicated the low overall survival rate in PC patients. Loss-of-function and gain-of-function assays indicated that knockdown of ZEB1-AS1 inhibited the cell viability, migration and invasion of PC cells, while overexpression of ZEB1-AS1 promoted PC cell progression. Moreover, ZEB1-AS1 upregulated TRIB2 expression via sponging miR-505. Finally, rescue assays demonstrated that TRIB2 overexpression partially abrogated the inhibitory effect of ZEB1-AS1 knockdown on the viability, migration and invasion of PC cells. These results confirmed that ZEB1-AS1 promoted the tumorigenesis of PC through the miR-505/TRIB2 axis, which indicated that ZEB1-AS1 might function as a biomarker for PC treatment and provide a new therapeutic direction in PC.
Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Pancreáticas/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Regulação para CimaRESUMO
Tribbles homologs (TRIB) 1, 2, and 3 represent atypical members of the serine/threonine kinase superfamily. We previously identified TRIB2 as a differentially expressed gene in granulosa cells (GCs) of bovine preovulatory follicles. The current study aimed to further investigate TRIB2 regulation and study its function in the ovary. GCs were collected from follicles at different developmental stages: small antral follicles (SF), dominant follicles (DF) at day 5 of the estrous cycle, and hCG-induced ovulatory follicles (OFs). RT-qPCR analyses showed greater expression of TRIB2 in GC of DF as compared to OF and a significant downregulation of TRIB2 steady-state mRNA amounts by hCG/LH, starting at 6 h through 24 h post-hCG as compared to 0 h. Specific anti-TRIB2 polyclonal antibodies were generated and western blot analysis confirmed TRIB2 downregulation by hCG at the protein level. In vitro studies showed that FSH stimulates TRIB2 expression in GC. Inhibition of TRIB2 using CRISPR/Cas9 resulted in a significant increase in PCNA expression and an increase in steroidogenic enzyme CYP19A1 expression, while TRIB2 overexpression tended to decrease GC proliferation. TRIB2 inhibition also resulted in a decrease in transcription factors connective tissue growth factor (CTGF) and ankyrin repeat domain-containing protein 1 (ANKRD1) expression, while TRIB2 overexpression increased CTGF and ANKRD1. Additionally, western blot analyses showed reduction in ERK1/2 (MAPK3/1) and p38MAPK (MAPK14) phosphorylation levels following TRIB2 inhibition, while TRIB2 overexpression increased p-ERK1/2 and p-p38MAPK. These results provide evidence that TRIB2 modulates MAPK signaling in GC and that TRIB2 could act as a regulator of GC proliferation and function, which could affect steroidogenesis during follicular development.
Assuntos
Bovinos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Anticorpos , Sistemas CRISPR-Cas , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Feminino , Células da Granulosa , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/genéticaRESUMO
BACKGROUND: Cellular senescence is a state of irreversible cell growth arrest and senescence cells permanently lose proliferation potential. Induction of cellular senescence might be a novel therapy for cancer cells. TRIB2 has been reported to participate in regulating proliferation and drug resistance of various cancer cells. However, the role of TRIB2 in cellular senescence of colorectal cancer (CRC) and its molecular mechanism remains unclear. METHODS: The expression of TRIB2 in colorectal cancer tissues and adjacent tissues was detected by immunohistochemistry and RT-PCR. The growth, cell cycle distribution and cellular senescence of colorectal cancer cells were evaluated by Cell Counting Kit-8 (CCK8) assay, flow cytometry detection and senescence-associated ß-galactosidase staining, respectively. Western blot, RT-PCR and luciferase assay were performed to determine how TRIB2 regulates p21. Immunoprecipitation (IP) and chromatin-immunoprecipitation (ChIP) were used to investigate the molecular mechanisms. RESULTS: We found that TRIB2 expression was elevated in CRC tissues compared to normal adjacent tissues and high TRIB2 expression indicated poor prognosis of CRC patients. Functionally, depletion of TRIB2 inhibited cancer cells proliferation, induced cell cycle arrest and promoted cellular senescence, whereas overexpression of TRIB2 accelerated cell growth, cell cycle progression and blocked cellular senescence. Further studies showed that TRIB2 physically interacted with AP4 and inhibited p21 expression through enhancing transcription activities of AP4. The rescue experiments indicated that silencing of AP4 abrogated the inhibition of cellular senescence induced by TRIB2 overexpression. CONCLUSION: These data demonstrate that TRIB2 suppresses cellular senescence through interaction with AP4 to down-regulate p21 expression. Therefore, TRIB2 could be a potential target for CRC treatment.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Neoplasias Colorretais/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Oncogenes/genética , Transdução de Sinais/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Proliferação de Células/genética , Senescência Celular/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a RNARESUMO
Tribbles homolog 2 (TRIB2) is a member of the mammalian Tribbles family of serine/threonine pseudokinases (TRIB1-3). Studies of TRIB2 indicate that many of the molecular interactions between the single Drosophila Tribbles (Trbl) protein and interacting partners are evolutionary conserved. In this study, we examined the relationship between TRIB2 and cell division cycle 25 (CDC25) family of dual-specificity protein phosphatases (mammalian homologues of Drosophila String), which are key physiological cell cycle regulators. Using co-immunoprecipitation we demonstrate that TRIB2 interacts with CDC25B and CDC25C selectively. Forced overexpression of TRIB2 caused a marked decrease in total CDC25C protein levels. Following inhibition of the proteasome, CDC25C was stabilized in the nuclear compartment. This implicates TRIB2 as a regulator of nuclear CDC25C turnover. In complementary ubiquitination assays, we show that TRIB2-mediated degradation of CDC25C is associated with lysine-48-linked CDC25C polyubiquitination driven by the TRIB2 kinase-like domain. A cell cycle associated role for TRIB2 is further supported by the cell cycle regulated expression of TRIB2 protein levels. Our findings reveal mitotic CDC25C as a new target of TRIB2 that is degraded via the ubiquitin proteasome system. Inappropriate CDC25C regulation could mechanistically underlie TRIB2 mediated regulation of cellular proliferation in neoplastic cells.
Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fosfatases cdc25/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fosfatases de Especificidade Dupla/genética , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Ubiquitinação/genética , Ubiquitinação/fisiologia , Fosfatases cdc25/genéticaRESUMO
Tribbles family of pseudokinase proteins are known to mediate the degradation of target proteins in Drosophila and mammalian systems. The main protein proteolysis pathway in eukaryotic cells is the ubiquitin proteasome system (UPS). The tribbles homolog 2 (TRIB2) mammalian family member has been well characterized for its role in murine and human leukaemia, lung and liver cancer. One of the most characterized substrates for TRIB2-mediated degradation is the myeloid transcription factor CCAAT enhancer binding protein α (C/EBPα). However, across a number of cancers, the molecular interactions that take place between TRIB2 and factors involved in the UPS are varied and have differential downstream effects. This review summarizes our current knowledge of these interactions and how this information is important for our understanding of TRIB2 in cancer.
Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Neoplasias/genética , Neoplasias/patologia , Proteólise , Transdução de SinaisRESUMO
TRIB2 (tribbles homolog 2) encodes one of three members of the tribbles family in mammals. These members share a Trb (tribbles) domain, which is homologous to protein serine-threonine kinases, but lack the active site lysine. The tribbles proteins interact and modulate the activity of signal transduction pathways in a number of physiological and pathological processes. TRIB2 has been identified as an oncogene that inactivates the transcription factor CCAAT/enhancer-binding protein α (C/EBPα) and causes acute myelogenous leukaemia (AML). Recent research provided compelling evidence that TRIB2 can also act as oncogenic driver in solid tumours, such as lung and liver cancer. In particular, our recent work demonstrated that TRIB2 is dramatically overexpressed in malignant melanomas compared with normal skin and promotes the malignant phenotype of melanoma cells via the down-regulation of FOXO (forkhead box protein O) tumour suppressor activity in vitro and in vivo. TRIB2 was found to be expressed in normal skin, but its expression consistently increased in benign nevi, melanoma and was highest in samples from patients with malignant melanoma. The observation that TRIB2 strongly correlates with the progression of melanocyte-derived malignancies suggests TRIB2 as a meaningful biomarker to both diagnose and stage melanoma. In addition, interfering with TRIB2 activity might be a therapeutic strategy for the treatment of several different tumour types.
Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melanoma/metabolismo , Proteínas Oncogênicas/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Regulação para Baixo , Proteína Forkhead Box O3 , Humanos , Melanoma/patologia , Estadiamento de NeoplasiasRESUMO
Tribbles (TRIB) proteins are pseudokinase mediators of eukaryotic signalling that have evolved important roles in lipoprotein metabolism, immune function and cellular differentiation and proliferation. In addition, an evolutionary-conserved modulation of PI3K/AKT signalling pathways highlights them as novel and rather unusual pharmaceutical targets. The three human TRIB family members are uniquely defined by an acidic pseudokinase domain containing a 'broken' α C-helix and a MEK (MAPK/ERK)-binding site at the end of the putative C-lobe and a distinct C-terminal peptide motif that interacts directly with a small subset of cellular E3 ubiquitin ligases. This latter interaction drives proteasomal-dependent degradation of networks of transcription factors, whose rate of turnover determines the biological attributes of individual TRIB family members. Defining the function of individual Tribs has been made possible through evaluation of individual TRIB knockout mice, siRNA/overexpression approaches and genetic screening in flies, where the single TRIB gene was originally described 15 years ago. The rapidly maturing TRIB field is primed to exploit chemical biology approaches to evaluate endogenous TRIB signalling events in intact cells. This will help define how TRIB-driven protein-protein interactions and the atypical TRIB ATP-binding site, fit into cellular signalling modules in experimental scenarios where TRIB-signalling complexes remain unperturbed. In this mini-review, we discuss how small molecules can reveal rate-limiting signalling outputs and functions of Tribs in cells and intact organisms, perhaps serving as guides for the development of new drugs. We predict that appropriate small molecule TRIB ligands will further accelerate the transition of TRIB pseudokinase analysis into the mainstream of cell signalling.
Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Descoberta de Drogas/métodos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Bibliotecas de Moléculas Pequenas/farmacologiaRESUMO
STUDY OBJECTIVES: Narcolepsy type 1 is attributed to a deficiency in cerebrospinal fluid orexin and is considered linked to autoimmunity. The levels of anti-Tribbles homolog 2 (TRIB2) autoantibodies are elevated in the sera of some patients with narcolepsy with cataplexy. Additionally, injecting mice with serum immunoglobulin from patients with narcolepsy with positive anti-TRIB2 antibodies can induce hypothalamic neuron loss and alterations in sleep patterns. Consequently, we hypothesized the existence of a potential association between anti-TRIB2 antibodies and narcolepsy. To test this possibility, we used cell-based assays (CBAs) and enzyme-linked immunosorbent assays (ELISAs) to detect the presence of anti-TRIB2 antibodies in Chinese patients with narcolepsy. METHODS: We included 68 patients with narcolepsy type 1, 39 patients with other central disorders of hypersomnolence, and 43 healthy controls. A CBA and a conventional ELISA were used to detect anti-TRIB2 antibody levels in patients' sera. RESULTS: CBA was used to detect serum anti-TRIB2 antibodies in Chinese patients with narcolepsy, and the results were negative. However, when the ELISA was used, only 2 patients with narcolepsy type 1 had TRIB2 antibody titers higher than the mean titer plus 2 standard deviations of the healthy controls. CONCLUSIONS: In our study, ELISA identified TRIB2 autoantibodies in sera of patients with narcolepsy where CBA failed to demonstrate them. Contrary to our hypothesis, this intriguing finding deserves further research to elucidate the potential association between TRIB2 and narcolepsy type 1. Exploring the implications of TRIB2 autoantibodies in narcolepsy and disparate outcomes between ELISA and CBA could provide crucial insights. CITATION: Zhong X, Yuan Y, Zhan Q, et al. Cell-based vs enzyme-linked immunosorbent assay for detection of anti-Tribbles homolog 2 autoantibodies in Chinese patients with narcolepsy. J Clin Sleep Med. 2024;20(6):941-946.
Assuntos
Autoanticorpos , Ensaio de Imunoadsorção Enzimática , Narcolepsia , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Autoanticorpos/sangue , Proteínas Quinases Dependentes de Cálcio-Calmodulina/imunologia , China , População do Leste Asiático , Ensaio de Imunoadsorção Enzimática/métodos , Narcolepsia/imunologiaRESUMO
Tribbles homolog 2 (TRIB2) is functionally important for liver cancer cell survival and transformation. Our previous study demonstrates TRIB2 is stable in liver cancer cells due to the impaired ubiquitination by Smurf1. However, overexpression of Smurf1 alone cannot completely abolish TRIB2 protein expression, whether other potential factors involved in the degradation of TRIB2 still remains unclear. In the present study, we reveal that the stability and ubiquitination of TRIB2 can also be controlled by ubiquitin E3 ligase SCF(ß-TRCP). Depletion of either Cullin1 or ß-TRCP up-regulates TRIB2 protein expression. Moreover, knockdown of ß-TRCP extends the half-life, whereas reduces ubiquitylation of TRIB2. Similar to Smurf1, ß-TRCP exerts its role through the TRIB2 Degradation Domain (TDD) at the N-terminus of the TRIB2 protein. Hence, we add TRIB2 to the substrate list of SCF(ß-TRCP) and the finding may be helpful in the treatment of TRIB2 dependent liver cancer.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/enzimologia , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Linhagem Celular Tumoral , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Estabilidade Proteica , Proteínas Ligases SKP Culina F-Box/genética , Ubiquitinação , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismoRESUMO
Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness and cataplexy (a sudden weakening of posture muscle tone usually triggered by emotion) caused by the loss of orexin neurons in the hypothalamus. Autoimmune mechanisms are implicated in narcolepsy by increased frequency of specific HLA alleles and the presence of specific autoantibody (anti-Tribbles homolog 2 (TRIB2) antibodies) in the sera of patients with narcolepsy. Presently, we passively transferred narcolepsy to naïve mice by injecting intra-cerebra-ventricularly (ICV) pooled IgG positive for anti-TRIB2 antibodies. Narcolepsy-IgG-injected mice had a loss of the NeuN (neuronal marker), synaptophysin (synaptic marker) and orexin-positive neurons in the lateral hypothalamus area in narcolepsy compared to control-IgG-injected mice and these changes were associated with narcolepsy-like immobility attacks at four weeks post injection and with hyperactivity and long term memory deficits in the staircase and novel object recognition tests. Similar behavioral and cognitive deficits are observed in narcoleptic patients. This is the first report of passive transfer of experimental narcolepsy to naïve mice induced by autoantibodies and supports the autoimmune pathogenesis in narcolepsy.
Assuntos
Cataplexia/imunologia , Hipotálamo/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Narcolepsia/imunologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Autoanticorpos/administração & dosagem , Autoanticorpos/sangue , Autoantígenos/imunologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Imunização Passiva , Imunoglobulina G/administração & dosagem , Imunoglobulina G/sangue , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Camundongos , Camundongos Endogâmicos C3H , Neurônios/efeitos dos fármacos , Neurônios/patologia , Orexinas , Reconhecimento Fisiológico de ModeloRESUMO
Tribbles pseudokinases (TRIB1-3) are important signaling modulators involved in several cancers. However, their function in gastric cancer (GC) remains undefined. GC is still a deadly disease since the lack of sensitive and specific biomarkers for early diagnosis and therapy response prediction negatively affects patients' outcome. The identification of novel molecular players may lead to more effective diagnostic and therapeutic avenues. Therefore, we investigated the role of TRIB genes in gastric tumorigenesis. Data mining of the TCGA dataset revealed that chromosomal instability (CIN) tumors have lower TRIB2 and higher TRIB3 expression versus microsatellite instability (MSI)-high tumors, while TRIB1 levels are similar in both tumor types. Moreover, in CIN tumors, low TRIB2 expression is significantly associated with aggressive stage IV disease. As no studies on TRIB2 in GC are available, we focused on this gene for further in vitro analyses. We checked the effect of TRIB2 overexpression (OE) on MKN45 and NCI-N87 CIN GC cell lines. In MKN45 cells, TRIB2 OE reduced proliferation and colony formation ability and induced G2/M arrest, while it decreased the proliferation and cell motility of NCI-N87 cells. These effects were not mediated by the MAPK pathway. Our results suggest a tumor-suppressive function of TRIB2 in GC with a CIN phenotype.
Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Instabilidade Cromossômica , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genéticaRESUMO
Naive CD4+ T cells are more resistant to age-related loss than naive CD8+ T cells, suggesting mechanisms that preferentially protect naive CD4+ T cells during aging. Here, we show that TRIB2 is more abundant in naive CD4+ than CD8+ T cells and counteracts quiescence exit by suppressing AKT activation. TRIB2 deficiency increases AKT activity and accelerates proliferation and differentiation in response to interleukin-7 (IL-7) in humans and during lymphopenia in mice. TRIB2 transcription is controlled by the lineage-determining transcription factors ThPOK and RUNX3. Ablation of Zbtb7b (encoding ThPOK) and Cbfb (obligatory RUNT cofactor) attenuates the difference in lymphopenia-induced proliferation between naive CD4+ and CD8+ cells. In older adults, ThPOK and TRIB2 expression wanes in naive CD4+ T cells, causing loss of naivety. These findings assign TRIB2 a key role in regulating T cell homeostasis and provide a model to explain the lesser resilience of CD8+ T cells to undergo changes with age.
Assuntos
Linfócitos T CD8-Positivos , Linfopenia , Idoso , Animais , Humanos , Camundongos , Envelhecimento , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Homeostase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Tribbles proteins (TRIB1-3) are pseudokinases that recruit substrates to the COP1 ubiquitin ligase. TRIB2 was the first Tribbles ortholog to be implicated as a myeloid leukemia oncogene, because it recruits the C/EBPα transcription factor for ubiquitination by COP1. Here we report identification of nanobodies that bind the TRIB2 pseudokinase domain with low nanomolar affinity. A crystal structure of the TRIB2-Nb4.103 complex identified the nanobody to bind the N-terminal lobe of TRIB2, enabling specific recognition of TRIB2 in an activated conformation that is similar to the C/EBPα-bound state of TRIB1. Characterization in solution revealed that Nb4.103 can stabilize a TRIB2 pseudokinase domain dimer in a face-to-face manner. Conversely, a distinct nanobody (Nb4.101) binds through a similar epitope but does not readily promote dimerization. In combination, this study identifies features of TRIB2 that could be exploited for the development of inhibitors and nanobody tools for future investigation of TRIB2 function.