Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.798
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959890

RESUMO

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.

2.
Annu Rev Biochem ; 91: 629-649, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35287474

RESUMO

Transient receptor potential (TRP) ion channels are sophisticated signaling machines that detect a wide variety of environmental and physiological signals. Every cell in the body expresses one or more members of the extended TRP channel family, which consists of over 30 subtypes, each likely possessing distinct pharmacological, biophysical, and/or structural attributes. While the function of some TRP subtypes remains enigmatic, those involved in sensory signaling are perhaps best characterized and have served as models for understanding how these excitatory ion channels serve as polymodal signal integrators. With the recent resolution revolution in cryo-electron microscopy, these and other TRP channel subtypes are now yielding their secrets to detailed atomic analysis, which is beginning to reveal structural underpinnings of stimulus detection and gating, ion permeation, and allosteric mechanisms governing signal integration. These insights are providing a framework for designing and evaluating modality-specific pharmacological agents for treating sensory and other TRP channel-associated disorders.


Assuntos
Canais de Potencial de Receptor Transitório , Microscopia Crioeletrônica , Transdução de Sinais , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
3.
Annu Rev Immunol ; 33: 291-353, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25861976

RESUMO

Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.


Assuntos
Imunidade Adaptativa/fisiologia , Imunidade Inata/fisiologia , Canais Iônicos/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Síndromes de Imunodeficiência/tratamento farmacológico , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/metabolismo , Imunoterapia/métodos , Canais Iônicos/genética , Linfócitos/citologia , Linfócitos/imunologia , Linfócitos/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Terapia de Alvo Molecular , Mutação , Transdução de Sinais
4.
Cell ; 184(20): 5138-5150.e12, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34496225

RESUMO

Many transient receptor potential (TRP) channels respond to diverse stimuli and conditionally conduct small and large cations. Such functional plasticity is presumably enabled by a uniquely dynamic ion selectivity filter that is regulated by physiological agents. What is currently missing is a "photo series" of intermediate structural states that directly address this hypothesis and reveal specific mechanisms behind such dynamic channel regulation. Here, we exploit cryoelectron microscopy (cryo-EM) to visualize conformational transitions of the capsaicin receptor, TRPV1, as a model to understand how dynamic transitions of the selectivity filter in response to algogenic agents, including protons, vanilloid agonists, and peptide toxins, permit permeation by small and large organic cations. These structures also reveal mechanisms governing ligand binding substates, as well as allosteric coupling between key sites that are proximal to the selectivity filter and cytoplasmic gate. These insights suggest a general framework for understanding how TRP channels function as polymodal signal integrators.


Assuntos
Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Regulação Alostérica , Permeabilidade da Membrana Celular/efeitos dos fármacos , Microscopia Crioeletrônica , Diterpenos/farmacologia , Células HEK293 , Humanos , Ativação do Canal Iônico , Lipídeos/química , Meglumina/farmacologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Prótons , Canais de Cátion TRPV/agonistas
5.
Cell ; 178(6): 1362-1374.e16, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31447178

RESUMO

TRPA1 is a chemosensory ion channel that functions as a sentinel for structurally diverse electrophilic irritants. Channel activation occurs through an unusual mechanism involving covalent modification of cysteine residues clustered within an amino-terminal cytoplasmic domain. Here, we describe a peptidergic scorpion toxin (WaTx) that activates TRPA1 by penetrating the plasma membrane to access the same intracellular site modified by reactive electrophiles. WaTx stabilizes TRPA1 in a biophysically distinct active state characterized by prolonged channel openings and low Ca2+ permeability. Consequently, WaTx elicits acute pain and pain hypersensitivity but fails to trigger efferent release of neuropeptides and neurogenic inflammation typically produced by noxious electrophiles. These findings provide a striking example of convergent evolution whereby chemically disparate animal- and plant-derived irritants target the same key allosteric regulatory site to differentially modulate channel activity. WaTx is a unique pharmacological probe for dissecting TRPA1 function and its contribution to acute and persistent pain.


Assuntos
Venenos de Escorpião/farmacologia , Canal de Cátion TRPA1/metabolismo , Animais , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Escorpiões/metabolismo
6.
Cell ; 167(3): 763-773.e11, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768895

RESUMO

The Polycystic Kidney Disease 2 (Pkd2) gene is mutated in autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic disorders. Here, we present the cryo-EM structure of PKD2 in lipid bilayers at 3.0 Å resolution, which establishes PKD2 as a homotetrameric ion channel and provides insight into potential mechanisms for its activation. The PKD2 voltage-sensor domain retains two of four gating charges commonly found in those of voltage-gated ion channels. The PKD2 ion permeation pathway is constricted at the selectivity filter and near the cytoplasmic end of S6, suggesting that two gates regulate ion conduction. The extracellular domain of PKD2, a hotspot for ADPKD pathogenic mutations, contributes to channel assembly and strategically interacts with the transmembrane core, likely serving as a physical substrate for extracellular stimuli to allosterically gate the channel. Finally, our structure establishes the molecular basis for the majority of pathogenic mutations in Pkd2-related ADPKD.


Assuntos
Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPP/química , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Microscopia Crioeletrônica , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Mutação de Sentido Incorreto , Nanoestruturas/química , Rim Policístico Autossômico Dominante/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Canais de Cátion TRPP/genética
7.
Immunity ; 54(9): 2117-2132.e7, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525340

RESUMO

The nature of the anti-tumor immune response changes as primary tumors progress and metastasize. We investigated the role of resident memory (Trm) and circulating memory (Tcirm) cells in anti-tumor responses at metastatic locations using a mouse model of melanoma-associated vitiligo. We found that the transcriptional characteristics of tumor-specific CD8+ T cells were defined by the tissue of occupancy. Parabiosis revealed that tumor-specific Trm and Tcirm compartments persisted throughout visceral organs, but Trm cells dominated lymph nodes (LNs). Single-cell RNA-sequencing profiles of Trm cells in LN and skin were distinct, and T cell clonotypes that occupied both tissues were overwhelmingly maintained as Trm in LNs. Whereas Tcirm cells prevented melanoma growth in the lungs, Trm afforded long-lived protection against melanoma seeding in LNs. Expanded Trm populations were also present in melanoma-involved LNs from patients, and their transcriptional signature predicted better survival. Thus, tumor-specific Trm cells persist in LNs, restricting metastatic cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Linfonodos/imunologia , Melanoma Experimental/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Animais , Humanos , Camundongos , Vitiligo , Melanoma Maligno Cutâneo
8.
Trends Biochem Sci ; 49(5): 417-430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514273

RESUMO

Ion channels establish the voltage gradient across cellular membranes by providing aqueous pathways for ions to selectively diffuse down their concentration gradients. The selectivity of any given channel for its favored ions has conventionally been viewed as a stable property, and in many cation channels, it is determined by an ion-selectivity filter within the external end of the ion-permeation pathway. In several instances, including voltage-activated K+ (Kv) channels, ATP-activated P2X receptor channels, and transient receptor potential (TRP) channels, the ion-permeation pathways have been proposed to dilate in response to persistent activation, dynamically altering ion permeation. Here, we discuss evidence for dynamic ion selectivity, examples where ion selectivity filters exhibit structural plasticity, and opportunities to fill gaps in our current understanding.


Assuntos
Canais Iônicos , Humanos , Canais Iônicos/metabolismo , Canais Iônicos/química , Cátions/metabolismo , Cátions/química , Animais , Ativação do Canal Iônico
9.
EMBO J ; 43(5): 780-805, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316991

RESUMO

Inflammation is a common condition of prostate tissue, whose impact on carcinogenesis is highly debated. Microbial colonization is a well-documented cause of a small percentage of prostatitis cases, but it remains unclear what underlies the majority of sterile inflammation reported. Here, androgen- independent fluctuations of PSA expression in prostate cells have lead us to identify a prominent function of the Transient Receptor Potential Cation Channel Subfamily M Member 8 (TRPM8) gene in sterile inflammation. Prostate cells secret TRPM8 RNA into extracellular vesicles (EVs), which primes TLR3/NF-kB-mediated inflammatory signaling after EV endocytosis by epithelial cancer cells. Furthermore, prostate cancer xenografts expressing a translation-defective form of TRPM8 RNA contain less collagen type I in the extracellular matrix, significantly more infiltrating NK cells, and larger necrotic areas as compared to control xenografts. These findings imply sustained, androgen-independent expression of TRPM8 constitutes as a promoter of anticancer innate immunity, which may constitute a clinically relevant condition affecting prostate cancer prognosis.


Assuntos
Neoplasias da Próstata , Canais de Cátion TRPM , Humanos , Masculino , Androgênios , Inflamação/genética , Fator Regulador 3 de Interferon , Proteínas de Membrana , NF-kappa B/genética , Neoplasias da Próstata/genética , Receptor 3 Toll-Like/genética , Canais de Cátion TRPM/genética , Animais
10.
Mol Cell ; 78(6): 1055-1069, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32559424

RESUMO

Ca2+ ions are key second messengers in both excitable and non-excitable cells. Owing to the rather pleiotropic nature of Ca2+ transporters and other Ca2+-binding proteins, however, Ca2+ signaling has attracted limited attention as a potential target of anticancer therapy. Here, we discuss cancer-associated alterations of Ca2+ fluxes at specific organelles as we identify novel candidates for the development of drugs that selectively target Ca2+ signaling in malignant cells.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Neoplasias/metabolismo , Animais , Canais de Cálcio/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias/genética , Transdução de Sinais/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo
11.
Annu Rev Physiol ; 86: 329-355, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871124

RESUMO

Transient receptor potential (TRP) ion channels have diverse activation mechanisms including physical stimuli, such as high or low temperatures, and a variety of intracellular signaling molecules. Regulation by phosphoinositides and their derivatives is their only known common regulatory feature. For most TRP channels, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] serves as a cofactor required for activity. Such dependence on PI(4,5)P2 has been demonstrated for members of the TRPM subfamily and for the epithelial TRPV5 and TRPV6 channels. Intracellular TRPML channels show specific activation by PI(3,5)P2. Structural studies uncovered the PI(4,5)P2 and PI(3,5)P2 binding sites for these channels and shed light on the mechanism of channel opening. PI(4,5)P2 regulation of TRPV1-4 as well as some TRPC channels is more complex, involving both positive and negative effects. This review discusses the functional roles of phosphoinositides in TRP channel regulation and molecular insights gained from recent cryo-electron microscopy structures.


Assuntos
Canais de Potencial de Receptor Transitório , Humanos , Fosfatidilinositóis/metabolismo , Microscopia Crioeletrônica
12.
Immunity ; 48(1): 59-74.e5, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29343440

RESUMO

Toll-like receptors (TLRs) sense pathogen-associated molecular patterns to activate the production of inflammatory mediators. TLR4 recognizes lipopolysaccharide (LPS) and drives the secretion of inflammatory cytokines, often contributing to sepsis. We report that transient receptor potential melastatin-like 7 (TRPM7), a non-selective but Ca2+-conducting ion channel, mediates the cytosolic Ca2+ elevations essential for LPS-induced macrophage activation. LPS triggered TRPM7-dependent Ca2+ elevations essential for TLR4 endocytosis and the subsequent activation of the transcription factor IRF3. In a parallel pathway, the Ca2+ signaling initiated by TRPM7 was also essential for the nuclear translocation of NFκB. Consequently, TRPM7-deficient macrophages exhibited major deficits in the LPS-induced transcriptional programs in that they failed to produce IL-1ß and other key pro-inflammatory cytokines. In accord with these defects, mice with myeloid-specific deletion of Trpm7 are protected from LPS-induced peritonitis. Our study highlights the importance of Ca2+ signaling in macrophage activation and identifies the ion channel TRPM7 as a central component of TLR4 signaling.


Assuntos
Cálcio/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Técnicas de Cultura de Células , Endocitose/efeitos dos fármacos , Feminino , Citometria de Fluxo , Imunofluorescência , Regulação da Expressão Gênica , Técnicas de Genotipagem , Immunoblotting , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Canais de Cátion TRPM/genética
13.
Proc Natl Acad Sci U S A ; 121(27): e2403333121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923985

RESUMO

The transient receptor potential melastatin (TRPM) tetrameric cation channels are involved in a wide range of biological functions, from temperature sensing and taste transduction to regulation of cardiac function, inflammatory pain, and insulin secretion. The structurally conserved TRPM cytoplasmic domains make up >70 % of the total protein. To investigate the mechanism by which the TRPM cytoplasmic domains contribute to gating, we employed electrophysiology and cryo-EM to study TRPM5-a channel that primarily relies on activation via intracellular Ca2+. Here, we show that activation of mammalian TRPM5 channels is strongly altered by Ca2+-dependent desensitization. Structures of rat TRPM5 identify a series of conformational transitions triggered by Ca2+ binding, whereby formation and dissolution of cytoplasmic interprotomer interfaces appear to control activation and desensitization of the channel. This study shows the importance of the cytoplasmic assembly in TRPM5 channel function and sets the stage for future investigations of other members of the TRPM family.


Assuntos
Cálcio , Ativação do Canal Iônico , Canais de Cátion TRPM , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/química , Animais , Ativação do Canal Iônico/fisiologia , Ratos , Cálcio/metabolismo , Humanos , Microscopia Crioeletrônica , Células HEK293 , Citosol/metabolismo , Domínios Proteicos , Conformação Proteica
14.
Proc Natl Acad Sci U S A ; 121(6): e2308215121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38294944

RESUMO

In various biological systems, information from many noisy molecular receptors must be integrated into a collective response. A striking example is the thermal imaging organ of pit vipers. Single nerve fibers in the organ reliably respond to milli-Kelvin (mK) temperature increases, a thousand times more sensitive than their molecular sensors, thermo-transient receptor potential (TRP) ion channels. Here, we propose a mechanism for the integration of this molecular information. In our model, amplification arises due to proximity to a dynamical bifurcation, separating a regime with frequent and regular action potentials (APs), from a regime where APs are irregular and infrequent. Near the transition, AP frequency can have an extremely sharp dependence on temperature, naturally accounting for the thousand-fold amplification. Furthermore, close to the bifurcation, most of the information about temperature available in the TRP channels' kinetics can be read out from the times between consecutive APs even in the presence of readout noise. A key model prediction is that the coefficient of variation in the distribution of interspike times decreases with AP frequency, and quantitative comparison with experiments indeed suggests that nerve fibers of snakes are located very close to the bifurcation. While proximity to such bifurcation points typically requires fine-tuning of parameters, we propose that having feedback act from the order parameter (AP frequency) onto the control parameter robustly maintains the system in the vicinity of the bifurcation. This robustness suggests that similar feedback mechanisms might be found in other sensory systems which also need to detect tiny signals in a varying environment.


Assuntos
Crotalinae , Canais de Potencial de Receptor Transitório , Animais , Serpentes/fisiologia , Temperatura , Potenciais de Ação
15.
Annu Rev Physiol ; 85: 293-316, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763971

RESUMO

The ability to detect stimuli from the environment plays a pivotal role in our survival. The molecules that allow the detection of such signals include ion channels, which are proteins expressed in different cells and organs. Among these ion channels, the transient receptor potential (TRP) family responds to the presence of diverse chemicals, temperature, and osmotic changes, among others. This family of ion channels includes the TRPV or vanilloid subfamily whose members serve several physiological functions. Although these proteins have been studied intensively for the last two decades, owing to their structural and functional complexities, a number of controversies regarding their function still remain. Here, we discuss some salient features of their regulation in light of these controversies and outline some of the efforts pushing the field forward.


Assuntos
Canais Iônicos , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo
16.
Annu Rev Physiol ; 85: 425-448, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763973

RESUMO

Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.


Assuntos
Canais de Cátion TRPP , Humanos , Cálcio/metabolismo , Transdução de Sinais , Canais de Cátion TRPP/química , Canais de Cátion TRPP/metabolismo
17.
Annu Rev Pharmacol Toxicol ; 63: 273-293, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36100219

RESUMO

Specialized pro-resolving mediators (SPMs), including resolvins, protectins, and maresins, are endogenous lipid mediators that are synthesized from omega-3 polyunsaturated fatty acids during the acute phase or resolution phase of inflammation. Synthetic SPMs possess broad safety profiles and exhibit potent actions in resolving inflammation in preclinical models. Accumulating evidence in the past decade has demonstrated powerful analgesia of exogenous SPMs in rodent models of inflammatory, neuropathic, and cancer pain. Furthermore, endogenous SPMs are produced by sham surgery and neuromodulation (e.g., vagus nerve stimulation). SPMs produce their beneficial actions through multiple G protein-coupled receptors, expressed by immune cells, glial cells, and neurons. Notably, loss of SPM receptors impairs the resolution of pain. I also highlight the emerging role of SPMs in the control of itch. Pharmacological targeting of SPMs or SPM receptors has the potential to lead to novel therapeutics for pain and itch as emerging approaches in resolution pharmacology.


Assuntos
Inflamação , Dor , Humanos , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico
18.
J Cell Sci ; 137(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063216

RESUMO

In Chlamydomonas, the channel polycystin 2 (PKD2) is primarily present in the distal region of cilia, where it is attached to the axoneme and mastigonemes, extracellular polymers of MST1. In a smaller proximal ciliary region that lacks mastigonemes, PKD2 is more mobile. We show that the PKD2 regions are established early during ciliogenesis and increase proportionally in length as cilia elongate. In chimeric zygotes, tagged PKD2 rapidly entered the proximal region of PKD2-deficient cilia, whereas the assembly of the distal region was hindered, suggesting that axonemal binding of PKD2 requires de novo assembly of cilia. We identified the protein Small Interactor of PKD2 (SIP), a PKD2-related, single-pass transmembrane protein, as part of the PKD2-mastigoneme complex. In sip mutants, stability and proteolytic processing of PKD2 in the cell body were reduced and PKD2-mastigoneme complexes were absent from the cilia. Like the pkd2 and mst1 mutants, sip mutant cells swam with reduced velocity. Cilia of the pkd2 mutant beat with an increased frequency but were less efficient in moving the cells, suggesting a structural role for the PKD2-SIP-mastigoneme complex in increasing the effective surface of Chlamydomonas cilia.


Assuntos
Chlamydomonas , Cílios , Cílios/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , Proteínas/metabolismo , Axonema/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(1): e2217732120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574686

RESUMO

The drug praziquantel (PZQ) is the key clinical therapy for treating schistosomiasis and other infections caused by parasitic flatworms. A schistosome target for PZQ was recently identified- a transient receptor potential ion channel in the melastatin subfamily (TRPMPZQ)-however, little is known about the properties of TRPMPZQ in other parasitic flatworms. Here, TRPMPZQ orthologs were scrutinized from all currently available parasitic flatworm genomes. TRPMPZQ is present in all parasitic flatworms, and the consensus PZQ binding site was well conserved. Functional profiling of trematode, cestode, and a free-living flatworm TRPMPZQ ortholog revealed differing sensitives (~300-fold) of these TRPMPZQ channels toward PZQ, which matched the varied sensitivities of these different flatworms to PZQ. Three loci of variation were defined across the parasitic flatworm TRPMPZQ pocketome with the identity of an acidic residue in the TRP domain acting as a gatekeeper residue impacting PZQ residency within the TRPMPZQ ligand binding pocket. In trematodes and cyclophyllidean cestodes, which display high sensitivity to PZQ, this TRP domain residue is an aspartic acid which is permissive for potent activation by PZQ. However, the presence of a glutamic acid residue found in other parasitic and free-living flatworm TRPMPZQ was associated with lower sensitivity to PZQ. The definition of these different binding pocket architectures explains why PZQ shows high therapeutic effectiveness against specific fluke and tapeworm infections and will help the development of better tailored therapies toward other parasitic infections of humans, livestock, and fish.


Assuntos
Cestoides , Platelmintos , Canais de Cátion TRPM , Trematódeos , Animais , Praziquantel/farmacologia , Schistosoma , Canais de Cátion TRPM/metabolismo
20.
Proc Natl Acad Sci U S A ; 120(22): e2219686120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216541

RESUMO

Polycystins (PKD2, PKD2L1, and PKD2L2) are members of the transient receptor potential family, which form ciliary ion channels. Most notably, PKD2 dysregulation in the kidney nephron cilia is associated with polycystic kidney disease, but the function of PKD2L1 in neurons is undefined. In this report, we develop animal models to track the expression and subcellular localization of PKD2L1 in the brain. We discover that PKD2L1 localizes and functions as a Ca2+ channel in the primary cilia of hippocampal neurons that apically radiate from the soma. Loss of PKD2L1 expression ablates primary ciliary maturation and attenuates neuronal high-frequency excitability, which precipitates seizure susceptibility and autism spectrum disorder-like behavior in mice. The disproportionate impairment of interneuron excitability suggests that circuit disinhibition underlies the neurophenotypic features of these mice. Our results identify PKD2L1 channels as regulators of hippocampal excitability and the neuronal primary cilia as organelle mediators of brain electrical signaling.


Assuntos
Transtorno do Espectro Autista , Cílios , Camundongos , Animais , Cílios/metabolismo , Transtorno do Espectro Autista/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Receptores de Superfície Celular/metabolismo , Canais de Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA