Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunol Rev ; 314(1): 250-279, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36504274

RESUMO

Research on tumor-associated neutrophils (TAN) currently surges because of the well-documented strong clinical relevance of tumor-infiltrating neutrophils. This relevance is illustrated by strong correlations between high frequencies of intratumoral neutrophils and poor outcome in the majority of human cancers. Recent high-dimensional analysis of murine neutrophils provides evidence for unexpected plasticity of neutrophils in murine models of cancer and other inflammatory non-malignant diseases. New analysis tools enable deeper insight into the process of neutrophil differentiation and maturation. These technological and scientific developments led to the description of an ever-increasing number of distinct transcriptional states and associated phenotypes in murine models of disease and more recently also in humans. At present, functional validation of these different transcriptional states and potential phenotypes in cancer is lacking. Current functional concepts on neutrophils in cancer rely mainly on the myeloid-derived suppressor cell (MDSC) concept and the dichotomous and simple N1-N2 paradigm. In this manuscript, we review the historic development of those concepts, critically evaluate these concepts against the background of our own work and provide suggestions for a refinement of current concepts in order to facilitate the transition of TAN research from experimental insight to clinical translation.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Animais , Camundongos , Neutrófilos , Neoplasias/terapia , Neoplasias/patologia , Fenótipo
2.
Mol Plant Microbe Interact ; 37(3): 327-337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37759383

RESUMO

Pyrenophora tritici-repentis (tan spot) is a destructive foliar pathogen of wheat with global impact. This ascomycete fungus possesses a highly plastic open pangenome shaped by the gain and loss of effector genes. This study investigated the allelic variations in the chlorosis-encoding gene ToxB across 422 isolates representing all identified pathotypes and worldwide origins. To gain better insights into ToxB evolution, we examined its presence and variability in other Pyrenophora spp. A ToxB haplotype network was constructed, revealing the evolutionary relationships of this gene (20 haplotypes) across four Pyrenophora species. Notably, toxb, the homolog of ToxB, was detected for the first time in the barley pathogen Pyrenophora teres. The ToxB/toxb genes display evidence of selection that is characterized by loss of function, duplication, and diverse mutations. Within the ToxB/toxb open reading frame, 72 mutations were identified, including 14 synonymous, 55 nonsynonymous, and 3 indel mutations. Remarkably, a, ∼5.6-kb Copia-like retrotransposon, named Copia-1_Ptr, was found inserted in the toxb gene of a race 3 isolate. This insert disrupted the ToxB gene's function, a first case of effector gene disruption by a transposable element in P. tritici-repentis. Additionally, a microsatellite with 25 nucleotide repeats (0 to 10) in the upstream region of ToxB suggested a potential mechanism influencing ToxB expression and regulation. Exploring ToxB-like protein distribution in other ascomycetes revealed the presence of ToxB-like proteins in 19 additional species, including the Leotiomycetes class for the first time. The presence/absence pattern of ToxB-like proteins defied species relatedness compared with a phylogenetic tree, suggesting a past horizontal gene transfer event during the evolution of the ToxB gene. [Formula: see text] Copyright © 2024 His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food. This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Proteínas Fúngicas , Filogenia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Triticum/genética , Triticum/microbiologia
3.
BMC Genomics ; 25(1): 70, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233814

RESUMO

BACKGROUND: Dorper and Tan sheep are renowned for their rapid growth and exceptional meat quality, respectively. Previous research has provided evidence of the impact of gut microbiota on breed characteristics. The precise correlation between the gastrointestinal tract and peripheral organs in each breed is still unclear. Investigating the metabolic network of the intestinal organ has the potential to improve animal growth performance and enhance economic benefits through the regulation of intestinal metabolites. RESULTS: In this study, we identified the growth advantage of Dorper sheep and the high fat content of Tan sheep. A transcriptome study of the brain, liver, skeletal muscle, and intestinal tissues of both breeds revealed 3,750 differentially expressed genes (DEGs). The genes PPARGC1A, LPL, and PHGDH were found to be highly expressed in Doper, resulting in the up-regulation of pathways related to lipid oxidation, glycerophospholipid metabolism, and amino acid anabolism. Tan sheep highly express the BSEP, LDLR, and ACHE genes, which up-regulate the pathways involved in bile transport and cholesterol homeostasis. Hindgut content analysis identified 200 differentially accumulated metabolites (DAMs). Purines, pyrimidines, bile acids, and fatty acid substances were more abundant in Dorper sheep. Based on combined gene and metabolite analyses, we have identified glycine, serine, and threonine metabolism, tryptophan metabolism, bile secretion, cholesterol metabolism, and neuroactive ligand-receptor interaction as key factors contributing to the differences among the breeds. CONCLUSIONS: This study indicates that different breeds of sheep exhibit unique breed characteristics through various physiological regulatory methods. Dorper sheep upregulate metabolic signals related to glycine, serine, and threonine, resulting in an increase in purine and pyrimidine substances. This, in turn, promotes the synthesis of amino acids and facilitates body development, resulting in a faster rate of weight gain. Tan sheep accelerate bile transport, reduce bile accumulation in the intestine, and upregulate cholesterol homeostasis signals in skeletal muscles. This promotes the accumulation of peripheral and intramuscular fat, resulting in improved meat quality. This work adopts a joint analysis method of multi-tissue transcriptome and gut metabolome, providing a successful case for analyzing the mechanisms underlying the formation of various traits.


Assuntos
Melhoramento Vegetal , Transcriptoma , Ovinos/genética , Animais , Metaboloma , Glicina , Serina , Treonina , Colesterol
4.
Mol Microbiol ; 119(5): 612-629, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059688

RESUMO

The global wheat disease tan spot is caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) which secretes necrotrophic effectors to facilitate host plant colonization. We previously reported a role of the Zn2 Cys6 binuclear cluster transcription factor Pf2 in the regulation of the Ptr effector ToxA. Here, we show that Pf2 is also a positive regulator of ToxB, via targeted deletion of PtrPf2 which resulted in reduced ToxB expression and defects in conidiation and pathogenicity. To further investigate the function of Ptr Pf2 in regulating protein secretion, the secretome profiles of two Δptrpf2 mutants of two Ptr races (races 1 and 5) were evaluated using a SWATH-mass spectrometry (MS) quantitative approach. Analysis of the secretomes of the Δptrpf2 mutants from in vitro culture filtrate identified more than 500 secreted proteins, with 25% unique to each race. Of the identified proteins, less than 6% were significantly differentially regulated by Ptr Pf2. Among the downregulated proteins were ToxA and ToxB, specific to race 1 and race 5 respectively, demonstrating the role of Ptr Pf2 as a positive regulator of both effectors. Significant motif sequences identified in both ToxA and ToxB putative promoter regions were further explored via GFP reporter assays.


Assuntos
Ascomicetos , Micotoxinas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Secretoma , Ascomicetos/metabolismo , Triticum/metabolismo , Triticum/microbiologia , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micotoxinas/metabolismo
5.
Metabolomics ; 20(1): 19, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296869

RESUMO

INTRODUCTION: Tan Spot (TS) disease of wheat is caused by Pyrenophora tritici-repentis (Ptr), where most of the yield loss is linked to diseased flag leaves. As there are no fully resistant cultivars available, elucidating the responses of wheat to Ptr could inform the derivation of new resistant genotypes. OBJECTIVES: The study aimed to characterise the flag-leaf metabolomes of two spring wheat cultivars (Triticum aestivum L. cv. PF 080719 [PF] and cv. Fundacep Horizonte [FH]) following challenge with Ptr to gain insights into TS disease development. METHODS: PF and FH plants were inoculated with a Ptr strain that produces the necrotrophic toxin ToxA. The metabolic changes in flag leaves following challenge (24, 48, 72, and 96 h post-inoculation [hpi]) with Ptr were investigated using untargeted flow infusion ionisation-high resolution mass spectroscopy (FIE-HRMS). RESULTS: Both cultivars were susceptible to Ptr at the flag-leaf stage. Comparisons of Ptr- and mock-inoculated plants indicated that a major metabolic shift occurred at 24 hpi in FH, and at 48 hpi in PF. Although most altered metabolites were genotype specific, they were linked to common pathways; phenylpropanoid and flavonoid metabolism. Alterations in sugar metabolism as well as in glycolysis and glucogenesis pathways were also observed. Pathway enrichment analysis suggested that Ptr-triggered alterations in chloroplast and photosynthetic machinery in both cultivars, especially in FH at 96 hpi. In a wheat-Ptr interactome in integrative network analysis, "flavone and flavonol biosynthesis" and "starch and sucrose metabolism" were targeted as the key metabolic processes underlying PF-FH-Ptr interactions. CONCLUSION: These observations suggest the potential importance of flavone and flavonol biosynthesis as well as bioenergetic shifts in susceptibility to Ptr. This work highlights the value of metabolomic approaches to provide novel insights into wheat pathosystems.


Assuntos
Ascomicetos , Flavonas , Triticum , Metabolômica , Flavonóis , Açúcares
6.
Theor Appl Genet ; 137(8): 193, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073628

RESUMO

KEY MESSAGE: A total of 65 SNPs associated with resistance to tan spot and septoria nodorum blotch were identified in a panel of 180 cultivated emmer accessions through association mapping Tan spot and septoria nodorum blotch (SNB) are foliar diseases caused by the respective fungal pathogens Pyrenophora tritici-repentis and Parastagonospora nodorum that affect global wheat production. To find new sources of resistance, we evaluated a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for reactions to four P. tritici-repentis isolates Pti2, 86-124, 331-9 and DW5, two P. nodorum isolate, Sn4 and Sn2000, and four necrotrophic effectors (NEs) produced by the pathogens. About 8-36% of the accessions exhibited resistance to the four P. tritici-repentis isolates, with five accessions demonstrating resistance to all isolates. For SNB, 64% accessions showed resistance to Sn4, 43% to Sn2000 and 36% to both isolates, with Spain (11% accessions) as the most common origin of resistance. To understand the genetic basis of resistance, association mapping was performed using SNP (single nucleotide polymorphism) markers generated by genotype-by-sequencing and the 9 K SNP Infinium array. A total of 46 SNPs were significantly associated with tan spot and 19 SNPs with SNB resistance or susceptibility. Six trait loci on chromosome arms 1BL, 3BL, 4AL (2), 6BL and 7AL conferred resistance to two or more isolates. Known NE sensitivity genes for disease development were undetected except Snn5 for Sn2000, suggesting novel genetic factors are controlling host-pathogen interaction in cultivated emmer. The emmer accessions with the highest levels of resistance to the six pathogen isolates (e.g., CItr 14133-1, PI 94634-1 and PI 377672) could serve as donors for tan spot and SNB resistance in wheat breeding programs.


Assuntos
Ascomicetos , Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Fenótipo , Genótipo , Locos de Características Quantitativas , Marcadores Genéticos , Estudos de Associação Genética
7.
Mol Pharm ; 21(7): 3281-3295, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848439

RESUMO

Renal fibrosis plays a key role in the pathogenesis of chronic kidney disease (CKD), in which the persistent high expression of transforming growth factor ß1 (TGF-ß1) and α-smooth muscle actin (α-SMA) contributes to the progression of CKD to renal failure. In order to improve the solubility, bioavailability, and targeting of tanshinone IIA (Tan IIA), a novel targeting material, aminoethyl anisamide-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphate ethanolamine (AEAA-PEG-DSPE, APD) modified Tan IIA liposomes (APD-Tan IIA-L) was constructed. An animal model of glomerulonephritis induced by doxorubicin in BALB/c mice was established. APD-Tan IIA-L significantly decreased blood urea nitrogen and serum creatinine (SCr), and the consequences of renal tissue oxidative stress indicators showed that APD-Tan IIA-L downregulated malondialdehyde, upregulated superoxide dismutase, catalase, and glutathione peroxidase. Masson's trichrome staining showed that the deposition of collagen in the APD-Tan IIA-L group decreased significantly. The pro-fibrotic factors (fibronectin, collagen I, TGF-ß1, and α-SMA) and epithelial-mesenchymal transition marker (N-cadherin) were significantly inhibited by APD-Tan IIA-L. By improving the microenvironment of fibrotic kidneys, APD-Tan IIA-L attenuated TGF-ß1-induced excessive proliferation of fibroblasts and alleviated oxidative stress damage to the kidney, providing a new strategy for the clinical treatment of renal fibrosis.


Assuntos
Abietanos , Doxorrubicina , Fibrose , Glomerulonefrite , Rim , Lipossomos , Camundongos Endogâmicos BALB C , Animais , Camundongos , Lipossomos/química , Abietanos/farmacologia , Abietanos/química , Fibrose/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Masculino , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/patologia , Fator de Crescimento Transformador beta1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Modelos Animais de Doenças , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/induzido quimicamente
8.
Phytopathology ; 114(7): 1525-1532, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38530294

RESUMO

The necrotrophic effector ToxA is a well-studied virulence factor produced by several fungal necrotrophs. Initially cloned from the wheat tan spot pathogen Pyrenophora tritici-repentis in 1996, ToxA was found almost a decade later in another fungal pathogen, Parastagonospora nodorum, and its sister species, Parastagonospora pseudonodorum. In 2018, ToxA was detected in a third wheat fungal pathogenic species, Bipolaris sorokiniana, which causes spot blotch disease. However, unlike the case with P. tritici-repentis and P. nodorum, the ToxA in B. sorokiniana has only been investigated in recent years. In this report, five Australian B. sorokiniana isolates were assessed for the presence of ToxA. Four isolates were found to contain ToxA. While one isolate harbored the previously reported ToxA haplotype sequence (ToxA19), three isolates contain a different haplotype, designated herein as ToxA25, which has a nonsynonymous mutation resulting in an amino acid change of glycine to arginine at position 168. Both B. sorokiniana ToxA isoforms, when heterologously expressed in Escherichia coli, exhibited the classic ToxA necrosis-inducing activity on ToxA-sensitive Tsn1 cultivars. Preliminary analysis of the B. sorokiniana isolates in Australian wheat cultivars showed that isolates with ToxA19, ToxA25, or ToxA-deficient displayed various degrees of virulence, with the most aggressive isolates observed for those producing ToxA. Differences in spot blotch disease severity between Tsn1 and tsn1 cultivars were observed; however, this was not limited to the ToxA-producing isolates. The overall results suggest that the virulence of the Australian B. sorokiniana isolates is diverse, with the significance of ToxA-Tsn1 interactions depending on individual isolates.


Assuntos
Bipolaris , Proteínas Fúngicas , Haplótipos , Micotoxinas , Doenças das Plantas , Triticum , Triticum/microbiologia , Doenças das Plantas/microbiologia , Micotoxinas/genética , Micotoxinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Bipolaris/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Austrália , Fatores de Virulência/genética , Virulência/genética
9.
Sensors (Basel) ; 24(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257587

RESUMO

Traditional aquaculture systems appear challenged by the high levels of total ammoniacal nitrogen (TAN) produced, which can harm aquatic life. As demand for global fish production continues to increase, farmers should adopt recirculating aquaculture systems (RAS) equipped with biofilters to improve the water quality of the culture. The biofilter plays a crucial role in ammonia removal. Therefore, a biofilter such as a moving bed biofilm reactor (MBBR) biofilter is usually used in the RAS to reduce ammonia. However, the disadvantage of biofilter operation is that it requires an automatic system with a water quality monitoring and control system to ensure optimal performance. Therefore, this study focuses on developing an Internet of Things (IoT) system to monitor and control water quality to achieve optimal biofilm performance in laboratory-scale MBBR. From 35 days into the experiment, water quality was maintained by an aerator's on/off control to provide oxygen levels suitable for the aquatic environment while monitoring the pH, temperature, and total dissolved solids (TDS). When the amount of dissolved oxygen (DO) in the MBBR was optimal, the highest TAN removal efficiency was 50%, with the biofilm thickness reaching 119.88 µm. The forthcoming applications of the IoT water quality monitoring and control system in MBBR enable farmers to set up a system in RAS that can perform real-time measurements, alerts, and adjustments of critical water quality parameters such as TAN levels.


Assuntos
Amônia , Internet das Coisas , Animais , Biofilmes , Reatores Biológicos , Qualidade da Água , Oxigênio
10.
J Psycholinguist Res ; 53(1): 13, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353779

RESUMO

Amidst the contemporary diasporic landscape in Sinophone literature, this research critically examines the nexus of language, culture, and identity. The study aims to analyze literary pieces composed in Sinophone languages across diverse diasporic communities and uncover the impact of language and cultural elements on the articulation and comprehension of diasporic identity. This paper used the following. comparative and typological research, an in-depth analysis of three Sinophonic texts, and contextual analysis. The subject of the study was three texts: The Joy Luck Club (Amy Tan), Balzac and the Little Chinese Seamstress (Dai Sijie), and The Woman Warrior (Maxine Hong Kingston). The results showed that In The Joy Luck Club, language and cultural facets unveil the characters' dual identity struggles due to living abroad, exemplified through code-switching's psychological tension. Balzac and the Little Chinese Seamstress utilizes language and cultural details to underscore the significance of preserving heritage within the diaspora, with literary allusions amplifying this endeavor. In The Woman Warrior, language and cultural elements reflect the heroine's inner conflict as she navigates her dual cultural allegiance. This scholarly revelation deepens comprehension of how these aspects influence identity formation in the diaspora. These findings broaden the understanding of Sinophone diasporic literature, spotlighting shared trends in identity portrayal through language and culture. The research has theoretical value for literary, cultural, and anthropological studies and practical significance, potentially informing educational initiatives on diasporic literature and cultural diversity. This study's outcomes hold relevance for students, researchers, and cultural scholars exploring the role of language and culture in diasporic identity expression.


Assuntos
Cultura , Crise de Identidade , Idioma
11.
Entropy (Basel) ; 26(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38920516

RESUMO

Vibration monitoring and analysis are important methods in wind turbine gearbox fault diagnosis, and determining how to extract fault characteristics from the vibration signal is of primary importance. This paper presents a fault diagnosis approach based on modified hierarchical fluctuation dispersion entropy of tan-sigmoid mapping (MHFDE_TANSIG) and northern goshawk optimization-support vector machine (NGO-SVM) for wind turbine gearboxes. The tan-sigmoid (TANSIG) mapping function replaces the normal cumulative distribution function (NCDF) of the hierarchical fluctuation dispersion entropy (HFDE) method. Additionally, the hierarchical decomposition of the HFDE method is improved, resulting in the proposed MHFDE_TANSIG method. The vibration signals of wind turbine gearboxes are analyzed using the MHFDE_TANSIG method to extract fault features. The constructed fault feature set is used to intelligently recognize and classify the fault type of the gearboxes with the NGO-SVM classifier. The fault diagnosis methods based on MHFDE_TANSIG and NGO-SVM are applied to the experimental data analysis of gearboxes with different operating conditions. The results show that the fault diagnosis model proposed in this paper has the best performance with an average accuracy rate of 97.25%.

12.
BMC Genomics ; 24(1): 632, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872623

RESUMO

BACKGROUND: Tan and Hu sheep are well-known local breeds in China, producing lamb fur with unique ornamental and practical values highly appreciated by consumers worldwide. Fur quality is optimal at one month of age and gradually declines with time. Despite active research on its genetic mechanism using transcriptomic and whole genome bisulfite sequencing analysis, the main effective gene locus has not been found, and its regulatory mechanism is still unclear, which limits the breeding and improvement of fur traits. RESULTS: Scapular skin samples from newborn (1-month old) and adult (24-month old) Tan sheep were utilized for small ribonucleic acid (RNA) sequencing Principal Component Analysis (PCA) showed that the newborn and adult groups were completely separated. Differential expression analysis of micro-RNAs (miRNAs) identified 32 up-regulated miRNAs and 48 down-regulated miRNAs in the newborn groups. All up-regulated miRNAs were located in the imprinted. Dlk1-Gtl2 locus on chromosome 18, whereas all down-regulated miRNAs were distributed across the sheep chromosomes, without a clear pattern of positional consistency. Further, by systematically analyzing the target genes and signaling pathways of all 32 up-regulated miRNAs, we found that the PI3K-AKT signaling pathway has the potential to be targeted and regulated by most of the miRNAs in the Dlk1-Gtl2 region. In addition, we also re-analyzed miRNA sequencing data from public databases on Hu lambs (full sibling Hu lambs with high- and low-quality fur characteristics). Again, it was found that most of the up-regulated miRNAs in lambs with high-quality fur were also located in the Dlk1-Gtl2 region, whereas this patter was not present for down-regulated miRNAs. CONCLUSION: Sequencing of miRNAs in conjunction with public databases was employed to identify miRNAs within the imprinted Dlk1-Gtl2 region on chromosome 18, suggesting their potential roles as epigenetic regulators of fur traits. Small RNAs located at the Dlk1-Gtl2 locus were identified as having the potential to systematically regulate the PI3K-AKT signaling pathway, thereby indicating the relevance of the Dlk1-Gtl2/PI3K-AKT axis in the context of fur traits. Selection of parental specific expressed imprinted genes in the process of conserving and exploiting lamb fur traits should be emphasized.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Ovinos/genética , MicroRNAs/genética , Impressão Genômica , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Ligação ao Cálcio/genética
13.
Cell Tissue Res ; 394(1): 177-188, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37535101

RESUMO

Here, retrotransposon-like 1 (RTL1) is introduced as a marker for circulating and tissue neutrophils, tissue macrophages, and tumor-associated macrophages (TAM) and neutrophils (TAN). Anti-RTL1 polyclonal and monoclonal antibodies were produced, and their reactivity was examined by Western blotting (WB), ELISA, and immunostaining of human normal and cancer tissues. The reactivity of the anti-RTL1 antibodies with peripheral blood leukocytes and a panel of hematopoietic cell lines was examined. The generated antibodies specifically detected RTL1 in the WB of the placenta and U937 cells. The polyclonal antibody showed excellent reactivity with tissue-resident macrophages, Hofbauer cells, alveolar and splenic macrophages, Kupffer cells, and inflammatory cells in the tonsil, appendix, and gallbladder. In vitro GM-CSF-differentiated macrophages also showed a high level of intracellular RTL1 expression. TAM and TAN also showed excellent reactivity with this antibody. Almost all circulating granulocytes but not lymphocytes or monocytes expressed RTL1 at their surface. Serial sections of the appendix stained with CD15 and RTL1 and placenta stained with CD68 and RTL1 showed a considerable overlap in RTL1 expression in CD15+ granulocytes and CD68+ macrophages. A small percentage of myelomonocytic cell lines was positive for surface RTL1, while promyelocytic, monocytic, megaloblastic, and lymphoblastic cell lines were negative. Endothelial cells of normal and cancer tissues highly expressed RTL1. RTL1 could be considered a new marker for different normal tissue macrophages, TAM, circulating and tissue neutrophils, and TAN.

14.
BMC Microbiol ; 23(1): 331, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936065

RESUMO

The biological mechanisms underlying meat quality remain unclear. Currently, many studies report that the gastrointestinal microbiota is essential for animal growth and performance. However, it is uncertain which bacterial species are specifically associated with the meat quality traits. In this study, 16S rDNA and metagenomic sequencing were performed to explore the composition and function of microbes in various gastrointestinal segments of Tan sheep and Dorper sheep, as well as the relationship between microbiota and meat quality (specifically, the fatty acid content of the muscle). In the ruminal, duodenal, and colonic microbiome, several bacteria were uniquely identified in respective breeds, including Agrobacterium tumefaciens, Bacteroidales bacterium CF, and several members of the family Oscillospiraceae. The annotation of GO, KEGG, and CAZYme revealed that these different bacterial species were linked to the metabolism of glucose, lipids, and amino acids. Additionally, our findings suggested that 16 microbial species may be essential to the content of fatty acids in the muscle, especially C12:0 (lauric acid). 4 bacterial species, including Achromobacter xylosoxidans, Mageeibacillus indolicus, and Mycobacterium dioxanotrophicus, were positively correlated with C12:0, while 13 bacteria, including Methanobrevibacter millerae, Bacteroidales bacterium CF, and Bacteroides coprosuis were negatively correlated with C12:0. In a word, this study provides a basic data for better understanding the interaction between ruminant gastrointestinal microorganisms and the meat quality traits of hosts.


Assuntos
Microbioma Gastrointestinal , Microbiota , Ovinos , Animais , Microbioma Gastrointestinal/genética , Bactérias , Músculos , Ácidos Graxos/metabolismo , Bacteroidetes , Ácidos Láuricos/metabolismo
15.
J Exp Bot ; 74(15): 4707-4720, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37201950

RESUMO

Pathogen attacks elicit dynamic and widespread molecular responses in plants. While our understanding of plant responses has advanced considerably, little is known of the molecular responses in the asymptomatic 'green' regions adjoining lesions. Here, we explore gene expression data and high-resolution elemental imaging to report the spatiotemporal changes in the asymptomatic green region of susceptible and moderately resistant wheat cultivars infected with a necrotrophic fungal pathogen, Pyrenophora tritici-repentis. We show, with improved spatiotemporal resolution, that calcium oscillations are modified in the susceptible cultivar, resulting in 'frozen' host defence signals at the mature disease stage, and silencing of the host's recognition and defence mechanisms that would otherwise protect it from further attacks. In contrast, calcium accumulation and a heightened defence response were observed in the moderately resistant cultivar in the later stage of disease development. Furthermore, in the susceptible interaction, the asymptomatic green region was unable to recover after disease disruption. Our targeted sampling technique also enabled detection of eight previously predicted proteinaceous effectors in addition to the known ToxA effector. Collectively, our results highlight the benefits of spatially resolved molecular analysis and nutrient mapping to provide high-resolution spatiotemporal snapshots of host-pathogen interactions, paving the way for disentangling complex disease interactions in plants.


Assuntos
Transcriptoma , Triticum , Triticum/genética , Triticum/microbiologia , Raios X , Suscetibilidade a Doenças , Microscopia de Fluorescência , Doenças das Plantas/microbiologia
16.
Mol Breed ; 43(7): 54, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37337566

RESUMO

Septoria nodorum blotch (SNB) and tan spot, caused by the necrotrophic fungal pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis, respectively, often occur together as a leaf spotting disease complex on wheat (Triticum aestivum L.). Both pathogens produce necrotrophic effectors (NEs) that contribute to the development of disease. Here, genome-wide association analysis of a diverse panel of 264 winter wheat lines revealed novel loci on chromosomes 5A and 5B associated with sensitivity to the NEs SnTox3 and SnTox5 in addition to the known sensitivity genes for NEs Ptr/SnToxA, SnTox1, SnTox3, and SnTox5. Sensitivity loci for SnTox267 and Ptr ToxB were not detected. Evaluation of the panel with five P. nodorum isolates for SNB development indicated the Snn3-SnTox3 and Tsn1-SnToxA interactions played significant roles in disease development along with additional QTL on chromosomes 2A and 2D, which may correspond to the Snn7-SnTox267 interaction. For tan spot, the Tsc1-Ptr ToxC interaction was associated with disease caused by two isolates, and a novel QTL on chromosome 7D was associated with a third isolate. The Tsn1-ToxA interaction was associated with SNB but not tan spot. Therefore some, but not all, of the previously characterized host gene-NE interactions in these pathosystems play significant roles in disease development in winter wheat. Based on these results, breeders should prioritize the selection of resistance alleles at the Tsc1, Tsn1, Snn3, and Snn7 loci as well as the 2A and 7D QTL to obtain good levels of resistance to SNB and tan spot in winter wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01400-5.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37991600

RESUMO

BACKGROUND: Myocardial infarction remains a disease with high morbidity and death rate among cardiovascular diseases. Macrophages are abundant immune cells in the heart. Under different stimulatory factors, macrophages can differentiate into different phenotypes and play a dual pro-inflammatory and anti-inflammatory role. Therefore, a potential strategy for the treatment of myocardial infarction is to regulate the energy metabolism of macrophages and thereby regulate the polarization of macrophages. Tan IIA is an effective liposolubility component extracted from the root of Salvia miltiorrhiza and plays an important role in the treatment of cardiovascular diseases. On this basis, this study proposed whether Tan IIA could affect phenotype changes by regulating energy metabolism of macrophages, and thus exert its potential in the treatment of MI. METHODS: Establishing a myocardial infarction model, Tan IIA was given for 3 days and 7 days for intervention. Cardiac function was detected by echocardiography, and cardiac pathological sections of each group were stained with HE and Masson to observe the inflammatory cell infiltration and fibrosis area after administration. The expression and secretion of inflammatory factors in heart tissue and serum of each group, as well as the proportion of macrophages at the myocardial infarction site, were detected using RT-PCR, ELISA, and immunofluorescence. The mitochondrial function of macrophages was evaluated using JC-1, calcium ion concentration detection, reactive oxygen species detection, and mitochondrial electron microscopic analysis. Mechanically, single-cell transcriptome data mining, cell transcriptome sequencing, and molecular docking technology were used to anchor the target of Tan IIA and enrich the pathways to explore the mechanism of Tan IIA regulating macrophage energy metabolism and phenotype. The target of Tan IIA was further determined by gene knockdown and overexpression assay. RESULTS: The intervention of Tan IIA can improve the cardiac function, inflammatory cell infiltration and fibrosis after MI, reduce the expression of inflammatory factors in the heart, enhance the secretion of anti-inflammatory factors, increase the proportion of M2-type macrophages, reduce the proportion of M1-type macrophages, and promote tissue repair, suggesting that Tan IIA has pharmacological effects in the treatment of MI. In terms of mechanism, RNA-seq results suggest that the phenotype of macrophages is strongly correlated with energy metabolism, and Tan IIA can regulate the PGK1-PDHK1 signaling pathway, change the energy metabolism mode of macrophages, and then affect its phenotype. CONCLUSION: Tan IIA regulates the energy metabolism of macrophages and changes its phenotype through the PGK1-PDHK1 signaling pathway, thus playing a role in improving MI.

18.
Phytopathology ; 113(7): 1202-1209, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36750556

RESUMO

Tan spot disease is caused by Pyrenophora tritici-repentis (Ptr), one of the major necrotrophic fungal pathogens that affects wheat crops globally. Extensive research has shown that the necrotrophic fungal effectors ToxA, ToxB, and ToxC underlie the genetic interactions of Ptr race classification. ToxA and ToxB are both small proteins secreted during infection; however, the structure of ToxC remains unknown. In line with the recent discovery of the ToxC1 gene that is involved in ToxC production, a subset of 68 isolates collected from the Australian wheat cropping regions were assessed for the presence of all three effectors by pathotyping against four tan spot wheat differential lines and PCR amplification of ToxA, ToxB, and ToxC1. Based on the disease phenotypes, the 68 isolates were grouped into two races with 63 classified as race 1 and five as race 2. A representative selection of each race was tested against eight Australian commercial wheat cultivars and showed no distinction between the virulence levels. Sequencing of ToxA showed that both races had identical gene sequences of haplotype PtrA1. All the race 1 isolates possessed ToxC1 but three race 2 isolates also contained ToxC1 despite being unable to induce a spreading chlorotic symptom on the ToxC differential line. Quantitative trait loci mapping confirmed the absence of the ToxC-Tsc1 association in disease response caused by the ToxC1-containing race 2 isolate; however, ToxC1 expression was detected during plant infection. Altogether, these results suggest that there is a complex regulatory process involved in the production of ToxC within the Australian race 2 isolates.


Assuntos
Ascomicetos , Doenças das Plantas , Doenças das Plantas/microbiologia , Austrália , Locos de Características Quantitativas , Ascomicetos/genética , Triticum/genética , Triticum/microbiologia
19.
Phytopathology ; 113(10): 1967-1978, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37199466

RESUMO

Tan spot, caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr), is an important disease of durum and common wheat worldwide. Compared with common wheat, less is known about the genetics and molecular basis of tan spot resistance in durum wheat. We evaluated 510 durum lines from the Global Durum Wheat Panel (GDP) for sensitivity to the necrotrophic effectors (NEs) Ptr ToxA and Ptr ToxB and for reaction to Ptr isolates representing races 1 to 5. Overall, susceptible durum lines were most prevalent in South Asia, the Middle East, and North Africa. Genome-wide association analysis showed that the resistance locus Tsr7 was significantly associated with tan spot caused by races 2 and 3, but not races 1, 4, or 5. The NE sensitivity genes Tsc1 and Tsc2 were associated with susceptibility to Ptr ToxC- and Ptr ToxB-producing isolates, respectively, but Tsn1 was not associated with tan spot caused by Ptr ToxA-producing isolates, which further validates that the Tsn1-Ptr ToxA interaction does not play a significant role in tan spot development in durum. A unique locus on chromosome arm 2AS was associated with tan spot caused by race 4, a race once considered avirulent. A novel trait characterized by expanding chlorosis leading to increased disease severity caused by the Ptr ToxB-producing race 5 isolate DW5 was identified, and this trait was governed by a locus on chromosome 5B. We recommend that durum breeders select resistance alleles at the Tsr7, Tsc1, Tsc2, and the chromosome 2AS loci to obtain broad resistance to tan spot.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Mapeamento Cromossômico , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno/genética , Triticum/genética , Triticum/microbiologia
20.
Phytopathology ; 113(7): 1180-1184, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36809076

RESUMO

ToxA is one of the most studied proteinaceous necrotrophic effectors produced by plant pathogens. It has been identified in four pathogens (Pyrenophora tritici-repentis, Parastagonospora nodorum, Parastagonospora pseudonodorum [formerly Parastagonospora avenaria f. sp. tritici], and Bipolaris sorokiniana) causing leaf spot diseases on cereals worldwide. To date, 24 different ToxA haplotypes have been identified. Some P. tritici-repentis and related species also express ToxB, another small protein necrotrophic effector. We present here a revised and standardized nomenclature for these effectors, which could be extended to other poly-haplotypic genes found across multiple species.


Assuntos
Proteínas Fúngicas , Micotoxinas , Haplótipos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Micotoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA