Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.400
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(11): 2767-2784.e23, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38733989

RESUMO

The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.


Assuntos
Cerebelo , Neurônios , Retina , Animais , Feminino , Masculino , Camundongos , Cerebelo/metabolismo , Cerebelo/irrigação sanguínea , Cerebelo/citologia , Canais Iônicos/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Retina/citologia , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Vasos Retinianos/metabolismo
2.
Cell ; 187(15): 3953-3972.e26, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917789

RESUMO

Spatial transcriptomics (ST) methods unlock molecular mechanisms underlying tissue development, homeostasis, or disease. However, there is a need for easy-to-use, high-resolution, cost-efficient, and 3D-scalable methods. Here, we report Open-ST, a sequencing-based, open-source experimental and computational resource to address these challenges and to study the molecular organization of tissues in 2D and 3D. In mouse brain, Open-ST captured transcripts at subcellular resolution and reconstructed cell types. In primary head-and-neck tumors and patient-matched healthy/metastatic lymph nodes, Open-ST captured the diversity of immune, stromal, and tumor populations in space, validated by imaging-based ST. Distinct cell states were organized around cell-cell communication hotspots in the tumor but not the metastasis. Strikingly, the 3D reconstruction and multimodal analysis of the metastatic lymph node revealed spatially contiguous structures not visible in 2D and potential biomarkers precisely at the 3D tumor/lymph node boundary. All protocols and software are available at https://rajewsky-lab.github.io/openst.


Assuntos
Imageamento Tridimensional , Transcriptoma , Animais , Camundongos , Humanos , Transcriptoma/genética , Imageamento Tridimensional/métodos , Software , Perfilação da Expressão Gênica/métodos , Linfonodos/patologia , Linfonodos/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Metástase Linfática , Feminino
3.
Immunity ; 57(5): 1005-1018.e7, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697116

RESUMO

Cytokine expression during T cell differentiation is a highly regulated process that involves long-range promoter-enhancer and CTCF-CTCF contacts at cytokine loci. Here, we investigated the impact of dynamic chromatin loop formation within the topologically associating domain (TAD) in regulating the expression of interferon gamma (IFN-γ) and interleukin-22 (IL-22); these cytokine loci are closely located in the genome and are associated with complex enhancer landscapes, which are selectively active in type 1 and type 3 lymphocytes. In situ Hi-C analyses revealed inducible TADs that insulated Ifng and Il22 enhancers during Th1 cell differentiation. Targeted deletion of a 17 bp boundary motif of these TADs imbalanced Th1- and Th17-associated immunity, both in vitro and in vivo, upon Toxoplasma gondii infection. In contrast, this boundary element was dispensable for cytokine regulation in natural killer cells. Our findings suggest that precise cytokine regulation relies on lineage- and developmental stage-specific interactions of 3D chromatin architectures and enhancer landscapes.


Assuntos
Fator de Ligação a CCCTC , Diferenciação Celular , Interferon gama , Interleucina 22 , Interleucinas , Células Th1 , Animais , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Células Th1/imunologia , Camundongos , Diferenciação Celular/imunologia , Interferon gama/metabolismo , Sítios de Ligação , Interleucinas/metabolismo , Interleucinas/genética , Elementos Facilitadores Genéticos/genética , Camundongos Endogâmicos C57BL , Cromatina/metabolismo , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Toxoplasmose/genética , Regulação da Expressão Gênica , Toxoplasma/imunologia , Citocinas/metabolismo , Linhagem da Célula , Células Th17/imunologia
4.
Annu Rev Cell Dev Biol ; 32: 469-490, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27501447

RESUMO

Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.


Assuntos
Movimento Celular , Adesões Focais/metabolismo , Animais , Fenômenos Biomecânicos , Humanos , Modelos Biológicos
5.
EMBO J ; 43(9): 1770-1798, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565950

RESUMO

The cancer epigenome has been studied in cells cultured in two-dimensional (2D) monolayers, but recent studies highlight the impact of the extracellular matrix and the three-dimensional (3D) environment on multiple cellular functions. Here, we report the physical, biochemical, and genomic differences between T47D breast cancer cells cultured in 2D and as 3D spheroids. Cells within 3D spheroids exhibit a rounder nucleus with less accessible, more compacted chromatin, as well as altered expression of ~2000 genes, the majority of which become repressed. Hi-C analysis reveals that cells in 3D are enriched for regions belonging to the B compartment, have decreased chromatin-bound CTCF and increased fusion of topologically associating domains (TADs). Upregulation of the Hippo pathway in 3D spheroids results in the activation of the LATS1 kinase, which promotes phosphorylation and displacement of CTCF from DNA, thereby likely causing the observed TAD fusions. 3D cells show higher chromatin binding of progesterone receptor (PR), leading to an increase in the number of hormone-regulated genes. This effect is in part mediated by LATS1 activation, which favors cytoplasmic retention of YAP and CTCF removal.


Assuntos
Neoplasias da Mama , Fator de Ligação a CCCTC , Cromatina , Proteínas Serina-Treonina Quinases , Humanos , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Cromatina/metabolismo , Cromatina/genética , Feminino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Via de Sinalização Hippo
6.
EMBO J ; 43(4): 568-594, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263333

RESUMO

Comprehensive analysis of cellular dynamics during the process of morphogenesis is fundamental to understanding the principles of animal development. Despite recent advancements in light microscopy, how successive cell shape changes lead to complex three-dimensional tissue morphogenesis is still largely unresolved. Using in vivo live imaging of Drosophila wing development, we have studied unique cellular structures comprising a microtubule-based membrane protrusion network. This network, which we name here the Interplanar Amida Network (IPAN), links the two wing epithelium leaflets. Initially, the IPAN sustains cell-cell contacts between the two layers of the wing epithelium through basal protrusions. Subsequent disassembly of the IPAN involves loss of these contacts, with concomitant degeneration of aligned microtubules. These processes are both autonomously and non-autonomously required for mitosis, leading to coordinated tissue proliferation between two wing epithelia. Our findings further reveal that a microtubule organization switch from non-centrosomal to centrosomal microtubule-organizing centers (MTOCs) at the G2/M transition leads to disassembly of non-centrosomal microtubule-derived IPAN protrusions. These findings exemplify how cell shape change-mediated loss of inter-tissue contacts results in 3D tissue morphogenesis.


Assuntos
Drosophila , Microtúbulos , Animais , Microtúbulos/metabolismo , Epitélio/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Morfogênese
7.
Mol Cell ; 79(2): 234-250.e9, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32579944

RESUMO

Somatic cell nuclear transfer (SCNT) can reprogram a somatic nucleus to a totipotent state. However, the re-organization of 3D chromatin structure in this process remains poorly understood. Using low-input Hi-C, we revealed that, during SCNT, the transferred nucleus first enters a mitotic-like state (premature chromatin condensation). Unlike fertilized embryos, SCNT embryos show stronger topologically associating domains (TADs) at the 1-cell stage. TADs become weaker at the 2-cell stage, followed by gradual consolidation. Compartments A/B are markedly weak in 1-cell SCNT embryos and become increasingly strengthened afterward. By the 8-cell stage, somatic chromatin architecture is largely reset to embryonic patterns. Unexpectedly, we found cohesin represses minor zygotic genome activation (ZGA) genes (2-cell-specific genes) in pluripotent and differentiated cells, and pre-depleting cohesin in donor cells facilitates minor ZGA and SCNT. These data reveal multi-step reprogramming of 3D chromatin architecture during SCNT and support dual roles of cohesin in TAD formation and minor ZGA repression.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Cromatina/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Técnicas de Transferência Nuclear , Zigoto/fisiologia , Animais , Linhagem Celular , Núcleo Celular , Montagem e Desmontagem da Cromatina , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Desenvolvimento Embrionário , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coesinas
8.
Plant Cell ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283506

RESUMO

The geometric shape and arrangement of individual cells play a role in shaping organ functions. However, analyzing multicellular features and exploring their connectomes in centimeter-scale plant organs remain challenging. Here, we established a set of frameworks named Large-Volume Fully Automated Cell Reconstruction (LVACR), enabling the exploration of three-dimensional (3D) cytological features and cellular connectivity in plant tissues. Through benchmark testing, our framework demonstrated superior efficiency in cell segmentation and aggregation, successfully addressing the inherent challenges posed by light sheet fluorescence microscopy (LSFM) imaging. Using LVACR, we successfully established a cell atlas of different plant tissues. Cellular morphology analysis revealed differences of cell clusters and shapes in between different poplar (P. simonii Carr. and P. canadensis Moench.) seeds, whereas topological analysis revealed that they maintained conserved cellular connectivity. Furthermore, LVACR spatiotemporally demonstrated an initial burst of cell proliferation, accompanied by morphological transformations at an early stage in developing the shoot apical meristem. During subsequent development, cell differentiation produced anisotropic features, thereby resulting in various cell shapes. Overall, our findings provided valuable insights into the precise spatial arrangement and cellular behavior of multicellular organisms, thus enhancing our understanding of the complex processes underlying plant growth and differentiation.

9.
Proc Natl Acad Sci U S A ; 121(36): e2405168121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39196620

RESUMO

Multidimensional solitons are prevalent in numerous research fields. In orientationally ordered soft matter system, three-dimensional director solitons exemplify the localized distortion of molecular orientation. However, their precise manipulation remains challenging due to unpredictable and uncontrolled generation. Here, we utilize preimposed programmable photopatterning in nematics to control the kinetics of director solitons. This enables both unidirectional and bidirectional generation at specific locations and times, confinement within micron-scaled patterns of diverse shapes, and directed propagation along predefined trajectories. A focused dynamical model provides insight into the origins of these solitons and aligns closely with experimental observations, underscoring the pivotal role of anchoring conditions in soliton manipulation. Our findings pave the way for diverse fundamental research avenues and promising applications, including microcargo transportation and optical information processing.

10.
Proc Natl Acad Sci U S A ; 121(38): e2402518121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39254997

RESUMO

The in vivo three-dimensional genomic architecture of adult mature neurons at homeostasis and after medically relevant perturbations such as axonal injury remains elusive. Here, we address this knowledge gap by mapping the three-dimensional chromatin architecture and gene expression program at homeostasis and after sciatic nerve injury in wild-type and cohesin-deficient mouse sensory dorsal root ganglia neurons via combinatorial Hi-C, promoter-capture Hi-C, CUT&Tag for H3K27ac and RNA-seq. We find that genes involved in axonal regeneration form long-range, complex chromatin loops, and that cohesin is required for the full induction of the regenerative transcriptional program. Importantly, loss of cohesin results in disruption of chromatin architecture and severely impaired nerve regeneration. Complex enhancer-promoter loops are also enriched in the human fetal cortical plate, where the axonal growth potential is highest, and are lost in mature adult neurons. Together, these data provide an original three-dimensional chromatin map of adult sensory neurons in vivo and demonstrate a role for cohesin-dependent long-range promoter interactions in nerve regeneration.


Assuntos
Axônios , Cromatina , Coesinas , Regeneração Nervosa , Regiões Promotoras Genéticas , Células Receptoras Sensoriais , Animais , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Camundongos , Regiões Promotoras Genéticas/genética , Cromatina/metabolismo , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Axônios/metabolismo , Axônios/fisiologia , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Elementos Facilitadores Genéticos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Gânglios Espinais/metabolismo , Gânglios Espinais/citologia , Nervo Isquiático/metabolismo
11.
J Cell Sci ; 137(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39171439

RESUMO

The renal glomerulus produces primary urine from blood plasma by ultrafiltration. The ultrastructure of the glomerulus is closely related to filtration function and disease development. The ultrastructure of glomeruli has mainly been evaluated using transmission electron microscopy; however, the volume that can be observed using transmission electron microscopy is extremely limited relative to the total volume of the glomerulus. Consequently, observing structures that exist in only one location in each glomerulus, such as the vascular pole, and evaluating low-density or localized lesions are challenging tasks. Array tomography (AT) is a technique used to analyze the ultrastructure of tissues and cells via scanning electron microscopy of serial sections. In this study, we present an AT workflow that is optimized for observing complete serial sections of the whole glomerulus, and we share several analytical examples that use the optimized AT workflow, demonstrating the usefulness of this approach. Overall, this AT workflow can be a powerful tool for structural and pathological evaluation of the glomerulus. This workflow is also expected to provide new insights into the ultrastructure of the glomerulus and its constituent cells.


Assuntos
Glomérulos Renais , Glomérulos Renais/ultraestrutura , Animais , Microscopia Eletrônica de Varredura/métodos , Humanos , Tomografia/métodos , Camundongos , Masculino
12.
Mol Cell ; 72(6): 920-924, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576654

RESUMO

Fine tuning of the transcriptional program requires the competing action of multiple protein complexes in a well-organized environment. Genome folding creates proximity between genes, leading to accumulation of regulatory factors and formation of local microenvironments. Many roles of this complex organization controlling gene transcription remain to be explored. In this Perspective, we are proposing the existence of a transcriptional ecosystem equilibrium: a mechanism balancing transcriptional regulation between connected genes during environmental disturbances. This model is derived from chromosome architecture studies assigning genes to specific DNA structures and evidence establishing that the transcription machinery and coregulators create dynamic phase separation droplets surrounding active genes. Defining connected genes as ecosystems rather than individuals will cement that transcriptional regulation is a biochemical equilibrium and force a reassessment of direct and indirect responses to environmental disturbances.


Assuntos
Núcleo Celular/fisiologia , Cromatina/genética , Cromossomos/genética , Ecossistema , Genoma , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Microambiente Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Cromossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Modelos Genéticos , Conformação de Ácido Nucleico , Conformação Proteica , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(19): e2300923120, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126696

RESUMO

The conventional wisdom is that liquids are completely disordered and lack nontrivial structure beyond nearest-neighbor distances. Recent observations have upended this view and demonstrated that the microstructure in liquids is surprisingly rich and plays a critical role in numerous physical, biological, and industrial processes. However, approaches to uncover this structure are either system-specific or yield results that are not physically intuitive. Here, through single-particle resolved three-dimensional confocal microscope imaging and the use of a recently introduced four-point correlation function, we show that bidisperse colloidal liquids have a highly nontrivial structure comprising alternating layers with icosahedral and dodecahedral order, which extends well beyond nearest-neighbor distances and grows with supercooling. By quantifying the dynamics of the system on the particle level, we establish that it is this intermediate-range order, and not the short-range order, which has a one-to-one correlation with dynamical heterogeneities, a property directly related to the relaxation dynamics of glassy liquids. Our experimental findings provide a direct and much sought-after link between the structure and dynamics of liquids and pave the way for probing the consequences of this intermediate-range order in other liquid state processes.

14.
Trends Genet ; 38(5): 413-415, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35221113

RESUMO

Chromatin structure is critically involved in gene regulation and cell fate determination. How this structure is established and maintained in distinct, terminally differentiated cells remains elusive. Winick-Ng et al. address this puzzle by applying immunoGAM in different brain cell types and reveal cell type-specific chromatin topologies, long gene decompaction, and the involvement of transcription factors (TFs).


Assuntos
Cromatina , Cromossomos , Cromatina/genética , Regulação da Expressão Gênica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
J Virol ; 98(2): e0173523, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38236007

RESUMO

Murine norovirus (MNV) undergoes extremely large conformational changes in response to the environment. The T = 3 icosahedral capsid is composed of 180 copies of ~58-kDa VP1 comprised of N-terminus (N), shell (S), and C-terminal protruding (P) domains. At neutral pH, the P domains are loosely tethered to the shell and float ~15 Å above the surface. At low pH or in the presence of bile salts, the P domain drops onto the shell and this movement is accompanied by conformational changes within the P domain that enhance receptor interactions while blocking antibody binding. While previous crystallographic studies identified metal binding sites in the isolated P domain, the ~2.7-Å cryo-electron microscopy structures of MNV in the presence of Mg2+ or Ca2+ presented here show that metal ions can recapitulate the contraction observed at low pH or in the presence of bile. Further, we show that these conformational changes are reversed by dialysis against EDTA. As observed in the P domain crystal structures, metal ions bind to and contract the G'H' loop. This movement is correlated with the lifting of the C'D' loop and rotation of the P domain dimers about each other, exposing the bile salt binding pocket. Isothermal titration calorimetry experiments presented here demonstrate that the activation signals (bile salts, low pH, and metal ions) act in a synergistic manner that, individually, all result in the same activated structure. We present a model whereby these reversible conformational changes represent a uniquely dynamic and tissue-specific structural adaptation to the in vivo environment.IMPORTANCEThe highly mobile protruding domains on the calicivirus capsids are recognized by cell receptor(s) and antibodies. At neutral pH, they float ~15 Å above the shell but at low pH or in the presence of bile salts, they contract onto the surface. Concomitantly, changes within the P domain block antibody binding while enhancing receptor binding. While we previously demonstrated that metals also block antibody binding, it was unknown whether they might also cause similar conformational changes in the virion. Here, we present the near atomic cryo-electron microscopy structures of infectious murine norovirus (MNV) in the presence of calcium or magnesium ions. The metal ions reversibly induce the same P domain contraction as low pH and bile salts and act in a synergistic manner with the other stimuli. We propose that, unlike most other viruses, MNV facilely changes conformations as a unique means to escape immune surveillance as it moves through various tissues.


Assuntos
Cálcio , Magnésio , Norovirus , Animais , Camundongos , Ácidos e Sais Biliares , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Norovirus/química , Norovirus/ultraestrutura , Cálcio/química , Magnésio/química
16.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36528804

RESUMO

The rapid progress of machine learning (ML) in predicting molecular properties enables high-precision predictions being routinely achieved. However, many ML models, such as conventional molecular graph, cannot differentiate stereoisomers of certain types, particularly conformational and chiral ones that share the same bonding connectivity but differ in spatial arrangement. Here, we designed a hybrid molecular graph network, Chemical Feature Fusion Network (CFFN), to address the issue by integrating planar and stereo information of molecules in an interweaved fashion. The three-dimensional (3D, i.e., stereo) modality guarantees precision and completeness by providing unabridged information, while the two-dimensional (2D, i.e., planar) modality brings in chemical intuitions as prior knowledge for guidance. The zipper-like arrangement of 2D and 3D information processing promotes cooperativity between them, and their synergy is the key to our model's success. Experiments on various molecules or conformational datasets including a special newly created chiral molecule dataset comprised of various configurations and conformations demonstrate the superior performance of CFFN. The advantage of CFFN is even more significant in datasets made of small samples. Ablation experiments confirm that fusing 2D and 3D molecular graphs as unambiguous molecular descriptors can not only effectively distinguish molecules and their conformations, but also achieve more accurate and robust prediction of quantum chemical properties.


Assuntos
Aprendizado de Máquina , Estereoisomerismo , Conformação Molecular
17.
Arterioscler Thromb Vasc Biol ; 44(5): e145-e167, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38482696

RESUMO

BACKGROUND: New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS: Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS: Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS: Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.


Assuntos
Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-fos , Transcriptoma , Proteínas rho de Ligação ao GTP , Animais , Humanos , Camundongos , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/genética , Fenótipo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Transdução de Sinais , Análise de Célula Única , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética
18.
Arterioscler Thromb Vasc Biol ; 44(7): 1523-1536, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38695171

RESUMO

The implementation of human induced pluripotent stem cell (hiPSC) models has introduced an additional tool for identifying molecular mechanisms of disease that complement animal models. Patient-derived or CRISPR/Cas9-edited induced pluripotent stem cells differentiated into smooth muscle cells (SMCs) have been leveraged to discover novel mechanisms, screen potential therapeutic strategies, and model in vivo development. The field has evolved over almost 15 years of research using hiPSC-SMCs and has made significant strides toward overcoming initial challenges such as the lineage specificity of SMC phenotypes. However, challenges both specific (eg, the lack of specific markers to thoroughly validate hiPSC-SMCs) and general (eg, a lack of transparency and consensus around methodology in the field) remain. In this review, we highlight the recent successes and remaining challenges of the hiPSC-SMC model.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Miócitos de Músculo Liso , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Animais , Fenótipo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Linhagem da Célula
19.
Exp Cell Res ; 443(1): 114289, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39433171

RESUMO

Neuroblastoma (NB) is the most common pediatric extracranial solid tumor. It accounts for 50 % of cancers diagnosed in infants less than 1 year old, and 10 % of all pediatric cancer deaths in the United States. High-risk patients have a less than 50 % 5-year survival rate with current treatment strategies. The complex tumor microenvironment of NB makes the development of treatment strategies for high-risk patients challenging. There is increasing evidence that intratumoral immune suppression plays an important role in the progression and invasion of NB tumors. Few three-dimensional (3D) cancer models include components of the innate immune system. This work develops a preclinical 3D NB-immune co-culture model using SK-N-AS NB cells, NK-92 natural killer cells, and THP-1 derived macrophages, co-cultured on porous 3D silk scaffolds to provide tumor architecture. Conditioned media and indirect co-culturing showed changes in SK-N-AS gene expression associated with immunoregulatory signaling, and changes in NK-92 gene expression that are associated with reduced cytotoxicity. This motivated the development of a 3D direct co-culture system in which NB cells were seeded prior to immune cells to allow incorporation and deposition of extracellular matrix within the construct. Immune cells were then incorporated into the model to achieve direct co-culture with SK-N-AS cells. Changes in THP-1 macrophage polarization toward a more M2-like phenotype were observed in 3D direct co-culture, as well as altered NK-92 cell protein secretion and cytotoxic activity. Preliminary testing of immunotherapeutics within the model was conducted on both NB-macrophage and NB-NK co-cultures, but the model demonstrated limited response to immunotherapeutics. This work lays the foundation for building high-throughput therapeutic screening models for the improved treatment NB and other solid tumors.

20.
Cell Mol Life Sci ; 81(1): 173, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597967

RESUMO

Heterozygous mutations in any of three major genes, BRCA1, BRCA2 and PALB2, are associated with high-risk hereditary breast cancer susceptibility frequently seen as familial disease clustering. PALB2 is a key interaction partner and regulator of several vital cellular activities of BRCA1 and BRCA2, and is thus required for DNA damage repair and alleviation of replicative and oxidative stress. Little is however known about how PALB2-deficiency affects cell function beyond that, especially in the three-dimensional setting, and also about its role during early steps of malignancy development. To answer these questions, we have generated biologically relevant MCF10A mammary epithelial cell lines with mutations that are comparable to certain clinically important PALB2 defects. We show in a non-cancerous background how both mono- and biallelically PALB2-mutated cells exhibit gross spontaneous DNA damage and mitotic aberrations. Furthermore, PALB2-deficiency disturbs three-dimensional spheroid morphology, increases the migrational capacity and invasiveness of the cells, and broadly alters their transcriptome profiles. TGFß signaling and KRT14 expression are enhanced in PALB2-mutated cells and their inhibition and knock down, respectively, lead to partial restoration of cell functions. KRT14-positive cells are also more abundant with DNA damage than KRT14-negative cells. The obtained results indicate comprehensive cellular changes upon PALB2 mutations, even in the presence of half dosage of wild type PALB2 and demonstrate how PALB2 mutations may predispose their carriers to malignancy.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Reparo do DNA , Células Epiteliais , Mama , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA