Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.859
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 81(16): 3275-3293.e12, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34245671

RESUMO

Cells communicate with their environment via surface proteins and secreted factors. Unconventional protein secretion (UPS) is an evolutionarily conserved process, via which distinct cargo proteins are secreted upon stress. Most UPS types depend upon the Golgi-associated GRASP55 protein. However, its regulation and biological role remain poorly understood. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) directly phosphorylates GRASP55 to maintain its Golgi localization, thus revealing a physiological role for mTORC1 at this organelle. Stimuli that inhibit mTORC1 cause GRASP55 dephosphorylation and relocalization to UPS compartments. Through multiple, unbiased, proteomic analyses, we identify numerous cargoes that follow this unconventional secretory route to reshape the cellular secretome and surfactome. Using MMP2 secretion as a proxy for UPS, we provide important insights on its regulation and physiological role. Collectively, our findings reveal the mTORC1-GRASP55 signaling hub as the integration point in stress signaling upstream of UPS and as a key coordinator of the cellular adaptation to stress.


Assuntos
Proteínas da Matriz do Complexo de Golgi/genética , Proteoma/genética , Proteômica , Estresse Fisiológico/genética , Matriz Extracelular/genética , Complexo de Golgi/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Membrana/genética , Transporte Proteico/genética , Transdução de Sinais/genética
2.
Am J Hum Genet ; 110(6): 979-988, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141891

RESUMO

Tuberous sclerosis complex (TSC) is a neurogenetic disorder due to loss-of-function TSC1 or TSC2 variants, characterized by tumors affecting multiple organs, including skin, brain, heart, lung, and kidney. Mosaicism for TSC1 or TSC2 variants occurs in 10%-15% of individuals diagnosed with TSC. Here, we report comprehensive characterization of TSC mosaicism by using massively parallel sequencing (MPS) of 330 TSC samples from a variety of tissues and fluids from a cohort of 95 individuals with mosaic TSC. TSC1 variants in individuals with mosaic TSC are much less common (9%) than in germline TSC overall (26%) (p < 0.0001). The mosaic variant allele frequency (VAF) is significantly higher in TSC1 than in TSC2, in both blood and saliva (median VAF: TSC1, 4.91%; TSC2, 1.93%; p = 0.036) and facial angiofibromas (median VAF: TSC1, 7.7%; TSC2 3.7%; p = 0.004), while the number of TSC clinical features in individuals with TSC1 and TSC2 mosaicism was similar. The distribution of mosaic variants across TSC1 and TSC2 is similar to that for pathogenic germline variants in general TSC. The systemic mosaic variant was not present in blood in 14 of 76 (18%) individuals with TSC, highlighting the value of analysis of multiple samples from each individual. A detailed comparison revealed that nearly all TSC clinical features are less common in individuals with mosaic versus germline TSC. A large number of previously unreported TSC1 and TSC2 variants, including intronic and large rearrangements (n = 11), were also identified.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/genética , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Mutação , Proteína 1 do Complexo Esclerose Tuberosa/genética , Fenótipo
3.
Annu Rev Neurosci ; 41: 1-23, 2018 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-29490194

RESUMO

The mechanistic target of rapamycin (mTOR) is an important signaling hub that integrates environmental information regarding energy availability and stimulates anabolic molecular processes and cell growth. Abnormalities in this pathway have been identified in several syndromes in which autism spectrum disorder (ASD) is highly prevalent. Several studies have investigated mTOR signaling in developmental and neuronal processes that, when dysregulated, could contribute to the development of ASD. Although many potential mechanisms still remain to be fully understood, these associations are of great interest because of the clinical availability of mTOR inhibitors. Clinical trials evaluating the efficacy of mTOR inhibitors to improve neurodevelopmental outcomes have been initiated.


Assuntos
Transtorno Autístico/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Transtorno Autístico/genética , Transtorno Autístico/patologia , Transtorno Autístico/fisiopatologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
4.
Proc Natl Acad Sci U S A ; 120(45): e2301534120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903257

RESUMO

L-type voltage-gated calcium (Ca2+) channels (L-VGCC) dysfunction is implicated in several neurological and psychiatric diseases. While a popular therapeutic target, it is unknown whether molecular mechanisms leading to disrupted L-VGCC across neurodegenerative disorders are conserved. Importantly, L-VGCC integrate synaptic signals to facilitate a plethora of cellular mechanisms; however, mechanisms that regulate L-VGCC channel density and subcellular compartmentalization are understudied. Herein, we report that in disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), deficits in dendritic L-VGCC activity are associated with increased expression of the RNA-binding protein (RBP) Parkinsonism-associated deglycase (DJ-1). DJ-1 binds the mRNA coding for the alpha and auxiliary Ca2+ channel subunits CaV1.2 and α2δ2, and represses their mRNA translation, only in the disease states, specifically preclinical models of tuberous sclerosis complex (TSC) and Alzheimer's disease (AD). In agreement, DJ-1-mediated repression of CaV1.2/α2δ2 protein synthesis in dendrites is exaggerated in mouse models of AD and TSC, resulting in deficits in dendritic L-VGCC calcium activity. Finding of DJ-1-regulated L-VGCC activity in dendrites in TSC and AD provides a unique signaling pathway that can be targeted in clinical mTORopathies.


Assuntos
Doença de Alzheimer , Esclerose Tuberosa , Animais , Camundongos , Doença de Alzheimer/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Dendritos/metabolismo , Mamíferos/metabolismo , Esclerose Tuberosa/genética
5.
EMBO Rep ; 24(7): e56574, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212043

RESUMO

Dysregulation of the activity of the mechanistic target of rapamycin complex 1 (mTORC1) is commonly linked to aging, cancer, and genetic disorders such as tuberous sclerosis (TS), a rare neurodevelopmental multisystemic disease characterized by benign tumors, seizures, and intellectual disability. Although patches of white hair on the scalp (poliosis) are considered as early signs of TS, the underlying molecular mechanisms and potential involvement of mTORC1 in hair depigmentation remain unclear. Here, we have used healthy, organ-cultured human scalp hair follicles (HFs) to interrogate the role of mTORC1 in a prototypic human (mini-)organ. Gray/white HFs exhibit high mTORC1 activity, while mTORC1 inhibition by rapamycin stimulated HF growth and pigmentation, even in gray/white HFs that still contained some surviving melanocytes. Mechanistically, this occurred via increased intrafollicular production of the melanotropic hormone, α-MSH. In contrast, knockdown of intrafollicular TSC2, a negative regulator of mTORC1, significantly reduced HF pigmentation. Our findings introduce mTORC1 activity as an important negative regulator of human HF growth and pigmentation and suggest that pharmacological mTORC1 inhibition could become a novel strategy in the management of hair loss and depigmentation disorders.


Assuntos
Folículo Piloso , Pigmentação , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Pigmentação/genética , Melanócitos , Cor de Cabelo/genética
6.
Cereb Cortex ; 34(13): 94-103, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696597

RESUMO

Autism (or autism spectrum disorder) was initially defined as a psychiatric disorder, with the likely cause maternal behavior (the very destructive "refrigerator mother" theory). It took several decades for research into brain mechanisms to become established. Both neuropathological and imaging studies found differences in the cerebellum in autism spectrum disorder, the most widely documented being a decreased density of Purkinje cells in the cerebellar cortex. The popular interpretation of these results is that cerebellar neuropathology is a critical cause of autism spectrum disorder. We challenge that view by arguing that if fewer Purkinje cells are critical for autism spectrum disorder, then any condition that causes the loss of Purkinje cells should also cause autism spectrum disorder. We will review data on damage to the cerebellum from cerebellar lesions, tumors, and several syndromes (Joubert syndrome, Fragile X, and tuberous sclerosis). Collectively, these studies raise the question of whether the cerebellum really has a role in autism spectrum disorder. Autism spectrum disorder is now recognized as a genetically caused developmental disorder. A better understanding of the genes that underlie the differences in brain development that result in autism spectrum disorder is likely to show that these genes affect the development of the cerebellum in parallel with the development of the structures that do underlie autism spectrum disorder.


Assuntos
Cerebelo , Humanos , Cerebelo/patologia , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/diagnóstico por imagem , Animais , Transtorno Autístico/patologia , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Células de Purkinje/patologia
7.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35173043

RESUMO

Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography-mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 (Tsc2) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Linfangioleiomiomatose/tratamento farmacológico , RNA Mensageiro/administração & dosagem , Animais , Feminino , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Lipossomos/química , Lipossomos/farmacologia , Pulmão/citologia , Pulmão/patologia , Pneumopatias/tratamento farmacológico , Pneumopatias/metabolismo , Linfangioleiomiomatose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/farmacologia , RNA Interferente Pequeno/metabolismo
8.
Neurogenetics ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110368

RESUMO

Tuberous sclerosis complex (TSC) is a rare autosomal dominant disorder caused by mutations in the TSC1 or TSC2 gene. The aim of this study was to analyze the genotypes and phenotypes of Korean patients diagnosed with TSC and expand our understanding of this disorder. This retrospective observational study included 331 patients clinically diagnosed with TSC between November 1990 and April 2023 at Severance Children's Hospital, Seoul, South Korea. The demographic and clinical characteristics of the patients were investigated. Thirty novel variants were identified. Of the 331 patients, 188 underwent genetic testing, and genotype-phenotype variation was analyzed according to the type of gene mutation and functional domain. Fourty-nine patients (49/188, 26%) were had TSC1 mutations, 103 (55%) had TSC2 mutations, and 36 (19%) had no mutation identified (NMI). Hotspots were identified in exons 8 of TSC1 and exons 35 and 41 of TSC2. Patients with TSC2 mutations exhibited a significantly younger age at the time of seizure onset and had refractory epilepsy. Infantile epileptic spasms syndrome (IESS) was more common in the middle mutation domain of TSC2 than in the hamartin domain. Additionally, retinal hamartoma, cardiac rhabdomyoma, and renal abnormalities were significantly associated with TSC2 compared with other gene types. This study contributes to our understanding of TSC by expanding the genotypic spectrum with novel variants and providing insights into the clinical spectrum of patients with TSC in Korea.

9.
Genes Cells ; 28(6): 447-456, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965015

RESUMO

The tuberous sclerosis complex (TSC) gene products (TSC1/TSC2) negatively regulate mTORC1. Although mTORC1 inhibitors are used for the treatment of TSC, incomplete tumor elimination and the adverse effects from long-term administration are problems that need to be solved. Branched-chain amino acid (BCAA) metabolism is involved in the growth of many tumor cells via the mTORC1 pathway. However, it remains unclear how BCAA metabolism affects the growth of mTORC1-dysregulated tumors. We show here that the expression of branched-chain amino transferase1 (Bcat1) was suppressed in Tsc2-deficient murine renal tumor cells either by treatment with rapamycin or restoration of Tsc2 expression suggesting that Bcat1 is located downstream of Tsc2-mTORC1 pathway. We also found that gabapentin, a Bcat1 inhibitor suppressed the growth of Tsc2-deficient tumor cells and increased efficacy when combined with rapamycin. We investigate the functional importance of Bcat1 and the mitochondrial isoform Bcat2 by inhibiting each enzyme separately or both together by genome editing and shRNA in Tsc2-deficient cells. We found that deficiency of both enzymes, but not either alone, inhibited cell growth, indicating that BCAA-metabolic reactions support Tsc2-deficient cell proliferation. Our results indicate that inhibition of Bcat1 and Bcat2 by specific drugs should be a useful method for TSC treatment.


Assuntos
Esclerose Tuberosa , Camundongos , Animais , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Sirolimo/farmacologia , Transaminases
10.
Neuropathol Appl Neurobiol ; 50(2): e12974, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562027

RESUMO

INTRODUCTION: Tuberous sclerosis complex (TSC) is caused by variants in TSC1/TSC2, leading to constitutive activation of the mammalian target of rapamycin (mTOR) complex 1. Therapy with everolimus has been approved for TSC, but variations in success are frequent. Recently, caudal late interneuron progenitor (CLIP) cells were identified as a common origin of the TSC brain pathologies such as subependymal giant cell astrocytomas (SEGA) and cortical tubers (CT). Further, targeting the epidermal growth factor receptor (EGFR) with afatinib, which is expressed in CLIP cells, reduces cell growth in cerebral TSC organoids. However, investigation of clinical patient-derived data is lacking. AIMS: Observation of EGFR expression in SEGA, CT and focal cortical dysplasia (FCD) 2B human brain specimen and investigation of whether its inhibition could be a potential therapeutic intervention for these patients. METHODS: Brain specimens of 23 SEGAs, 6 CTs, 20 FCD2Bs and 17 controls were analysed via immunohistochemistry to characterise EGFR expression, cell proliferation (via Mib1) and mTOR signalling. In a cell-based assay using primary patient-derived cells (CT n = 1, FCD2B n = 1 and SEGA n = 4), the effects of afatinib and everolimus on cell proliferation and cell viability were observed. RESULTS: EGFR overexpression was observed in histological sections of SEGA, CT and FCD2B patients. Both everolimus and afatinib decreased the proliferation and viability in primary SEGA, tuber and FCD2B cells. CONCLUSION: Our study demonstrates that EGFR suppression might be an effective alternative treatment option for SEGAs and tubers, as well as other mTOR-associated malformations of cortical development, including FCD2B.


Assuntos
Astrocitoma , Esclerose Tuberosa , Humanos , Everolimo/farmacologia , Everolimo/uso terapêutico , Esclerose Tuberosa/metabolismo , Afatinib/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Astrocitoma/tratamento farmacológico , Astrocitoma/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores ErbB/uso terapêutico
11.
Acta Neuropathol ; 147(1): 48, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418708

RESUMO

Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder characterized by the development of benign tumors in various organs, including the brain, and is often accompanied by epilepsy, neurodevelopmental comorbidities including intellectual disability and autism. A key hallmark of TSC is the hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway, which induces alterations in cortical development and metabolic processes in astrocytes, among other cellular functions. These changes could modulate seizure susceptibility, contributing to the progression of epilepsy and its associated comorbidities. Epilepsy is characterized by dysregulation of calcium (Ca2+) channels and intracellular Ca2+ dynamics. These factors contribute to hyperexcitability, disrupted synaptogenesis, and altered synchronization of neuronal networks, all of which contribute to seizure activity. This study investigates the intricate interplay between altered Ca2+ dynamics, mTOR pathway dysregulation, and cellular metabolism in astrocytes. The transcriptional profile of TSC patients revealed significant alterations in pathways associated with cellular respiration, ER and mitochondria, and Ca2+ regulation. TSC astrocytes exhibited lack of responsiveness to various stimuli, compromised oxygen consumption rate and reserve respiratory capacity underscoring their reduced capacity to react to environmental changes or cellular stress. Furthermore, our study revealed significant reduction of store operated calcium entry (SOCE) along with strong decrease of basal mitochondrial Ca2+ concentration and Ca2+ influx in TSC astrocytes. In addition, we observed alteration in mitochondrial membrane potential, characterized by increased depolarization in TSC astrocytes. Lastly, we provide initial evidence of structural abnormalities in mitochondria within TSC patient-derived astrocytes, suggesting a potential link between disrupted Ca2+ signaling and mitochondrial dysfunction. Our findings underscore the complexity of the relationship between Ca2+ signaling, mitochondria dynamics, apoptosis, and mTOR hyperactivation. Further exploration is required to shed light on the pathophysiology of TSC and on TSC associated neuropsychiatric disorders offering further potential avenues for therapeutic development.


Assuntos
Epilepsia , Esclerose Tuberosa , Humanos , Astrócitos/patologia , Sinalização do Cálcio , Esclerose Tuberosa/patologia , Cálcio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Epilepsia/genética , Homeostase , Convulsões
12.
Hum Genomics ; 17(1): 4, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732866

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that is associated with neurological symptoms, including autism spectrum disorder. Tuberous sclerosis complex is caused by pathogenic germline mutations of either the TSC1 or TSC2 gene, but somatic mutations were identified in both genes, and the combined effects of TSC1 and TSC2 mutations have been unknown. METHODS: The present study investigated social behaviors by the social interaction test and three-chambered sociability tests, effects of rapamycin treatment, and gene expression profiles with a gene expression microarray in Tsc1 and Tsc2 double heterozygous mutant (TscD+/-) mice. RESULTS: TscD+/- mice exhibited impairments in social behaviors, and the severity of impairments was similar to Tsc2+/- mice rather than Tsc1+/- mice. Impairments in social behaviors were rescued by rapamycin treatment in all mutant mice. Gene expression profiles in the brain were greatly altered in TscD+/- mice more than in Tsc1+/- and Tsc2+/- mice. The gene expression changes compared with wild type (WT) mice were similar between TscD+/- and Tsc2+/- mice, and the overlapping genes whose expression was altered in mutant mice compared with WT mice were enriched in the neoplasm- and inflammation-related canonical pathways. The "signal transducer and activator of transcription 3, interferon regulatory factor 1, interferon regulatory factor 4, interleukin-2R α chain, and interferon-γ" signaling pathway, which is initiated from signal transducer and activator of transcription 4 and PDZ and LIM domain protein 2, was associated with impairments in social behaviors in all mutant mice. LIMITATIONS: It is unclear whether the signaling pathway also plays a critical role in autism spectrum disorders not caused by Tsc1 and Tsc2 mutations. CONCLUSIONS: These findings suggest that TSC1 and TSC2 double mutations cause autistic behaviors similarly to TSC2 mutations, although significant changes in gene expression were attributable to the double mutations. These findings contribute to the knowledge of genotype-phenotype correlations in TSC and suggest that mutations in both the TSC1 and TSC2 genes act in concert to cause neurological symptoms, including autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Esclerose Tuberosa , Camundongos , Animais , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Mutação , Sirolimo
13.
Am J Med Genet A ; 194(5): e63508, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38130096

RESUMO

Tuberous sclerosis complex is associated with the occurrence of cardiac rhabdomyomas that may result in life-threatening arrhythmia unresponsive to standard antiarrhythmic therapy. We report the case of an infant with multiple cardiac rhabdomyomas who developed severe refractory supraventricular tachycardia (SVT) that was successfully treated with everolimus. Pharmacological mTOR inhibition rapidly improved arrhythmia within few weeks after treatment initiation and correlated with a reduction in tumor size. Intermediate attempts to discontinue everolimus resulted in rhabdomyoma size rebound and recurrence of arrhythmic episodes, which resolved on resumption of therapy. While everolimus treatment led to successful control of arrhythmia in the first years of life, episodes of SVT reoccurred at the age of 6 years. Electrophysiologic testing confirmed an accessory pathway that was successfully ablated, resulting in freedom of arrhythmic events. In summary we present an in-depth evaluation of the long-term use of everolimus in a child with TSC-associated SVT, including the correlation between drug use and arrhythmia outcome. This case report provides important information on the safety and efficacy of an mTOR inhibitor for the treatment of a potentially life-threatening cardiac disease manifestation in TSC for which the optimal treatment strategy is still not well established.


Assuntos
Neoplasias Cardíacas , Rabdomioma , Esclerose Tuberosa , Lactente , Criança , Humanos , Everolimo/uso terapêutico , Esclerose Tuberosa/complicações , Esclerose Tuberosa/tratamento farmacológico , Rabdomioma/complicações , Rabdomioma/tratamento farmacológico , Rabdomioma/patologia , Arritmias Cardíacas/complicações , Arritmias Cardíacas/tratamento farmacológico , Serina-Treonina Quinases TOR , Neoplasias Cardíacas/complicações , Neoplasias Cardíacas/tratamento farmacológico , Neoplasias Cardíacas/patologia
14.
Am J Med Genet A ; 194(6): e63569, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38366765

RESUMO

Common genetic variants identified in the general population have been found to increase phenotypic risks among individuals with certain genetic conditions. Up to 90% of individuals with tuberous sclerosis complex (TSC) are affected by some type of epilepsy, yet the common variants contributing to epilepsy risk in the general population have not been evaluated in the context of TSC-associated epilepsy. Such knowledge is important to help uncover the underlying pathogenesis of epilepsy in TSC which is not fully understood, and critical as uncontrolled epilepsy is a major problem in this population. To evaluate common genetic modifiers of epilepsy, our study pooled phenotypic and genotypic data from 369 individuals with TSC to evaluate known and novel epilepsy common variants. We did not find evidence of enhanced genetic penetrance for known epilepsy variants identified across the largest genome-wide association studies of epilepsy in the general population, but identified support for novel common epilepsy variants in the context of TSC. Specifically, we have identified a novel signal in SLC7A1 that may be functionally involved in pathways relevant to TSC and epilepsy. Our study highlights the need for further evaluation of genetic modifiers in TSC to aid in further understanding of epilepsy in TSC and improve outcomes.


Assuntos
Epilepsia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Esclerose Tuberosa , Humanos , Esclerose Tuberosa/genética , Esclerose Tuberosa/complicações , Epilepsia/genética , Epilepsia/epidemiologia , Feminino , Masculino , Adulto , Variação Genética , Genótipo , Adolescente , Fenótipo , Criança , Polimorfismo de Nucleotídeo Único , Pré-Escolar
15.
Am J Med Genet A ; 194(8): e63611, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38528425

RESUMO

The mediator complex subunit 13 (MED13) gene is implicated in neurodevelopmental disorders including autism spectrum disorder (ASD), intellectual disability, and speech delay with varying severity and course. Additional, extra central nervous system, features include eye or vision problems, hypotonia, congenital heart abnormalities, and dysmorphisms. We describe a 7-year- and 4-month-old girl evaluated for ASD whose brain magnetic resonance imaging was suggestive of multiple cortical tubers. The exome sequencing (ES - trio analysis) uncovered a unique, de novo, frameshift variant in the MED13 gene (c.4880del, D1627Vfs*17), with a truncating effect on the protein. This case report thus expands the phenotypic spectrum of MED13-related disorders to include brain abnormalities.


Assuntos
Transtorno do Espectro Autista , Mutação da Fase de Leitura , Imageamento por Ressonância Magnética , Complexo Mediador , Esclerose Tuberosa , Humanos , Feminino , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/diagnóstico , Complexo Mediador/genética , Mutação da Fase de Leitura/genética , Esclerose Tuberosa/genética , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/diagnóstico por imagem , Esclerose Tuberosa/patologia , Criança , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/anormalidades , Sequenciamento do Exoma , Fenótipo
16.
Epilepsia ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042419

RESUMO

OBJECTIVE: Historically, epilepsy has been the most frequently presenting feature of tuberous sclerosis complex (TSC). Advances in TSC health care have occurred over the past decade; thus, we studied whether TSC epilepsy outcomes have changed. METHOD: A retrospective chart review was undertaken for all children with TSC in Queensland, Australia. Epilepsy outcome and TSC diagnosis data were extracted, and data were compared between children born before 2012 with those born in or after 2012. RESULTS: In this retrospective cohort, TSC diagnosis in children born in or after 2012 is now predominantly antenatal (51%, p < .05). Most patients with epilepsy are now known to have TSC before they develop epilepsy. Despite earlier TSC diagnosis, the frequency of epilepsy (85%) has not changed (p = .92), but diagnosis trends toward an earlier age (median = 3 months for patients born in or after 2012 vs. 5.5 months for those born before 2012, p = .23). Most (95%) patients had focal seizures as their initial clinical seizure type; it was rare (5%) for epileptic spasms (ES) to be the initial seizure type. The frequency of ES was lower in patients born in or after 2012 (36% vs. 50%, p = .27). Infantile (<24 months) onset ES was not associated with worse epilepsy outcome. Late onset ES was seen in 14%, and these patients had a lower rate of epilepsy remission. Lennox-Gastaut syndrome was seen in 7%. Febrile/illness-related status epilepticus occurred in 12% of patients, between 1 and 4 years of age. Despite many (78%) patients having multiple daily seizures at maximal seizure frequency, and 74% meeting criteria for treatment-refractory epilepsy, most patients achieved epilepsy remission (66%), either with epilepsy surgery (47%) or with age (53%). At the time of inclusion in this study, only 21% of patients had uncontrolled frequent (daily to 3 monthly) seizures and 14% had uncontrolled infrequent (3 monthly to <2 yearly) seizures. SIGNIFICANCE: This study provides updated information that informs the counseling of parents of newly diagnosed pediatric TSC patients.

17.
World J Urol ; 42(1): 10, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183428

RESUMO

BACKGROUND: The response to everolimus in patients with renal angiomyolipoma associated with tuberous sclerosis complex (TSC-RAML) varies among individuals. This study aims to identify potential factors associated with the response to everolimus. METHOD: We retrospectively examined data encompassing age, gender, tumor size, computed tomography attenuation value (CT value), CT enhancement, and tumor reduction rate in patients with TSC-RAML undergoing everolimus in two previously registered clinical trials. RESULT: A total of 33 participants (29.33 ± 6.63 years old, 20 females) were included. The correlation analysis conducted separately for tumors located in the left and right kidneys revealed significant negative correlations (P < 0.05) between tumor reduction rate and age, as well as tumor size. While significant positive correlations (P < 0.05) were observed between tumor reduction rate and unenhanced CT value as well as CT enhancement. Nonetheless, based on multiple linear regression analysis, unenhanced CT value emerged as the sole-independent predictor of tumor reduction rate among age, gender, tumor size, unenhanced CT value and CT enhancement for both left (coefficient = 0.00319, P < 0.0001) and right kidneys (coefficient = 0.00315, P = 0.0104). Notable reductions were observed in unenhanced CT value (- 3.81 vs - 24.70HU, P < 0.0001) and CT enhancement (48.16 vs 33.56HU, P < 0.0001) following a 3-month administration of everolimus. The decline in both unenhanced CT value and tumor size predominantly occurred within the initial 3 months, subsequently maintaining a relatively stable level throughout the treatment. CONCLUSION: The unenhanced CT value of TSC-RAML showed an independent correlation with the response to everolimus, suggesting its potential as a predictor of everolimus efficacy in patients with TSC-RAML.


Assuntos
Angiomiolipoma , Neoplasias Renais , Esclerose Tuberosa , Feminino , Humanos , Adulto Jovem , Adulto , Esclerose Tuberosa/complicações , Esclerose Tuberosa/diagnóstico por imagem , Esclerose Tuberosa/tratamento farmacológico , Angiomiolipoma/complicações , Angiomiolipoma/diagnóstico por imagem , Angiomiolipoma/tratamento farmacológico , Everolimo/uso terapêutico , Estudos Retrospectivos , Neoplasias Renais/complicações , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/tratamento farmacológico , Tomografia Computadorizada por Raios X
18.
Ann Pharmacother ; 58(4): 428-433, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37386842

RESUMO

OBJECTIVE: This article assesses the efficacy, safety, pharmacology, and clinical applications of topical sirolimus 0.2% gel for the treatment of tuberous sclerosis complex (TSC)-associated facial angiofibromas. DATA SOURCES: A review of the literature was conducted using the Medline (PubMed) and EMBASE databases using the keywords topical sirolimus, rapamycin, Hyftor, and tuberous sclerosis. STUDY SELECTION AND DATA EXTRACTION: Articles written in English and relevant to the topic were included. DATA SYNTHESIS: In the phase 2 trial, the mean improvement factor, a composite measure of improved tumor size and redness, was achieved in all patient groups (P < 0.001) with significant responses among the adult and pediatric subgroups at week 12. There were no serious adverse events recorded. In the phase 3 trial, 60% of participants responded to treatment in the sirolimus group compared with 0% in the placebo group with different response rates between the adult and pediatric subgroups at week 12. Sirolimus gel had no serious adverse events, and dry skin was the most common adverse reaction. Patients who had completed the 12-week trials were then enrolled in a long-term trial; angiofibromas had response rates of 78.2% to 0.2% sirolimus gel. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE IN COMPARISON TO EXISTING DRUGS: Topical sirolimus 0.2% is a first-in-class, newly Food and Drug Administration (FDA)-approved, mammalian target of rapamycin (mTOR) inhibitor that is a promising and safe, noninvasive alternative to surgical procedures for TSC-associated angiofibromas. CONCLUSIONS: Topical sirolimus 0.2% gel is a moderately effective treatment for TSC-associated facial angiofibromas with an adequate safety profile.


Assuntos
Angiofibroma , Neoplasias Faciais , Esclerose Tuberosa , Adulto , Humanos , Criança , Esclerose Tuberosa/complicações , Esclerose Tuberosa/tratamento farmacológico , Esclerose Tuberosa/patologia , Angiofibroma/tratamento farmacológico , Angiofibroma/etiologia , Neoplasias Faciais/etiologia , Neoplasias Faciais/induzido quimicamente , Imunossupressores , Sirolimo/efeitos adversos , Géis/uso terapêutico
19.
Brain ; 146(7): 2694-2710, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36806388

RESUMO

Epileptogenesis in infants with tuberous sclerosis complex (TSC) is a gradual and dynamic process, leading to early onset and difficult-to-treat seizures. Several cellular, molecular and pathophysiologic mechanisms, including mammalian target of rapamycin (mTOR) dysregulation, GABAergic dysfunction and abnormal connectivity, may play a role in this epileptogenic process and may also contribute to the associated developmental encephalopathy. Disease-specific antiseizure medications or drugs targeting the mTOR pathway have proved to be effective in TSC-associated epilepsy. Pre-symptomatic administration of vigabatrin, a GABAergic drug, delays seizure onset and reduces the risk of a subsequent epileptic encephalopathy, such as infantile spasms syndrome or Lennox-Gastaut syndrome. Everolimus, a rapamycin-derived mTOR inhibitor, reduces seizure frequency, especially in younger patients. This evidence suggests that everolimus should be considered early in the course of epilepsy. Future trials are needed to optimize the use of everolimus and determine whether earlier correction of mTOR dysregulation can prevent progression to developmental and epileptic encephalopathies or mitigate their severity in infants with TSC. Clinical trials of several other potential antiseizure drugs (cannabidiol and ganaxolone) that target contributing mechanisms are also underway. This review provides an overview of the different biological mechanisms occurring in parallel and interacting throughout the life course, even beyond the epileptogenic process, in individuals with TSC. These complexities highlight the challenges faced in preventing and treating TSC-related developmental and epileptic encephalopathy.


Assuntos
Epilepsia , Esclerose Tuberosa , Lactente , Humanos , Everolimo/uso terapêutico , Esclerose Tuberosa/complicações , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Epilepsia/metabolismo , Convulsões/tratamento farmacológico , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Anticonvulsivantes/uso terapêutico
20.
Epilepsy Behav ; 153: 109688, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428171

RESUMO

OBJECTIVE: Typically diagnosed in early childhood or adolescence, TSC is a chronic, multisystemic disorder with age-dependent manifestations posing a challenge for transition and for specific surveillance throughout the lifetime. Data on the clinical features and severity of TSC in adults and on the prognosis of epilepsy are scarce. We analyzed the clinical and genetic features of a cohort of adult patients with TSC, to identify the prognostic predictors of seizure remission after a long follow-up. METHOD: We conducted a retrospective analysis of patients diagnosed with TSC according to the updated international diagnostic criteria. Pearson's chi-square or Fisher's exact test and Mann Whitney U test were used to compare variables among the Remission (R) and Non-Remission (NR) group. Univariate and multivariate logistic regression analyses were performed. RESULTS: We selected 43 patients with TSC and neurological involvement in terms of epilepsy and/or brain lesions, attending the Epilepsy Center of our Institute: of them, 16 (37.2%) were transitioning from the pediatric care and 6 (13.9%) were referred by other specialists. Multiorgan involvement includes cutaneous (86.0%), nephrological (70.7%), hepatic (40.0%), ocular (34.3%), pneumological (28.6%) and cardiac (26.3%) manifestations. Thirty-nine patients (90.7 %) had epilepsy. The mean age at seizure onset was 4 ± 7.3 years: most patients (29, 76.3 %) presented with focal seizures or spasms by age 3 years; only 2 (5.3 %) had seizure onset in adulthood. Twenty-seven patients (69.2 %) experienced multiple seizure types overtime, 23 (59.0 %) had intellectual disability (ID). At last assessment, 14 (35.9 %) were seizure free (R group) and 25 (64.1 %) had drug-resistant seizures (NR group). At logistic regression univariate analysis, ID (OR 7.9, 95 % CI 1.8--34.7), multiple seizure types lifelong (OR 13.2, 95 % CI 2.6- 67.2), spasms/tonic seizures at presentation (OR 6.5, 95 % CI 1.2--35.2), a higher seizure frequency at onset (OR 5.4, 95 % CI 1.2--24.3), abnormal neurological examination (OR 9.8, 95 % CI 1.1--90.6) and pathogenic variants in TSC2 (OR 5.4, 95 % CI 1.2--24.5) were significantly associated with non-remission. In the multivariate analysis, both ID and multiple seizure types lifelong were confirmed as independent predictors of poor seizure outcome. CONCLUSIONS: In our cohort of adult patients with TSC, epilepsy remains one of the main neurological challenges with only 5.3% of cases manifesting in adulthood. Approximately 64% of these patients failed to achieve seizure remission. ID and multiple seizure types were the main predictors of poor outcome. Nephrological manifestations require continuous specific follow-up in adults.


Assuntos
Epilepsia , Esclerose Tuberosa , Criança , Adulto , Adolescente , Humanos , Pré-Escolar , Anticonvulsivantes/uso terapêutico , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Esclerose Tuberosa/tratamento farmacológico , Estudos Retrospectivos , Epilepsia/etiologia , Epilepsia/complicações , Convulsões/tratamento farmacológico , Prognóstico , Espasmo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA