Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Traffic ; 22(11): 368-376, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34476885

RESUMO

The activity of the matrix metalloproteinase (MMP) MT1-MMP is strictly regulated by expression and cellular location. In macrophages LPS activation leads to the up-regulation of MT1-MMP and this need to be at the cell surface for them to degrade the dense extracellular matrix (ECM) components to create a path to migrate into injured and infected tissues. Fixed and live imaging shows newly made MT1-MMP is packaged into vesicles that traffic to and fuse with LBPA+ LAMP1+ late endosomes en route to the surface. The R-SNARE VAMP4, found on Golgi-derived vesicles that traffic to late endosomes, forms a trans-SNARE complex with the Q-SNARE complex Stx6/Stx7/Vti1b. The Stx6/Stx7/Vti1b complex has been shown to be up-regulated in lipopolysaccharide (LPS)-activated cells to increase trafficking of key cytokines through the classical pathway and now we show here it is up-regulation also plays a role in the late endosomal pathway of MT1-MMP trafficking. Depletion of any of the SNAREs in this complex reduces surface MT1-MMP and gelatin degradation. Conversely, overexpression of the Stx6/Stx7/Vti1b components increases surface MT1-MMP levels. This suggests that Stx6/Stx7/Vti1b is a key Q-SNARE complex in macrophages during an immune response and in partnership with VAMP4 it regulates transport of newly made MT1-MMP.


Assuntos
Lipopolissacarídeos , Metaloproteinase 14 da Matriz , Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Macrófagos/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo
2.
J Neurosci ; 40(28): 5389-5401, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32532887

RESUMO

Spontaneous neurotransmitter release is a fundamental property of synapses in which neurotransmitter filled vesicles release their content independent of presynaptic action potentials (APs). Despite their seemingly random nature, these spontaneous fusion events can be regulated by Ca2+ signaling pathways. Here, we probed the mechanisms that maintain Ca2+ sensitivity of spontaneous release events in synapses formed between hippocampal neurons cultured from rats of both sexes. In this setting, we examined the potential role of vesicle-associated membrane protein 4 (VAMP4), a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein in spontaneous neurotransmission. Our results show that VAMP4 is required for Ca2+-dependent spontaneous excitatory neurotransmission, with a limited role in spontaneous inhibitory neurotransmission. Key residues in VAMP4 that regulate its retrieval as well as functional clathrin-mediated vesicle trafficking were essential for the maintenance of VAMP4-mediated spontaneous release. Moreover, high-frequency stimulation (HFS) that typically triggers asynchronous release and retrieval of VAMP4 from the plasma membrane also augmentsCa2+-sensitive spontaneous release for up to 30 min in a VAMP4-dependent manner. This VAMP4-mediated link between asynchronous and spontaneous excitatory neurotransmission might serve as a presynaptic substrate for synaptic plasticity coupling distinct forms of release.SIGNIFICANCE STATEMENT Spontaneous neurotransmitter release that occurs independent of presynaptic action potentials (APs) shows significant sensitivity to intracellular Ca2+ levels. In this study, we identify the vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) molecule vesicle-associated membrane protein 4 (VAMP4) as a key component of the machinery that maintains these Ca2+-sensitive fraction of spontaneous release events. Following brief intense activity, VAMP4-dependent synaptic vesicle retrieval supports a pool of vesicles that fuse spontaneously in the long term. We propose that this vesicle trafficking pathway acts to shape spontaneous release and associated signaling based on previous activity history of synapses.


Assuntos
Cálcio/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas R-SNARE/metabolismo , Vesículas Sinápticas/metabolismo , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Feminino , Hipocampo/citologia , Masculino , Camundongos , Neurônios/citologia , Técnicas de Patch-Clamp , Proteínas R-SNARE/genética , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
3.
Proc Natl Acad Sci U S A ; 111(47): 16943-8, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385598

RESUMO

NGF binding to its protein kinase receptor TrkA is known to induce neurite outgrowth and neural cell differentiation. The plasma membrane expansion, necessary for the process, was shown to be contributed by the VAMP7-dependent exocytosis of endocytic vesicles. Working with wild-type PC12 (wtPC12), a cell model widely used to investigate NGF-induced neurite outgrowth, we found that a few hours of treatment with the neurotrophin (and to a lower extent with basic FGF and EGF) induces the appearance of enlargeosome vesicles competent for VAMP4-dependent exocytosis abundant in high REST-PC12 clones. Both the neurite length assay and the immunocytochemistry of enlargeosomes exocytosis revealed that activation of TrkA is induced not only by NGF, but also by the L1 adhesion protein, L1CAM, whose soluble construct binds the receptor with submicromolar affinity. In the intact wtPC12, the L1CAM construct induced autophosphorylation and internalization of TrkA followed by the activation of the PI3K, MEK, and PKCγ signaling cascades, analogous to the responses induced by NGF. Down-regulation of either VAMP7 or VAMP4 revealed the coparticipation of the two corresponding vesicles to the outgrowth responses induced by NGF and L1CAM. Finally, mixing experiments of wtPC12 cells rich in TrkA with high REST PC12 cells transfected with L1CAM documented the transactivation of the receptor by the adhesion protein surface-exposed in adjacent cells. In view of the known inhomogeneous surface distribution of both L1CAM and TrkA in various neural cells including neurons, their transcellular binding could be restricted to discrete sites, governing local signaling events distinct from those induced by soluble messengers.


Assuntos
Exocitose , Fatores de Crescimento Neural/fisiologia , Molécula L1 de Adesão de Célula Nervosa/fisiologia , Neuritos , Receptor trkA/agonistas , Animais , Células PC12 , Ratos
4.
Cell Rep ; 42(3): 112221, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36905628

RESUMO

The neuropeptide VGF was recently proposed as a neurodegeneration biomarker. The Parkinson's disease-related protein leucine-rich repeat kinase 2 (LRRK2) regulates endolysosomal dynamics, a process that involves SNARE-mediated membrane fusion and could regulate secretion. Here we investigate potential biochemical and functional links between LRRK2 and v-SNAREs. We find that LRRK2 directly interacts with the v-SNAREs VAMP4 and VAMP7. Secretomics reveals VGF secretory defects in VAMP4 and VAMP7 knockout (KO) neuronal cells. In contrast, VAMP2 KO "regulated secretion-null" and ATG5 KO "autophagy-null" cells release more VGF. VGF is partially associated with extracellular vesicles and LAMP1+ endolysosomes. LRRK2 expression increases VGF perinuclear localization and impairs its secretion. Retention using selective hooks (RUSH) assays show that a pool of VGF traffics through VAMP4+ and VAMP7+ compartments, and LRRK2 expression delays its transport to the cell periphery. Overexpression of LRRK2 or VAMP7-longin domain impairs VGF peripheral localization in primary cultured neurons. Altogether, our results suggest that LRRK2 might regulate VGF secretion via interaction with VAMP4 and VAMP7.


Assuntos
Complexo de Golgi , Proteínas SNARE , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Fusão de Membrana/fisiologia , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo
5.
Pathog Dis ; 79(7)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34323972

RESUMO

We hypothesize that intracellular trafficking pathways are altered in chlamydial infected cells to maximize the ability of Chlamydia to scavenge nutrients while not overtly stressing the host cell. Previous data demonstrated the importance of two eukaryotic SNARE proteins, VAMP4 and syntaxin 10 (Stx10), in chlamydial growth and development. Although, the mechanism for these effects is still unknown. To interrogate whether chlamydial infection altered these proteins' networks, we created BirA*-VAMP4 and BirA*-Stx10 fusion constructs to use the BioID proximity labeling system. While we identified a novel eukaryotic protein-protein interaction between Stx10 and VAPB, we also identified caveats in using the BioID system to study the impact of infection by an obligate intracellular pathogen on SNARE protein networks. The addition of the BirA* altered the localization of VAMP4 and Stx10 during infection with Chlamydia trachomatis serovars L2 and D and Coxiella burnetii Nine Mile Phase II. We also discovered that BirA* traffics to and biotinylates Coxiella-containing vacuoles and, in general, has a propensity for labeling membrane or membrane-associated proteins. While the BioID system identified a novel association for Stx10, it is not a reliable methodology to examine intracellular trafficking pathway dynamics during infection with intracellular pathogens.


Assuntos
Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , Coxiella burnetii/metabolismo , Proteoma/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Bactérias/metabolismo , Biotinilação , Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Escherichia coli/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Corpos de Inclusão/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Coloração e Rotulagem , Vacúolos/metabolismo
6.
Heliyon ; 6(8): e04600, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32775753

RESUMO

The Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediates membrane fusion during membrane trafficking and autophagy in all eukaryotic cells, with a number of SNAREs having cell type-specific functions. The endosome-trans-Golgi network (TGN) localized SNARE, Vesicle transport through interaction with t-SNAREs 1A (Vti1a), is unique among SNAREs in that it has numerous neuron-specific functions. These include neurite outgrowth, nervous system development, spontaneous neurotransmission, synaptic vesicle and dense core vesicle secretion, as well as a process of unconventional surface transport of the Kv4 potassium channel. Furthermore, the human VT11A gene is known to form fusion products with neighboring genes in cancer tissues, and VT11A variants are associated with risk in cancers, including glioma. In this review, I highlight VTI1A's known physio-pathological roles in brain neurons, as well as unanswered questions in these regards.

7.
J Histochem Cytochem ; 65(11): 637-653, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28914590

RESUMO

The comparative structure and expression of salivary components and vesicular transport proteins in the canine major salivary glands were investigated. Histochemical analysis revealed that the morphology of the five major salivary glands-parotid, submandibular, polystomatic sublingual, monostomatic sublingual, and zygomatic glands-was greatly diverse. Immunoblot analysis revealed that expression levels of α-amylase and antimicrobial proteins, such as lysozyme, lactoperoxidase, and lactoferrin, differed among the different glands. Similarly, Rab proteins (Rab3d, Rab11a, Rab11b, Rab27a, and Rab27b) and soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins VAMP4, VAMP8, syntaxin-2, syntaxin-3, syntaxin-4, and syntaxin-6 were expressed at various levels in individual glands. mmunohistochemistry of Rab3d, Rab11b, Rab27b, VAMP4, VAMP8, syntaxin-4, and syntaxin-6 revealed their predominant expression in serous acinar cells, demilunes, and ductal cells. The VAMP4/syntaxin-6 SNARE complex, which is thought to be involved in the maturation of secretory granules in the Golgi field, was found more predominantly in the monostomatic sublingual gland than in the parotid gland. These results suggest that protein expression profiles in canine salivary glands differ among individual glands and reflect the properties of their specialized functions.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Proteínas SNARE/metabolismo , Glândulas Salivares/metabolismo , Animais , Western Blotting , Cães , Imuno-Histoquímica , Imunoprecipitação , Masculino , Ligação Proteica , Proteínas e Peptídeos Salivares/metabolismo
8.
J Neurosci Methods ; 266: 1-10, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27015791

RESUMO

BACKGROUND: Activity-dependent bulk endocytosis (ADBE) is the dominant mode of synaptic vesicle (SV) endocytosis during intense neuronal activity, implicating it as a major contributor to presynaptic plasticity under these stimulation conditions. However methods to monitor this endocytosis mode have been limited to either morphological or optical observation of the uptake of large fluid phase markers. NEW METHOD: We present here a method to monitor ADBE using the genetically-encoded reporter VAMP4-pHluorin in primary neuronal cultures. RESULTS: Individual nerve terminals expressing VAMP4-pHluorin display either an increase or decrease in fluorescence after stimulation terminates. The decrease in fluorescence reflects the slow acidification of large bulk endosomes to which VAMP4-pHluorin is selectively recruited. Use of VAMP4-pHluorin during sequential high frequency stimuli revealed that all nerve terminals perform ADBE, but not all do so in response to a single stimulus. VAMP4-pHluorin also displays a rapid activity-dependent decrease in fluorescence during high frequency stimulation, a response which is particularly prominent when expressed in hippocampal neurons. The molecular mechanism responsible for this decrease is still unclear, but is not due to loss of VAMP4-pHluorin from the nerve terminal. COMPARISON WITH EXISTING METHODS: This method allows the selective reporting of ADBE for the first time, when compared to previous approaches using markers of fluid phase uptake. CONCLUSIONS: The development of VAMP4-pHluorin as a selective genetically-encoded reporter of ADBE increases the palette of approaches used to monitor this endocytosis mode both in vitro and in vivo.


Assuntos
Endocitose/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Proteínas R-SNARE/metabolismo , Vesículas Sinápticas/fisiologia , Animais , Células Cultivadas , Cerebelo/citologia , Cerebelo/fisiologia , Feminino , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Neurônios/citologia , Neurônios/fisiologia , Proteínas R-SNARE/genética , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia , Sinaptofisina/genética , Sinaptofisina/metabolismo , Transfecção
9.
Cell Discov ; 1: 15023, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27462422

RESUMO

The establishment of polarity necessitates initial axonal outgrowth and, therefore, the addition of new membrane to the axon's plasmalemma. Axolemmal expansion occurs by exocytosis of plasmalemmal precursor vesicles (PPVs) primarily at the neuronal growth cone. Little is known about the SNAREs family proteins involved in the regulation of PPV fusion with the neuronal plasmalemma at early stages of differentiation. We show here that five SNARE proteins (VAMP2, VAMP4, VAMP7, Syntaxin6 and SNAP23) were expressed by hippocampal pyramidal neurons before polarization. Expression silencing of three of these proteins (VAMP4, Syntaxin6 and SNAP23) repressed axonal outgrowth and the establishment of neuronal polarity, by inhibiting IGF-1 receptor exocytotic polarized insertion, necessary for neuronal polarization. In addition, stimulation with IGF-1 triggered the association of VAMP4, Syntaxin6 and SNAP23 to vesicular structures carrying the IGF-1 receptor and overexpression of a negative dominant form of Syntaxin6 significantly inhibited exocytosis of IGF-1 receptor containing vesicles at the neuronal growth cone. Taken together, our results indicated that VAMP4, Syntaxin6 and SNAP23 functions are essential for regulation of PPV exocytosis and the polarized insertion of IGF-1 receptor and, therefore, required for initial axonal elongation and the establishment of neuronal polarity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA