Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 663
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(2): 213-229, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38071466

RESUMO

Salmonella Typhi, the invasive serovar of S. enterica subspecies enterica, causes typhoid fever in healthy human hosts. The emergence of antibiotic-resistant strains has consistently challenged the successful treatment of typhoid fever with conventional antibiotics. Antimicrobial resistance (AMR) in Salmonella is acquired either by mutations in the genomic DNA or by acquiring extrachromosomal DNA via horizontal gene transfer. In addition, Salmonella can form a subpopulation of antibiotic persistent (AP) cells that can survive at high concentrations of antibiotics. These have reduced the effectiveness of the first and second lines of antibiotics used to treat Salmonella infection. The recurrent and chronic carriage of S. Typhi in human hosts further complicates the treatment process, as a remarkable shift in the immune response from pro-inflammatory Th1 to anti-inflammatory Th2 is observed. Recent studies have also highlighted the overlap between AP, persistent infection (PI) and AMR. These incidents have revealed several areas of research. In this review, we have put forward a timeline for the evolution of antibiotic resistance in Salmonella and discussed the different mechanisms of the same availed by the pathogen at the genotypic and phenotypic levels. Further, we have presented a detailed discussion on Salmonella antibiotic persistence (AP), PI, the host and bacterial virulence factors that can influence PI, and how both AP and PI can lead to AMR.


Assuntos
Infecções por Salmonella , Febre Tifoide , Humanos , Salmonella typhi/genética , Febre Tifoide/tratamento farmacológico , Febre Tifoide/microbiologia , Antibacterianos/farmacologia , Infecções por Salmonella/tratamento farmacológico , DNA , Testes de Sensibilidade Microbiana
2.
Clin Microbiol Rev ; 36(4): e0008823, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38032192

RESUMO

Tuberculosis (TB) is a major global health problem and the second most prevalent infectious killer after COVID-19. It is caused by Mycobacterium tuberculosis (Mtb) and has become increasingly challenging to treat due to drug resistance. The World Health Organization declared TB a global health emergency in 1993. Drug resistance in TB is driven by mutations in the bacterial genome that can be influenced by prolonged drug exposure and poor patient adherence. The development of drug-resistant forms of TB, such as multidrug resistant, extensively drug resistant, and totally drug resistant, poses significant therapeutic challenges. Researchers are exploring new drugs and novel drug delivery systems, such as nanotechnology-based therapies, to combat drug resistance. Nanodrug delivery offers targeted and precise drug delivery, improves treatment efficacy, and reduces adverse effects. Along with nanoscale drug delivery, a new generation of antibiotics with potent therapeutic efficacy, drug repurposing, and new treatment regimens (combinations) that can tackle the problem of drug resistance in a shorter duration could be promising therapies in clinical settings. However, the clinical translation of nanomedicines faces challenges such as safety, large-scale production, regulatory frameworks, and intellectual property issues. In this review, we present the current status, most recent findings, challenges, and limiting barriers to the use of emulsions and nanoparticles against drug-resistant TB.


Assuntos
Mycobacterium tuberculosis , Nanopartículas , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Preparações Farmacêuticas , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Sistemas de Liberação de Medicamentos
3.
J Infect Dis ; 229(2): 517-521, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37700467

RESUMO

We describe 2 cases of extensively drug-resistant Pseudomonas aeruginosa infection caused by a strain of public health concern, as it was recently associated with a nationwide outbreak of contaminated artificial tears. Both cases were detected through database review of genomes in the Enhanced Detection System for Hospital-Associated Transmission (EDS-HAT), a routine genome sequencing-based surveillance program. We generated a high-quality reference genome for the outbreak strain from an isolate from our center and examined the mobile elements encoding blaVIM-80 and bla-GES-9 carbapenemases. We used publicly available Pseudomonas aeruginosa genomes to explore the genetic relatedness and antimicrobial resistance genes of the outbreak strain.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Lubrificantes Oftálmicos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , beta-Lactamases/genética , Sequenciamento Completo do Genoma , Surtos de Doenças , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
4.
J Clin Microbiol ; 62(8): e0022924, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39058018

RESUMO

Drug-resistant tuberculosis (TB) poses a significant public health concern in South Africa due to its complexity in diagnosis, treatment, and management. This study assessed the diagnostic performance of the Xpert MTB/XDR test for detecting drug resistance in patients with TB by using archived sputum sediments. This study analyzed 322 samples collected from patients diagnosed with TB between 2016 and 2019 across South Africa, previously characterized by phenotypic and genotypic methods. The Xpert MTB/XDR test was evaluated for its ability to detect resistance to isoniazid (INH), ethionamide (ETH), fluoroquinolones (FLQ), and second-line injectable drugs (SLIDs) compared with phenotypic drug susceptibility testing (pDST) and whole-genome sequencing (WGS). Culture, Xpert MTB/RIF Ultra, and Xpert MTB/RIF (G4) tests were performed to determine sensitivity and agreement with this test for TB detection. The sensitivities using a composite reference standard, pDST, and sequencing were >90% for INH, FLQ, amikacin (AMK), kanamycin (KAN), and capreomycin (CAP) resistance, meeting the WHO target product profile criteria for this class. A lower sensitivity of 65.9% (95% CI: 57.1-73.6) for ETH resistance was observed. The Xpert MTB/XDR showed a sensitivity of 98.3% (95% CI: 96.1-99.3) and specificity of 100% (95% CI: 86.7-100) compared with culture, a positive percent agreement (PPA) of 98.8% (95% CI: 93.7-99.8) and negative percent agreement (NPA) of 100.0% (95% CI: 78.5-100.0) compared with G4, and a PPA of 99.5% (95% CI: 97.3-99.9) and NPA of 100.0% (95% CI: 78.5-100.0) compared with Xpert MTB/RIF Ultra for detecting Mycobacterium tuberculosis. The test offers a promising solution for the rapid detection of drug-resistant TB and could significantly enhance control efforts in this setting.


Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Sensibilidade e Especificidade , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , África do Sul , Antituberculosos/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Escarro/microbiologia , Sequenciamento Completo do Genoma , Técnicas de Diagnóstico Molecular/métodos , Farmacorresistência Bacteriana Múltipla
5.
Cytokine ; 181: 156693, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986252

RESUMO

BACKGROUND: To delineate alterations in DNA methylation at high resolution within the genomic profile of monocyte-derived-dendritic cells (mo-DCs) in connection with Mycobacterium tuberculosis (MTB) infection, with particular emphasis on pro/ anti-inflammatory genes. METHODS: In the context of this investigation, mo-DCs were infected by various active strains of MTB (Rifampicin-resistant [RIFR], H37Rv, multidrug-resistant [MDR], and extensively drug-resistant [XDR]). Subsequently, the pro/anti-inflammatory hub gene expression levels within the IL-6, IL-12, IFN-γ, IL-1ß, TNF-α, and IL-10 pathways were evaluated employing real-time reverse transcription-polymerase chain reaction (RT-PCR). Additionally, the effects of MTB infection on mo-DC protein expression were examined through western blot analysis. The methylation status (%) of TNF-α and IL-10 was considered through Methylation Sensitive-High Resolution Melting (MS-HRM). RESULTS: The results revealed an up-regulation of all pro-inflammatory genes among all groups, with TNF-α exhibiting the highest expression level. Conversely, the anti-inflammatory gene (IL-10) showed a down-regulated expression level. Furthermore, the DNA methylation status (%) of TNF-α decreased significantly among all the groups (P < 0.001), although there were no notable distinctions in the DNA methylation status (%) of IL-10 when compared to the control group (P > 0.05). CONCLUSION: MTB infection induces DNA methylation changes in mo-DCs. The hypo-methylation of TNF-α may induce the up-regulation of this gene. This correlation revealed that the more resistant the MTB strain (XDR) is, the lower the methylation status (%) in the TNF-α gene.


Assuntos
Citocinas , Metilação de DNA , Células Dendríticas , Epigênese Genética , Monócitos , Mycobacterium tuberculosis , Tuberculose , Mycobacterium tuberculosis/imunologia , Humanos , Citocinas/metabolismo , Células Dendríticas/metabolismo , Monócitos/metabolismo , Tuberculose/microbiologia , Tuberculose/genética , Tuberculose/imunologia , Tuberculose/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-10/metabolismo , Interleucina-10/genética
6.
Microb Pathog ; 194: 106818, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047804

RESUMO

Ompok pabda is gaining popularity in the aquaculture industry due to its increasing demand; however research on microbial diversity and antibiotic susceptibility remains limited. The present study was designed to identify the bacterial pathogens commonly found in the pabda farming system with their biofilm forming potential and antibiotic susceptibility. Different bacterial strains were isolated from water, sediments and gut, gill of pabda fish and the isolates were identified based on their morphological traits, biochemical and molecular analysis. Antibiotic susceptibilities, antibiotic resistance gene determination and biofilm formation capabilities were evaluated by disc diffusion method, PCR amplification and Microtiter plate (MTP) assay, respectively. The respective isolates of gill and gut of pabda aquaculture and their environments were: Exiguobacterium spp. (25 %), Enterococcus spp. (20 %), Bacillus spp. (10 %), Acinetobacter spp. (10 %), Enterobacter spp. (10 %), Aeromonas spp. (10 %), Lactococcus spp. (5 %), Klebsiella spp. (5 %) and Kurthia spp. (5 %). Antibiotic resistance frequencies were found to be relatively high, especially for trimethoprim (95 %), sulfafurazole (75 %), ampicillin (60 %), amoxicillin-clavulanic acid (55 %), and cephradine (50 %). 30 % isolates were categorized as DR bacteria followed by 30 % isolates were MDR bacteria and 40 % were classified as XDR bacteria. Moreover, 4 antibiotic resistant genes were detected with sul1 (30 %), dfrA1 (10 %), tetC (40 %), and qnrA (5 %) of isolates. Based on the microtiter plate method, 20 %, 25 %, and 30 % of isolates were found to produce strong, moderate, and weak biofilms, respectively. The findings suggest that biofilm forming bacterial strains found in O. pabda fish farm may be a potential source of numerous antibiotic-resistant bacteria. The study sheds new light on antibiotic resistance genes, which are typically inherited by bacteria and play an important role in developing effective treatments or control strategies.


Assuntos
Antibacterianos , Aquicultura , Bactérias , Biofilmes , Testes de Sensibilidade Microbiana , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/isolamento & purificação , Bangladesh , Farmacorresistência Bacteriana/genética , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Brânquias/microbiologia , Microbiologia da Água
7.
Eur J Clin Microbiol Infect Dis ; 43(4): 747-765, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367094

RESUMO

PURPOSE: High fasting plasma glucose (HFPG) has been identified as a risk factor for drug-resistant tuberculosis incidence and mortality. However, the epidemic characteristics of HFPG-attributable multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) remain unclear. We aimed to analyze the global spatial patterns and temporal trends of HFPG-attributable MDR-TB and XDR-TB from 1990 to 2019. METHODS: Utilizing data from the Global Burden of Disease 2019 project, annual deaths and disability-adjusted life years (DALYs) of HFPG-attributable MDR-TB and XDR-TB were conducted from 1990 to 2019. Joinpoint regression was employed to quantify trends over time. RESULTS: From 1990 to 2019, the deaths and DALYs due to HFPG-attributable MDR-TB and XDR-TB globally showed an overall increasing trend, with a significant increase until 2003 to 2004, followed by a gradual decline or stability thereafter. The low sociodemographic index (SDI) region experienced the most significant increase over the past 30 years. Regionally, Sub-Saharan Africa, Central Asia and Oceania remained the highest burden. Furthermore, there was a sex and age disparity in the burden of HFPG-attributable MDR-TB and XDR-TB, with young males in the 25-34 age group experiencing higher mortality, DALYs burden and a faster increasing trend than females. Interestingly, an increasing trend followed by a stable or decreasing pattern was observed in the ASMR and ASDR of HFPG-attributable MDR-TB and XDR-TB with SDI increasing. CONCLUSION: The burden of HFPG-attributable MDR-TB and XDR-TB rose worldwide from 1990 to 2019. These findings emphasize the importance of routine bi-directional screening and integrated management for drug-resistant TB and diabetes.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Tuberculose Resistente a Múltiplos Medicamentos , Masculino , Feminino , Humanos , Glicemia , Estudos Retrospectivos , Carga Global da Doença , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Jejum
8.
Infection ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985435

RESUMO

Epidemiology of shigellosis has drastically changed in recent years due to globalization and sexual risk behaviors. Here, through whole-genome sequencing, we characterized two ESBL-producing Shigella sonnei strains (ShSoBUH1 and ShSoBUH2) carrying a blaCTX-M-15 among men who have sex with men (MSM), who had not recently traveled and presented sexual risk behaviors. Both strains harbored IncB/O/K/Z and IncFII plasmids, which carry aadA1, aadA5, sul1, sul2, dfrA1, dfrA17, mph(A), erm(B), tet(B), qacE and blaCTX-M-15 genes conferring resistance to 2nd and 3rd generation cephalosporins, cotrimoxazole, erythromycin, azithromycin and quinolones. IncFII plasmids containing blaCTX-M-15 from ShSoBUH1 and ShSoBUH2 presented 99,8-99,9% similarity with plasmids from another five CTX-M-15 S. sonnei strains detected in Belgium and Switzerland. A single-nucleotide polymorphism (SNP) analysis determined that the study strains differed by 361 SNPs, belonging to different clusters. To the best of our knowledge, this is the first report describing two extensively drug-resistant (XDR) CTX-M-15 S. sonnei strains in MSM.

9.
BMC Infect Dis ; 24(1): 672, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965482

RESUMO

INTRODUCTION: Early diagnosis of tuberculosis (TB) and universal access to drug-susceptibility testing (DST) are critical elements of the WHO End TB Strategy. Current rapid tests (e.g., Xpert® MTB/RIF and Ultra-assays) can detect rifampicin resistance-conferring mutations, but cannot detect resistance to Isoniazid and second-line anti-TB agents. Although Line Probe Assay is capable of detecting resistance to second-line anti-TB agents, it requires sophisticated laboratory infrastructure and advanced skills which are often not readily available in settings replete with TB. A rapid test capable of detecting Isoniazid and second-line anti-TB drug resistance is highly needed. METHODS: We conducted a diagnostic accuracy study to evaluate a new automated Xpert MTB/XDR 10-colour assay for rapid detection of Isoniazid and second-line drugs, including ethionamide, fluoroquinolones, and injectable drugs (Amikacin, Kanamycin, and Capreomycin). Positive Xpert MTB/RIF respiratory specimens were prospectively collected through routine diagnosis and surveillance of drug resistance at the Central TB Reference Laboratory in Tanzania. Specimens were tested by both Xpert XDR assay and LPA against culture-based phenotypic DST as the reference standard. FINDINGS: We analysed specimens from 151 TB patients with a mean age (SD) of 36.2 (12.7) years. The majority (n = 109, 72.2%) were males. The sensitivity for Xpert MTB/XDR was 93.5% (95% CI, 87.4-96.7); for Isoniazid, 96.6 (95% CI, 92.1-98.6); for Fluoroquinolone, 98.7% (95% Cl 94.8-99.7); for Amikacin, 96.6%; and (95% CI 92.1-98.6) for Ethionamide. Ethionamide had the lowest specificity of 50% and the highest was 100% for Fluoroquinolone. The diagnostic performance was generally comparable to that of LPA with slight variations between the two assays. The non-determinate rate (i.e., invalid M. tuberculosis complex detection) of Xpert MTB/XDR was 2·96%. CONCLUSION: The Xpert MTB/XDR demonstrated high sensitivity and specificity for detecting resistance to Isoniazid, Fluoroquinolones, and injectable agents. This assay can be used in clinical settings to facilitate rapid diagnosis of mono-isoniazid and extensively drug-resistant TB.


Assuntos
Antituberculosos , Isoniazida , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Sensibilidade e Especificidade , Humanos , Tanzânia , Isoniazida/farmacologia , Antituberculosos/farmacologia , Adulto , Feminino , Masculino , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Pessoa de Meia-Idade , Testes de Sensibilidade Microbiana/métodos , Adulto Jovem , Adolescente , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Estudos Prospectivos , Idoso , Técnicas de Diagnóstico Molecular/métodos
10.
Ann Clin Microbiol Antimicrob ; 23(1): 76, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39175078

RESUMO

BACKGROUND: Whole-genome sequencing (WGS)-based prediction of drug resistance in Mycobacterium tuberculosis has the potential to guide clinical decisions in the design of optimal treatment regimens. METHODS: We utilized WGS to investigate drug resistance mutations in a 32-year-old Tanzanian male admitted to Kibong'oto Infectious Diseases Hospital with a history of interrupted multidrug-resistant tuberculosis treatment for more than three years. Before admission, he received various all-oral bedaquiline-based multidrug-resistant tuberculosis treatment regimens with unfavourable outcomes. RESULTS: Drug susceptibility testing of serial M. tuberculosis isolates using Mycobacterium Growth Incubator Tubes culture and WGS revealed resistance to first-line anti-TB drugs, bedaquiline, and fluoroquinolones but susceptibility to linezolid, clofazimine, and delamanid. WGS of serial cultured isolates revealed that the Beijing (Lineage 2.2.2) strain was resistant to bedaquiline, with mutations in the mmpR5 gene (Rv0678. This study also revealed the emergence of two distinct subpopulations of bedaquiline-resistant tuberculosis strains with Asp47f and Glu49fs frameshift mutations in the mmpR5 gene, which might be the underlying cause of prolonged resistance. An individualized regimen comprising bedaquiline, delamanid, pyrazinamide, ethionamide, and para-aminosalicylic acid was designed. The patient was discharged home at month 8 and is currently in the ninth month of treatment. He reported no cough, chest pain, fever, or chest tightness but still experienced numbness in his lower limbs. CONCLUSION: We propose the incorporation of WGS in the diagnostic framework for the optimal management of patients with drug-resistant and extensively drug-resistant tuberculosis.


Assuntos
Antituberculosos , Tuberculose Extensivamente Resistente a Medicamentos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Sequenciamento Completo do Genoma , Humanos , Masculino , Adulto , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , Tanzânia , Mutação , Diarilquinolinas/uso terapêutico , Diarilquinolinas/farmacologia , Genoma Bacteriano , Linezolida/uso terapêutico , Linezolida/farmacologia
11.
Ann Clin Microbiol Antimicrob ; 23(1): 46, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790053

RESUMO

BACKGROUND: Proteus mirabilis is an opportunistic pathogen that has been held responsible for numerous nosocomial and community-acquired infections which are difficult to be controlled because of its diverse antimicrobial resistance mechanisms. METHODS: Antimicrobial susceptibility patterns of P. mirabilis isolates collected from different clinical sources in Mansoura University Hospitals, Egypt was determined. Moreover, the underlying resistance mechanisms and genetic relatedness between isolates were investigated. RESULTS: Antimicrobial susceptibility testing indicated elevated levels of resistance to different classes of antimicrobials among the tested P. mirabilis clinical isolates (n = 66). ERIC-PCR showed great diversity among the tested isolates. Six isolates (9.1%) were XDR while all the remaining isolates were MDR. ESBLs and AmpCs were detected in 57.6% and 21.2% of the isolates, respectively, where blaTEM, blaSHV, blaCTX-M, blaCIT-M and blaAmpC were detected. Carbapenemases and MBLs were detected in 10.6 and 9.1% of the isolates, respectively, where blaOXA-48 and blaNDM-1 genes were detected. Quinolone resistant isolates (75.8%) harbored acc(6')-Ib-cr, qnrD, qnrA, and qnrS genes. Resistance to aminoglycosides, trimethoprim-sulfamethoxazole and chloramphenicol exceeded 80%. Fosfomycin was the most active drug against the tested isolates as only 22.7% were resistant. Class I or II integrons were detected in 86.4% of the isolates. Among class I integron positive isolates, four different gene cassette arrays (dfrA17- aadA5, aadB-aadA2, aadA2-lnuF, and dfrA14-arr-3-blaOXA-10-aadA15) and two gene cassettes (dfrA7 and aadA1) were detected. While class II integron positive isolates carried four different gene cassette arrays (dfrA1-sat1-aadA1, estXVr-sat2-aadA1, lnuF- dfrA1-aadA1, and dfrA1-sat2). CONCLUSION: P. Mirabilis ability to acquire resistance determinants via integrons may be held responsible for the elevated rates of antimicrobial resistance and emergence of XDR or even PDR strains limiting the available therapeutic options for management of infections caused by those strains.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Infecções por Proteus , Proteus mirabilis , Egito/epidemiologia , Humanos , Proteus mirabilis/genética , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Proteus/microbiologia , Infecções por Proteus/epidemiologia , Antibacterianos/farmacologia , Prevalência , beta-Lactamases/genética , Integrons/genética , Proteínas de Bactérias/genética , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Masculino
12.
Antonie Van Leeuwenhoek ; 117(1): 57, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491220

RESUMO

Carbapenem resistant Klebsiella pneumoniae causing severe infection resulting in morbidity and mortality have become a global health concern. K. pneumoniae with sequence type ST147 is an international high-risk clonal lineage, genomic studies have been done on K. pneumoniae ST147 isolated from clinical origin but genomic data for environmental K. pneumoniae ST147 is very scarce. Herein, K. pneumoniae IITR008, an extensively drug resistant and potentially hypervirulent bacterium, was isolated from Triveni Sangam, the confluence of three rivers where religious congregations are organized. Phenotypic, genomic and comparative genomic analysis of strain IITR008 was performed. Antibiotic susceptibility profiling revealed resistance to 9 different classes of antibiotics including ß-lactams, ß-lactam combination agents, carbapenem, aminoglycoside, macrolide, quinolones, cephams, phenicol, and folate pathway antagonists and was found to be susceptible to only tetracycline. The strain IITR008 possesses hypervirulence genes namely, iutA and iroN in addition to numerous virulence factors coding for adherence, regulation, iron uptake, secretion system and toxin. Both the IITR008 chromosome and plasmid pIITR008_75 possess a plethora of clinically relevant antibiotic-resistant genes (ARGs) including blaCTX-M-15, blaTEM-1, and blaSHV-11, corroborating the phenotypic resistance. Comparative genomic analysis with other ST147 K. pneumoniae provided insights on the phylogenetic clustering of IITR008 with a clinical strain isolated from a patient in Czech with recent travel history in India and other clinical strains isolated from India and Pakistan. According to the 'One Health' perspective, surveillance of antibiotic resistance in the environment is crucial to impede its accelerated development in diverse ecological niches.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Filogenia , Rios , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos , Plasmídeos , Genômica , Ferro , Água , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
13.
BMC Health Serv Res ; 24(1): 542, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678263

RESUMO

BACKGROUND: Engagement of healthcare providers is one of the World Health Organization strategies devised for prevention and provision of patient centered care for multidrug resistant tuberculosis. The need for current research question rose because of the gaps in evidence on health professional's engagement and its factors in multidrug resistant tuberculosis service delivery as per the protocol in the prevention and management of multidrug resistant tuberculosis. PURPOSE: The purpose of this study was to explore the level of health care providers' engagement in multidrug resistant tuberculosis prevention and management and influencing factors in Hadiya Zone health facilities, Southern Ethiopia. METHODS: Descriptive phenomenological qualitative study design was employed between 02 May and 09 May, 2019. We conducted a key informant interview and focus group discussions using purposely selected healthcare experts working as directly observed treatment short course providers in multidrug resistant tuberculosis treatment initiation centers, program managers, and focal persons. Verbatim transcripts were translated to English and exported to open code 4.02 for line-by-line coding and categorization of meanings into same emergent themes. Thematic analysis was conducted based on predefined themes for multidrug resistant tuberculosis prevention and management and core findings under each theme were supported by domain summaries in our final interpretation of the results. To maintain the rigors, Lincoln and Guba's parallel quality criteria of trustworthiness was used particularly, credibility, dependability, transferability, confirmability and reflexivity. RESULTS: Total of 26 service providers, program managers, and focal persons were participated through four focus group discussion and five key informant interviews. The study explored factors for engagement of health care providers in the prevention and management of multidrug resistant tuberculosis in five emergent themes such as patients' causes, perceived susceptibility, seeking support, professional incompetence and poor linkage of the health care facilities. Our findings also suggest that service providers require additional training, particularly in programmatic management of drug-resistant tuberculosis. CONCLUSION: The study explored five emergent themes: patient's underlying causes, seeking support, perceived susceptibility, professionals' incompetence and health facilities poor linkage. Community awareness creation to avoid fear of discrimination through provision of support for those with multidrug resistant tuberculosis is expected from health care providers using social behavioral change communication strategies. Furthermore, program managers need to follow the recommendations of World Health Organization for engaging healthcare professionals in the prevention and management of multidrug resistant tuberculosis and cascade trainings in clinical programmatic management of the disease for healthcare professionals.


Assuntos
Grupos Focais , Pessoal de Saúde , Pesquisa Qualitativa , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/prevenção & controle , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Pessoal de Saúde/psicologia , Etiópia , Feminino , Masculino , Adulto , Atitude do Pessoal de Saúde , Entrevistas como Assunto , Instalações de Saúde
14.
Euro Surveill ; 29(12)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516786

RESUMO

Approximately five million Ukrainians were displaced to the EU/EEA following the Russian invasion of Ukraine. While tuberculosis (TB) notification rates per 100,000 Ukrainians in the EU/EEA remained stable, the number of notified TB cases in Ukrainians increased almost fourfold (mean 2019-2021: 201; 2022: 780). In 2022, 71% cases were notified in three countries, and almost 20% of drug-resistant TB cases were of Ukrainian origin. Targeted healthcare services for Ukrainians are vital for early diagnosis and treatment, and preventing transmission.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , União Europeia , Vigilância da População , Tuberculose/diagnóstico , Tuberculose/epidemiologia , População do Leste Europeu
15.
Euro Surveill ; 29(28)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994601

RESUMO

This report documents the case of a Ukrainian patient infected with an extensively drug-resistant (XDR) lineage 2 Mycobacterium tuberculosis strain harbouring the rifampicin resistance mutation RpoB I491F. This mutation is not detected by routine molecular WHO-recommended rapid diagnostics, complicating the detection and treatment of these strains. The occurrence of such mutations underscores the need for enhanced diagnostic techniques and tailored treatment regimens, especially in eastern Europe where lineage 2 strains and XDR-tuberculosis are prevalent.


Assuntos
Antituberculosos , Proteínas de Bactérias , RNA Polimerases Dirigidas por DNA , Tuberculose Extensivamente Resistente a Medicamentos , Mutação , Mycobacterium tuberculosis , Rifampina , Adulto , Humanos , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Alemanha , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/uso terapêutico , Ucrânia , Feminino
16.
Molecules ; 29(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38998957

RESUMO

A new class of thiophene-based molecules of 5-bromothiophene-2-carboxylic acid (1) have been synthesized in current research work. All analogs 4A-4G were synthesized with optimized conditions by coupling reactions of 2-ethylhexyl 5-bromothiophene-2-carboxylate (3) with various arylboronic acids. The results indicated that the majority of compounds showed promising effective in vitro antibacterial activity. Herein, 2-ethylhexyl-5-(p-tolyl)thiophene-2-carboxylate (4F), in particular among the synthesized analogs, showed outstanding antibacterial action (MIC value 3.125 mg/mL) against XDR Salmonella Typhi compared to ciprofloxacin and ceftriaxone. The intermolecular interaction was investigated by using a molecular docking study of thiophene derivatives 4A-4G against XDR S. Typhi. The values of the binding affinity of functionalized thiophene molecules and ciprofloxacin were compared against bacterial enzyme PDB ID: 5ztj. Therefore, 4F appears to be a promising antibacterial agent and showed the highest potential value. Density functional theory (DFT) calculations were executed to examine the electronic, structural, and spectroscopic features of the newly synthesized molecules 4A-4G.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Salmonella typhi , Tiofenos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Salmonella typhi/efeitos dos fármacos , Tiofenos/química , Tiofenos/farmacologia , Tiofenos/síntese química , Teoria da Densidade Funcional , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Ciprofloxacina/farmacologia , Ciprofloxacina/química
17.
J Pak Med Assoc ; 74(1 (Supple-2)): S74-S78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385476

RESUMO

Objective: To locate resistomes in tuberculosis strains, to determine the severity of drug resistance, and to infer its implications with respect to high tuberculosis prevalence in a Third World setting. METHODS: The pangenomic study was conducted from October 2022 to January 2023 in Sir Syed University of Engineering and Technology, Karachi, and comprised 2012-22 data on multiple sequence alignment to assess the genetic evolution of tuberculosis strains. Antibiotic resistance drug classes were identified using the Canadian Antibiotic Resistance Database, which entailed multidrug-resistant and extremely drug-resistant strains. Also, GenBank was used for tuberculosis genome FASTA (fast-all; nucleotide and protein sequence representation) files, prediction of resistome sequences on the basis of Canadian Antibiotic Resistance Database, and multiple sequence alignment was done in Mauve. RESULTS: Evolutionarily, the 6 strains identified were structurally similar with polymorphisms in their core chromosomal regions. Their resistome genes showed perfect hits for isoniazid, rifamycin, cephalosporin, fluoroquinolone, aminoglycosides, penem, penam and cephamycin. Conclusion: Drugs discovered in antibiotic resistance genes are now less effective in treatment, and have the potential to develop into more dangerous bacteria, if not monitored. For treatment, staying long durations in hospitals for quality healthcare and supervision in third world countries is unaffordable.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Canadá , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana
18.
Medicina (Kaunas) ; 60(9)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39336445

RESUMO

Background and Objectives: In the undertaken study, proteomics alterations of blood-borne XDR S. Typhi isolated from Pakistan were investigated using mass spectrometry. Materials and Methods: MDR and XDR S. Typhi total protein lysates were fractionated, digested, and processed for nanoflow LC-LTQ-Orbitrap MS analysis. Results: Among the 1267 identified proteins, 37 were differentially regulated, of which 28 were up-regulated, and 9 were down-regulated in XDR S. Typhi as compared to MDR S. Typhi. Based on the functional annotation, proteins found up-regulated are involved mainly in metabolic pathways (ManA, FadB, DacC, GpmA, AphA, PfkB, TalA, FbaB, OtsA, 16504242), the biosynthesis of secondary metabolites (ManA, FadB, GlpB, GpmA, PfkB, TalA, FbaB, OtsA), microbial metabolism in diverse environments (FadB, GpmA, PfkB, NfnB, TalA, FbaB), and ABC transporters (PstS, YbeJ, MglB, RbsB, ArtJ). Proteins found down-regulated are involved mainly in carbon metabolism (FadB, GpmA, PfkB, FalA, FbaB) and the biosynthesis of amino acids (GpmA, PfkB, TalA, FbaB). Most of the identified differential proteins were predicted to be antigenic, and matched with resistome data. Conclusions: A total of 28 proteins were up-regulated, and 9 were down-regulated in XDR S. Typhi. Further characterization of the identified proteins will help in understanding the molecular signaling involved in the emergence of XDR S. Typhi.


Assuntos
Salmonella typhi , Regulação para Cima , Salmonella typhi/efeitos dos fármacos , Paquistão , Humanos , Proteínas de Bactérias , Farmacorresistência Bacteriana Múltipla/genética , Febre Tifoide/microbiologia , Proteômica/métodos
19.
Pak J Med Sci ; 40(6): 1219-1224, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952494

RESUMO

Objectives: This study aimed to determine the epidemiology, clinical features, and complications of extensively drug-resistant Salmonella typhi (XDR S. typhi) infection in adults. Method: This cross-sectional study enrolled adults with culture-proven XDR S. typhi admitted to Hayatabad Medical Complex, Peshawar from 1st March to 10th September 2022. Their demographic characteristics, clinical features, treatment, and complications were recorded. Results: Out of 84 patients, 68 (80.9%) were male. The mean age of enrolled patients was 25.2 ± 11.3 years. The mean duration of fever at the time of admission was 13.6 ± 8.2 days, respectively. The most common symptom was loose stools (n=25, 29.8%). Most of the patients (n=69, 82.1%) had received empirical treatment before hospitalization. The majority of the patients (n=42, 50%) received meropenem and a combination of meropenem and azithromycin (n=35, 41.7%) during the study. The time to defervescence for both regimens was similar. Five patients (6%) developed complications of enteric fever. There was no mortality among the participants. Conclusions: Diarrhea was the most common associated clinical feature in XDR typhoid fever. Most of the patients received meropenem alone or in combination with azithromycin with a comparable time to defervescence. The majority of the patients recovered uneventfully and there was no mortality among the study participants.

20.
Pak J Med Sci ; 40(6): 1168-1173, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952512

RESUMO

Objectives: To determine the antimicrobial activity of silver nano-particles(AgNPs) with tetracycline and ampicillin against multi-drug resistance (MDR) and extensively-drug resistance (XDR) Salmonella typhi. Methods: Cross sectional non-probability purposive study was conducted from September, 2021 to May, 2022 at Microbiology department PNS Shifa, Hospital Karachi. Blood cultures of patients suspicious of typhoid fever were collected and incubated in automated Bact/Alert system. Positive cultures were identified on blood and MacConkey and processed by API-10S, confirmed by serotyping (O9 antisera) (SSI Diagnostica's Salmonella). Antibiotic resistance was done by Kirby-Bauer disk diffusion (Sigma and Rich). MDR and XDR isolates were preserved in Brain Heart Infusion in a volume of 2ml in screw capped bottles at -70°C. Antimicrobial powders (ampicillin and tetracycline (Alfa Aesar) weighed by an electrical weighing balance (OHAUS) to take 1mg of antimicrobial drug. Absorbance spectra of serial concentrations of antibiotics (UV-Vis spectrophotometer (Mole-Qule-) AgNPs (10nm) (nanocomposix) + Antibiotic in (1:1 volume ratio). Conjugation of silver nanoparticles with tetracycline and ampicillin was done by FTIR (thermos scientificThermos ScientificNicolet 50). Results: Out of 77 isolates, 54 were resistant to ceftriaxone (XDR) and 23 sensitive to ceftriaxone (MDR). All isolates were susceptible to azithromycin and meropenem. Comparison of zone of inhibitions of ampicillin and Amp-AgNPsas and tetracycline with Tet-AgNPs was done. Minimal inhibitory concentration was also done to determine antimicrobial activity. Conclusion: Significant synergistic inhibitory effects against Salmonella Typhi isolates were obtained by combination of tetracycline with silver nano-particles even at low concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA