Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.039
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 42, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38356037

RESUMO

The estuarine system functions as natural filters due to its ability to facilitate material transformation, planktonic bacteria play a crucial role in the cycling of complex nutrients and pollutants within estuaries, and understanding the community composition and assembly therein is crucial for comprehending bacterial ecology within estuaries. Despite extensive investigations into the composition and community assembly of two bacterial fractions (free-living, FLB; particle-attached, PAB), the process by which bacterioplankton communities in these two habitats assemble in the nearshore and offshore zones of estuarine ecosystems remains poorly understood. In this study, we conducted sampling in the Yangtze River Estuary (YRE) to investigate potential variations in the composition and community assembly of FLB and PAB in nearshore and offshore regions. We collected 90 samples of surface, middle, and bottom water from 16 sampling stations and performed 16S rRNA gene amplicon analysis along with environmental factor measurements. The results unveiled that the nearshore communities demonstrated significantly greater species richness and Chao1 indices compared to the offshore communities. In contrast, the nearshore communities had lower values of Shannon and Simpson indices. When compared to the FLB, the PAB exhibit a higher level of biodiversity and abundance. However, no distinct alpha and beta diversity differences were observed between the bottom, middle, and surface water layers. The community assembly analysis indicated that nearshore communities are predominantly shaped by deterministic processes, particularly due to heterogeneous selection of PAB; In contrast, offshore communities are governed more by stochastic processes, largely due to homogenizing dispersal of FLB. Consequently, the findings of this study demonstrate that nearshore and PAB communities exhibit higher levels of species diversity, while stochastic and deterministic processes exert distinct influences on communities among near- and offshore regions. This study further sheds new light on our understanding of the mechanisms governing bacterial communities in estuarine ecosystems.


Assuntos
Ecossistema , Rios , Rios/microbiologia , Plâncton/genética , Estuários , RNA Ribossômico 16S/genética , Bactérias/genética , Água
2.
Environ Sci Technol ; 58(11): 4904-4913, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437168

RESUMO

The Yangtze River fishery resources have declined strongly over the past few decades. One suspected reason for the decline in fishery productivity, including silver carp (Hypophthalmichthys molitrix), has been linked to organophosphate esters (OPEs) contaminant exposure. In this study, the adverse effect of OPEs on lipid metabolism in silver carp captured from the Yangtze River was examined, and our results indicated that muscle concentrations of the OPEs were positively associated with serum cholesterol and total lipid levels. In vivo laboratory results revealed that exposure to environmental concentrations of OPEs significantly increased the concentrations of triglyceride, cholesterol, and total lipid levels. Lipidome analysis further confirmed the lipid metabolism dysfunction induced by OPEs, and glycerophospholipids and sphingolipids were the most affected lipids. Hepatic transcriptomic analysis found that OPEs caused significant alterations in the transcription of genes involved in lipid metabolism. Pathways associated with lipid homeostasis, including the peroxisome proliferator-activated receptor (PPAR) signal pathway, cholesterol metabolism, fatty acid biosynthesis, and steroid biosynthesis, were significantly changed. Furthermore, the affinities of OPEs were different, but the 11 OPEs tested could bind with PPARγ, suggesting that OPEs could disrupt lipid metabolism by interacting with PPARγ. Overall, this study highlighted the harmful effects of OPEs on wild fish and provided mechanistic insights into OPE-induced metabolic disorders.


Assuntos
Carpas , Retardadores de Chama , Doenças Metabólicas , Animais , Rios , PPAR gama , Ésteres/análise , Organofosfatos/toxicidade , Organofosfatos/análise , Colesterol/análise , Lipídeos , Retardadores de Chama/análise , China , Monitoramento Ambiental/métodos
3.
Environ Sci Technol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079029

RESUMO

Wastewater discharge from wastewater treatment plants continuously pumps microplastics into rivers, yet their transport distances within these waterways remain unknown. Herein, we developed a conceptual framework by synthesizing the microplastic data from the Yangtze River Basin to evaluate its transport distances, quantifying a significant spatial dependence between large-scale wastewater discharge and riverine microplastics (p < 0.05). The presence of microplastics at a specific sampling site could be attributed to wastewater discharge within a large-scale range spanning >1000 km upstream, encompassing a substantial portion equivalent to one-third of the Yangtze River Basin. The dominance analysis indicated that the contribution of wastewater discharge in rivers with higher discharge (>100 m3/s) to riverine microplastic pollution exceeded 65% within the Yangtze River Basin. The spatial dependence framework of riverine microplastics on wastewater discharge advances our prior understanding of the prevention and control of riverine microplastics by demonstrating that such pollution is not limited to nearby environmental factors.

4.
Environ Res ; 250: 118588, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428563

RESUMO

Coastal estuaries are often heavily subject to riverine influences by the inputs of sediment from terrestrial sources. Hangzhou Bay (HZB) is threatened by the riverine derived trace metals from two large rivers of Qiantang River (QTR) and Yangtze River (YZR). However, previous studies mainly focused on the incidental transport from the largest river in China (YZR) and failed to simultaneously evaluate the contributions of these two rivers, especially the directly flowing river of QTR, by their trace elemental geochemical composition and distribution. Herein, a comprehensive study identified the river-derived sources of multiple trace metals in surface sediments which transported from both of the rivers. The sampling stations were separated into three regions of YZR, HZB, and QTR based on their spatial distributions of sediment grain size and components. The significant variations for most of the trace metals concentrations, except for Cd, Th, and U, were found among three regions (χ2 ≥ 8.22, p ≤ 0.016). The highest concentrations in HZB were mainly resulted from the grain size effect (68.82% of the total variance), while the highest concentrations of Sr, Cd, and Ba in YZR and Zr and Hf in QTR were attributed to the anthropogenic source (11.90%) and mineral composition (6.21%) of river basins. After normalized the diversity of multiple trace metals concentrations and the influence of grain size by ratios of Igeo and EFLi, three regions were effectively distinguished. It was indicated that As, Cd, and Sb were enriched in the sediments of rivers by anthropogenic source (EFLi > 1.5 and/or Igeo > 1). The results evidenced that, after removing the influence of grain size, elemental geochemical composition of the surface sediments confidently identified the river-derived anthropogenic sources of the enriched trace metals from two major rivers, and largely from YZR.


Assuntos
Baías , Monitoramento Ambiental , Sedimentos Geológicos , Rios , Poluentes Químicos da Água , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , China , Rios/química , Poluentes Químicos da Água/análise , Baías/química , Oligoelementos/análise , Metais/análise
5.
Environ Res ; 249: 118424, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325775

RESUMO

Terrestrial silicon (Si) from biogeochemically weathered rocks and soils into oceans must pass through several water bodies, resulting in some Si immobilized. Hence, the knowledge on Si distribution characteristics in different water bodies at a basin scale is helpful to understand Si immobilization. A total of 65 surface sediments and corresponding overlying water samples were sampled from six water bodies (Dianchi Lake, DL; Dadu River, DR; Tuojiang River, TR; Honghu Lake, HL; Donghu Lake, DhL; Taihu Lake, TL) in the Yangtze River Basin of China, total dissolved Si (TDSi) in overlying water and exchangeable Si (Ex-Si), active non-biogenic Si (NBSi), and total acid dissolved Si (TADSi) in sediments were analyzed. Water chemical parameters (pH, EC, and TDP) and sediment components (LOI, TN, TP, and TADFe) showed that the water environment characteristics of six water bodies differed. TDSi differed among regions and between lakes and rivers, significantly higher in water bodies in the upper reaches and rivers than the middle or lower reaches and lakes (p < 0.05), respectively. Ex-Si in sediments in the upper reaches was significantly higher than in the middle or lower reaches (p < 0.05), except for DhL, whose Ex-Si was the highest. Mean TADSi and active NBSi were significantly higher in lakes than rivers (p < 0.05). Oxidation of sediments significantly increased TDSi in overlying water and active NBSi in sediments (p < 0.01). Si forms in six water bodies significantly depended on components of the sediments (e.g. active Ca2+, Mg2+, Fe, and Al3+) and water chemical parameters (p < 0.05). Our results suggest that immobilization of Si in water bodies in the Yangtze River Basin depends on the types of water bodies and sediments, lakes and Fe-Al dominated sediments have a high potential to immobilize Si, but anthropogenic interference should not be ignored.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Rios , Silício , China , Silício/análise , Rios/química , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Lagos/química
6.
Environ Res ; 246: 118148, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191040

RESUMO

Interpreting the biogeographic distribution and underlying mechanisms of functional traits not only contributes to revealing the spatiotemporal dynamics of species biodiversity but also helps to maintain ecological stability during environmental variations. However, little is known about the functional profiles of diatom communities over large river systems. Herein, we provided the first blueprints about the spatiotemporal distributions and driving forces of functional traits for both planktonic and sedimentary diatoms over the 6030 km continuum of the Yangtze River, with the help of the high-throughput sequencing and functional identification. By investigating the 28 functional traits affiliated into five categories, we found that planktonic diatom functions showed clearer landform-heterogeneity patterns (ANOSIM R = 0.336) than sedimentary functions (ANOSIM R = 0.172) along the river, represented by life-forms and ecological-guilds prominent in water-plateau as well as cell-sizes and life-forms particularly in sediment-plateau. Planktonic diatom functions also displayed higher richness and network complexity in plateau (richness: 58.70 ± 9.30, network edges: 65) than in non-plateau regions (23.82 ± 13.16, 16), promoting the stability and robustness of diatom functions against the high-radiation and low-temperature plateau environment. Environmental selection (mainly exerted by PAR, UV, and Tw) played crucial roles in determining the functional variations of planktonic diatoms (explaining 80.5%) rather than sedimentary diatoms (14.5%) between plateau and non-plateau regions. Meanwhile, planktonic diatom traits within life-forms were identified to be well responsive to the ecological environment quality (r = 0.56-0.60, P < 0.001) in the Yangtze. This study provided comprehensive insights into the multifunctionality of diatoms and their responses to environmental disturbance and environment quality, which helps to develop effective strategies for maintaining ecological stability in changing river environments.


Assuntos
Diatomáceas , Plâncton , Ecossistema , Monitoramento Ambiental , Biodiversidade , Rios
7.
Environ Res ; 257: 119327, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38830391

RESUMO

Climate change mitigation requires simultaneous reduction of carbon emissions and air pollution. This study examines the synergy between pollution reduction and carbon reduction, identifying key variables and strategies to achieve this goal. Using a Geographical Detector model and a Coupling Degree of Coordination model, 108 cities in the Yangtze River Economic Belt (YREB) are investigated. Results show that while controlling PM2.5 has been more successful than managing carbon emissions in the YREB, synergy between pollution reduction and carbon emissions increased by an average of 7.2% from 2006 to 2019. Spatial analysis reveals higher synergy in upstream areas, indicating significant spatial diversity. The impact of pollution and emission reduction synergies is influenced by societal and environmental variables, including industry structure, technological innovation, energy structure, human capital quality, and economic basis. Synergy is amplified when natural limits align with high-quality development drivers such as technical innovation and the digital economy. Recommendations include enhancing city-to-city contact, improving energy and industrial structures, and fostering technological innovation to address regional variations in synergy levels.


Assuntos
Rios , China , Rios/química , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Mudança Climática , Monitoramento Ambiental/métodos , Cidades , Material Particulado/análise , Poluentes Atmosféricos/análise
8.
Environ Res ; 252(Pt 3): 119040, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692424

RESUMO

Floods in global large rivers modulate the transport of dissolved organic carbon (DOC) and estuarine hydrological characteristics significantly. This study investigated the impact of a severe flood on the sources and age of DOC in the Yangtze River Estuary (YRE) in 2020. Comparing the flood period in 2020 to the non-flood period in 2017, we found that the flood enhanced the transport of young DOC to the East China Sea (ECS), resulting in significantly enriched Δ14C-DOC values. During the flood period, the proportion of modern terrestrial organic carbon (OC) was significantly higher compared to the non-flood period. Conversely, the proportion of pre-aged sediment OC was significantly lower during the flood period. The high turbidity associated with the flood facilitated rapid transformation and mineralization of sedimentary and fresh terrestrial OC, modifying the sources of DOC. The flux of modern terrestrial OC transported to the ECS during the flood period was 1.58 times higher than that of the non-flood period. These findings suggest that floods can modulate the sources and decrease the age of DOC, potentially leading to increased greenhouse gas emissions. Further research is needed to understand the long-term impacts of floods on DOC dynamics in global estuaries.


Assuntos
Carbono , Estuários , Inundações , Rios , China , Rios/química , Carbono/análise , Monitoramento Ambiental , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise
9.
Environ Res ; 243: 117813, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043893

RESUMO

Terrestrial gross primary production (GPP) changes due to impervious surfaces significantly impact ecosystem services in watersheds. Understanding the asymmetric response of vegetation GPP to impervious surface expansion is essential for regional development planning and ecosystem management. However, the asymmetric response of vegetation GPP to the impacts of impervious surface expansion is unknown in different watersheds. This paper selected the Yellow River and Yangtze River basins as case studies. We characterized the overall change in GPP based on changes in impervious surface ratio (ISR), determined impervious surface expansion's direct and indirect impacts on GPP in the two watersheds, and further analyzed the asymmetric response of the compensatory effects of indirect influences on the impervious surface expansion in different watersheds. The results showed that: (1) The vegetation GPP decreased with increasing ISR in the Yangtze River Basin, while that in the Yellow River Basin first increased and then reduced. (2) The direct impacts of increased ISR reduced vegetation GPP, while the indirect impacts both had a growth-compensating effect. Growth compensation stabilized at approximately 0.40 and 0.30 in the Yellow and Yangtze River Basins. (3) When the ISR was 0.34-0.56, the growth compensation could offset the reduction of GPP due to direct impact and ensure that the background vegetation GPP was not damaged in the Yellow River Basin. In contrast, the background vegetation GPP was inevitably impaired with increased ISR in the Yangtze River Basin. Therefore, this study suggests that the ISR should be ensured to be between 0.34 and 0.56 to maximize the impervious surface of the Yellow River Basin without compromising the background vegetation GPP. While pursuing impervious surface expansion in the Yangtze River Basin, other programs should be sought to compensate for the loss to GPP.


Assuntos
Ecossistema , Monitoramento Ambiental , Rios , China
10.
Environ Res ; 251(Pt 1): 118579, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423497

RESUMO

Halogenated organic contaminants, such as chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs), are some of the most important emerging environmental pollutants. However, empirical data on Cl/Br-PAHs in estuarine and marine ecosystems are limited, rendering assessments of Cl/Br-PAH contamination in estuarine and offshore environments uncertain. Here the occurrence, sources, and ecological risks of 7 Cl-PAHs and 18 Br-PAHs were determined in surface sediments of the Yangtze River Estuary (YRE), a highly urbanized and industrialized area, and its adjacent marine area. The concentrations of Cl-PAHs ranged from 4.50 to 18.38 ng g-1 (average 7.19 ng g-1), while those of Br-PAHs ranged from 4.80 to 61.18 ng g-1 (average 14.11 ng g-1). The dominant Cl-PAH and Br-PAH in surface sediment were 9-chlorofluorene (17.79%) and 9-bromofluorene (58.49%), respectively. The distributions and compositions of Cl/Br-PAHs in the surface sediments varied considerably due to complex hydrodynamic and depositional conditions in the YRE and its adjacent marine area, as well as differences in physicochemical properties of different Cl/Br-PAHs. Positive matrix factorization revealed that the primary sources of Cl/Br-PAHs in the study area were e-waste dismantling (33.6%), waste incineration (23.2%), and metal smelting (11.0%). According to the risk quotient, the Cl/Br-PAHs in sediments posed no toxic risk to aquatic organisms.


Assuntos
Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Rios , Poluentes Químicos da Água , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , China , Rios/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar/química , Água do Mar/análise
11.
Environ Res ; 245: 118074, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160979

RESUMO

Exploring the effect of local government multi-objective competition on the transfer of polluting industries is of great practical significance for promoting the high-quality development in the Yangtze River Economic Belt. This paper adopted the extended shift-share analysis method to measure the scale of inter-provincial transfer of polluting industries in the Yangtze River Economic Belt from 2008 to 2020. Considering local governments' economic, innovation, talent and environmental protection competition, the paper examined the effects of local government multi-objective competition on the transfer of polluting industries in the region, and tested its spatial spillover effects. The results showed that: 1. Different competitions had different effects on the transfer of polluting industries. Economic competition intensified the transfer of polluting industries, while talent, innovation, and environmental protection competition all restrained it, among which environmental protection competition had the strongest restraining effect. 2. Compared with the transfer of polluting industries, the direction of economic competition and environmental protection competition on the transfer of industries did not change, but the degree of influence was reduced, talent competition instead promoted industrial transfer of the research region to some extent. 3. From the basin level, government competition in the upstream region more obviously intensified the transfer of polluting industries; while from the economic scale level, the restraining effect of government competition in the developed region on the transfer of polluting industries was much stronger. 4. Both innovation and environmental protection competition had positive spatial spillover effects. Therefore, it is necessary to optimize the promotion and assessment mechanism of local officials, adopt differentiated competitive constraint mechanisms in accordance with local conditions, guide local governments to transform their development concepts, promote the sharing and common use of technological innovations, and promote the orderly transfer of industries in the Yangtze River Economic Belt.


Assuntos
Governo Local , Rios , Indústrias , Conservação dos Recursos Naturais , Desenvolvimento Econômico , China , Cidades
12.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001595

RESUMO

Fly ash-the residuum of coal burning-contains a considerable amount of fossilized particulate organic carbon (FOCash) that remains after high-temperature combustion. Fly ash leaks into natural environments and participates in the contemporary carbon cycle, but its reactivity and flux remained poorly understood. We characterized FOCash in the Chang Jiang (Yangtze River) basin, China, and quantified the riverine FOCash fluxes. Using Raman spectral analysis, ramped pyrolysis oxidation, and chemical oxidation, we found that FOCash is highly recalcitrant and unreactive, whereas shale-derived FOC (FOCrock) was much more labile and easily oxidized. By combining mass balance calculations and other estimates of fly ash input to rivers, we estimated that the flux of FOCash carried by the Chang Jiang was 0.21 to 0.42 Mt C⋅y-1 in 2007 to 2008-an amount equivalent to 37 to 72% of the total riverine FOC export. We attributed such high flux to the combination of increasing coal combustion that enhances FOCash production and the massive construction of dams in the basin that reduces the flux of FOCrock eroded from upstream mountainous areas. Using global ash data, a first-order estimate suggests that FOCash makes up to 16% of the present-day global riverine FOC flux to the oceans. This reflects a substantial impact of anthropogenic activities on the fluxes and burial of fossil organic carbon that has been made less reactive than the rocks from which it was derived.


Assuntos
Carbono/metabolismo , Cinza de Carvão/efeitos adversos , Carvão Mineral/efeitos adversos , Monitoramento Ambiental , Carbono/química , Ciclo do Carbono , China/epidemiologia , Humanos , Minerais/química , Rios
13.
J Fish Biol ; 104(5): 1350-1365, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332499

RESUMO

Dam construction alters the hydrodynamic conditions, consequently impacting the swimming behavior of fish. To explore the effect of flow hydrodynamics on fish swimming behavior, five endemic fish species in the upper Yangtze River basin were selected. Through high-speed video visualization and computer analysis, these species' swimming patterns under different flow velocities (0.1-1.2 m/s) were investigated. The kinematic and morphological characteristics of the fish were presented. The principal component analysis was used to analyse the main factors influencing the swimming ability of fish and to determine the correlation coefficients among fish behavior indicators. Fish exhibited three different swimming patterns under different flow velocities. Low velocity (0.1-0.3 m/s) corresponds to free motion, middle velocity (0.4-0.7 m/s) corresponds to cruising motion, and high velocity corresponds to stress motion (0.8-1.2 m/s). The fish kinematic index curves were obtained, and four of five fish species showed two extreme points, which means the optimal and adverse swimming strategies can be determined. With the increase in flow velocity, the tail-beat frequency showed an increasing trend, whereas the tail-beat angle and amplitude showed a decreasing trend. Morphological and kinematic parameters were the two main indexes that affect the swimming ability of fish, which accounts for 41.9% and 26.9%, respectively.


Assuntos
Hidrodinâmica , Rios , Natação , Animais , China , Fenômenos Biomecânicos , Peixes/fisiologia , Peixes/anatomia & histologia , Análise de Componente Principal , Gravação em Vídeo
14.
J Environ Manage ; 353: 120120, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38278117

RESUMO

Traditional industries and industrialization have led to widespread environmental pollution and ecosystem degradation in major river basins globally. Strategies centered on ecological restoration and ecological economy are emerging as essential tools for effective environmental governance. This study aims to investigate how a multifaceted framework for land ecological consolidation, with various developmental goals, can effectively support ecological restoration and sustainability. Through quantitative analysis and in-depth interviews, we investigated the case of Yangtze riverside chemical industrial park in Changzhou. This park pursues ecological and economic sustainability through chemical industry transformation, ecological restoration and protection, ecological management, and ecological industry development. The results show that this practice established a multi-objective action framework rooted in urban renewal, land consolidation, ecological restoration, industrial transformation, and rural revitalization. Through multiplanning integration, integrated implementation and full-cycle profit distribution, the aim of ecological protection has been initially achieved, offering a crucial guarantee for sustainable development. A total of 96.47 ha ecological space expanded, which can generate ecological product worth CNY 7.283 billion, alongside a net economic benefit of CNY 978 million over three decades. The top-down ecological responsibilities, coupled with local developmental demands, have stimulated collaborations within a bottom-up endogenous network comprising government, enterprises, and residents.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Política Ambiental , China , Poluição Ambiental , Rios
15.
J Environ Manage ; 360: 120958, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744206

RESUMO

To safeguard aquatic ecosystems and fishery resources while facilitating cooperative engagement between local governments and fishermen, an evolutionary game model featuring both stakeholders has been constructed in this study. The model examines the degree of compliance with ecological restoration policies linked to fishing bans, as well as the adaptive strategies of different types of fishermen with varied incentives while simulating the ecological restoration policy under diverse scenarios. The findings suggest that: (1) Compliance with the fishing ban policy among fishermen is determined by their economic interests, environmental preferences, and government regulations, while its enforcement by local authorities is influenced by regulatory costs, political performance, and reputation. (2) Variations in the ecological restoration policy of fishing bans result from several factors, including punitive measures and compensation. The higher the penalty, the greater the chance of compliance among fishermen, and the higher the restoration degree of the watershed ecosystem. Conversely, the higher the compensation, the more satisfied the fishermen are with the fishing ban policy, and the smoother the transformation of their livelihoods. (3) To enhance the effectiveness and sustainability of fishing bans, it is essential to consider the interests of multiple stakeholders and adopt a coordination mechanism that facilitates the design of a reasonable and effective incentive-compatible system, thereby increasing the fairness and acceptability of the policy. This study provides a new theoretical framework and methodology applicable to ecological restoration policies for fishery closures on a global scale, accompanied by robust data support and theoretical guidance for developing and implementing fishery closure policies.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Pesqueiros/legislação & jurisprudência , Ecologia , Humanos , Governo
16.
J Environ Manage ; 351: 119980, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176386

RESUMO

In the context of rapid global urbanization, the sustainable development of ecosystems should be considered. Accordingly, the Planetary Boundaries theory posits that reducing the amount of nitrogen and phosphorus pollutants entering bodies of water is necessary as excess levels may harm the aquatic environment and reduce in water quality. Thus, based on the long-term monitoring data of representative urban rivers in the Yangtze River Delta region, we evaluated the nitrogen and phosphorus pollution of water bodies in different urbanization stages and further quantified the effect of urban forests on water quality improvement. The results showed that, with the continuous progression of urbanization, the proportion of impervious surface area increased, along with the levels of nitrogen and phosphorus pollution in water bodies. The critical period of water quality deterioration in urban rivers occurred during the medium urbanization level when the proportion of impervious surface area reached 55-65 %, and the probability of an abrupt increase in total nitrogen (TN) and total phosphorus (TP) concentration exceeded 95 %. However, increasing the area of urban forests during this period reduced TN pollution by 36.64 % and TP pollution by 49.03 %. The results of this study support the expansion of urban forests during the medium urbanization stage to improve water quality. Furthermore, our results provide a reference and theoretical basis for urban forest construction as a key aspect of the sustainable development of the urban ecosystem in the Yangtze River Delta and similar regions around world.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Ecossistema , Urbanização , Melhoria de Qualidade , Florestas , Nitrogênio/análise , Fósforo/análise , China , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
17.
J Environ Manage ; 358: 120940, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38652994

RESUMO

The digital economy (DIE), a new economic form with digitalization at its core, has become an important driving force for promoting regional economy development. In the context of the COVID-19 pandemic, exploring the impact path of the DIE on carbon emission efficiency (CEE) is conducive to giving full play to the "carbon-reduction-and-efficiency-enhancement" role of the DIE, and to promoting the realization the "dual carbon" goal of carbon peak and carbon neutrality. In this paper, the Yellow River Basin (YRB) and the Yangtze River Economic Belt (YREB) are taken as study areas, the panel Tobit model is used to explore the impact of the DIE on CEE, and the intermediary-effect model and threshold-effect model are constructed to test the intermediary and threshold effects of technological innovation, respectively. The results show that the DIE has a U-shaped nonlinear impact on CEE in both the YRB and the YREB and that the impact has regional heterogeneity. Technological innovation can play a mediating effect between the DIE and CEE, whereas the mediating effect in the YRB is stronger than that in the YREB. Technological innovation has a threshold effect on the DIE to improve CEE, while the threshold value in the YREB is higher than that in the YRB. Furthermore, this paper proposes some suggestions to guide regional low-carbon and sustainable development.


Assuntos
COVID-19 , Carbono , Invenções , Desenvolvimento Econômico , China
18.
J Environ Manage ; 360: 121020, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763116

RESUMO

Reducing soil erosion (SE) is crucial for achieving harmony between human society and the ecological environment. The cultivated land fragmentation (CLF), directly or indirectly, alters soil structure, diminishes its water-holding capacity, and escalates the risk of SE. Scientific assessment of the effect of CLF on SE can provide new insights into controlling of SE across watersheds in China. However, few studies have quantified the effect of CLF on SE. Therefore, we utilized land use change data in the Yangtze River basin from 2000 to 2020, measuring the levels of CLF and SE using Fragstats and InVEST models. The bivariate spatial autocorrelation model was employed to reveal the spatial relationship between CLF and SE. Additionally, we constructed a spatial Durbin model and introduced the geographically and temporally weighted regression model to analyze the role of CLF on SE. The south bank of the upper and middle reaches of the Yangtze River basin exhibited high CLF and SE. The bivariate spatial autocorrelation results showed a significant positive spatial correlation between CLF and SE. The spatial Durbin model results showed that CLF had a spatial spillover effect and time lag on SE, and the effect of CLF on SE had an inverted "N" curve. The study also confirmed that last SE and neighboring SE areas influenced local SE. Currently, CLF had a negative effect on SE in the Sichuan Basin, Yunnan-Guizhou Plateau, and the middle and lower Yangtze River Plain, and positively in Qinghai, Hunan, and Jiangxi provinces. These findings suggest that the government should enhance cross-regional and cross-sectoral cooperation and monitoring of cultivated land changes to prevent and control SE effectively.


Assuntos
Rios , Erosão do Solo , Solo , China , Solo/química , Conservação dos Recursos Naturais , Agricultura , Monitoramento Ambiental
19.
J Environ Manage ; 364: 121445, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870794

RESUMO

The Yangtze River Delta (YRD) region plays a crucial role in achieving China's carbon peaking goal. However, due to uncertainties surrounding future economic growth, energy consumption, energy structure, and population, the attainment of carbon peaking in this region remains uncertain. To address this issue, this study utilized the generalized Divisia index method to analyze the driving factors of carbon emissions, including economy, energy, investment, and population. Subsequently, Monte Carlo simulations were combined with scenario analysis to dynamically explore the peak path of regional heterogeneity in the YRD from 2022 to 2035 under uncertain conditions. The findings highlighted that economic uncertainty has the most significant impact on carbon emissions. Furthermore, reducing energy intensity and promoting the transformation of the energy consumption structure contribute to carbon reduction. The study also revealed that the carbon peak in the YRD exhibits regional heterogeneity. According to the baseline scenario, carbon emissions in the YRD will not peak before 2035. However, under the low-carbon development scenario, the carbon emissions of Zhejiang and Shanghai will peak before 2030. Moreover, under the enhanced emission reduction (EE) scenario, carbon emissions in Jiangsu, Zhejiang, and Shanghai will peak before 2025, while Anhui will reach its peak before 2030. Collectively, the entire YRD region is forecasted to attain a carbon emissions peak of 2.29 billion tons by 2025 under the EE scenario. This study provides valuable insights into the carbon emission trajectories of the YRD region under uncertain conditions. The findings can be instrumental in formulating carbon peaking policies that account for regional heterogeneity.


Assuntos
Carbono , Rios , Rios/química , China , Incerteza , Método de Monte Carlo
20.
J Environ Manage ; 358: 120952, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657415

RESUMO

Inclusive green growth has garnered significant attention from governments and international organizations worldwide. Utilizing data from 282 cities in China spanning from 2010 to 2020, this study employs the dual machine learning model and the chain mediated effect model to delve into the effects and internal mechanisms of the regional integration of Yangtze River Economic Belt on inclusive green growth. Our findings indicate that the regional integration of Yangtze River Economic Belt has a substantial influence on inclusive green growth, particularly in cities with a higher degree of marketization, non-industrial cities, and cities lacking natural resource advantages. Mechanistic analysis reveals that the regional integration of Yangtze River Economic Belt exerts its influence on inclusive green growth through three parallel development paths including enhancing urban innovation levels, fostering mass entrepreneurship, and promoting the advancement of digital financial inclusion. Furthermore, the chain mediated effect is supported. Additionally, the spatial spillover effect of target policy is observed. These findings offer empirical evidence regarding the impact of the regional integration of Yangtze River Economic Belt on inclusive green growth, and provide valuable insights for optimizing and enhancing inclusive green growth strategies in China and other emerging economies.


Assuntos
Rios , China , Conservação dos Recursos Naturais , Cidades , Desenvolvimento Econômico , Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA