Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38676022

RESUMO

Exoskeletons designed to assist patients with activities of daily living are becoming increasingly popular, but still are subject to research. In order to gather requirements for the design of such systems, long-term gait observation of the patients over the course of multiple days in an environment of daily living are required. In this paper a wearable all-in-one data acquisition system for collecting and storing biomechanical data in everyday life is proposed. The system is designed to be cost efficient and easy to use, using off-the-shelf components and a cloud server system for centralized data storage. The measurement accuracy of the system was verified, by measuring the angle of the human knee joint at walking speeds between 3 and 12 km/h in reference to an optical motion analysis system. The acquired data were uploaded to a cloud database via a smartphone application. Verification results showed that the proposed toolchain works as desired. The system reached an RMSE from 2.9° to 8°, which is below that of most comparable systems. The system provides a powerful, scalable platform for collecting and processing biomechanical data, which can help to automize the generation of an extensive database for human kinematics.


Assuntos
Computação em Nuvem , Dispositivos Eletrônicos Vestíveis , Humanos , Fenômenos Biomecânicos/fisiologia , Articulação do Joelho/fisiologia , Marcha/fisiologia , Smartphone , Caminhada/fisiologia , Atividades Cotidianas
2.
Sensors (Basel) ; 20(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357405

RESUMO

The goal of this study is the assessment of an assistive control approach applied to an active knee orthosis plus a walker for gait rehabilitation. The study evaluates post-stroke patients and healthy subjects (control group) in terms of kinematics, kinetics, and muscle activity. Muscle and gait information of interest were acquired from their lower limbs and trunk, and a comparison was conducted between patients and control group. Signals from plantar pressure, gait phase, and knee angle and torque were acquired during gait, which allowed us to verify that the stance control strategy proposed here was efficient at improving the patients' gaits (comparing their results to the control group), without the necessity of imposing a fixed knee trajectory. An innovative evaluation of trunk muscles related to the maintenance of dynamic postural equilibrium during gait assisted by our active knee orthosis plus walker was also conducted through inertial sensors. An increase in gait cycle (stance phase) was also observed when comparing the results of this study to our previous work. Regarding the kinematics, the maximum knee torque was lower for patients when compared to the control group, which implies that our orthosis did not demand from the patients a knee torque greater than that for healthy subjects. Through surface electromyography (sEMG) analysis, a significant reduction in trunk muscle activation and fatigability, before and during the use of our orthosis by patients, was also observed. This suggest that our orthosis, together with the assistive control approach proposed here, is promising and could be considered to complement post-stroke patient gait rehabilitation.


Assuntos
Eletromiografia , Joelho , Aparelhos Ortopédicos , Reabilitação do Acidente Vascular Cerebral , Adulto , Fenômenos Biomecânicos , Feminino , Marcha/fisiologia , Humanos , Articulação do Joelho , Masculino , Pessoa de Meia-Idade , Músculo Esquelético , Acidente Vascular Cerebral , Caminhada/fisiologia
3.
Sensors (Basel) ; 17(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182569

RESUMO

Robotic devices for rehabilitation and gait assistance have greatly advanced with the objective of improving both the mobility and quality of life of people with motion impairments. To encourage active participation of the user, the use of admittance control strategy is one of the most appropriate approaches, which requires methods for online adjustment of impedance components. Such approach is cited by the literature as a challenge to guaranteeing a suitable dynamic performance. This work proposes a method for online knee impedance modulation, which generates variable gains through the gait cycle according to the users' anthropometric data and gait sub-phases recognized with footswitch signals. This approach was evaluated in an active knee orthosis with three variable gain patterns to obtain a suitable condition to implement a stance controller: two different gain patterns to support the knee in stance phase, and a third pattern for gait without knee support. The knee angle and torque were measured during the experimental protocol to compare both temporospatial parameters and kinematics data with other studies of gait with knee exoskeletons. The users rated scores related to their satisfaction with both the device and controller through QUEST questionnaires. Experimental results showed that the admittance controller proposed here offered knee support in 50% of the gait cycle, and the walking speed was not significantly different between the three gain patterns (p = 0.067). A positive effect of the controller on users regarding safety during gait was found with a score of 4 in a scale of 5. Therefore, the approach demonstrates good performance to adjust impedance components providing knee support in stance phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA