Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Gene Ther ; 34(15-16): 732-741, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37433214

RESUMO

The study was designed to determine whether urocortin 2 (Ucn2) gene transfer is as safe and effective as metformin in insulin-resistant mice. Four groups of insulin-resistant db/db mice and a nondiabetic group were studied: (1) metformin; (2) Ucn2 gene transfer; (3) metformin + Ucn2 gene transfer; (4) saline; and (5) nondiabetic mice. After completion of the 15-week protocol, glucose disposal was quantified, safety assessed, and gene expression documented. Ucn2 gene transfer was superior to metformin, providing reductions in fasting glucose and glycated hemoglobin and enhanced glucose tolerance. The combination of metformin + Ucn2 gene transfer provided no better glucose control than Ucn2 gene transfer alone and was not associated with hypoglycemia. Metformin alone, Ucn2 gene transfer alone, and metformin + Ucn2 gene transfer together reduced fatty infiltration of the liver. Serum alanine transaminase concentration was elevated in all db/db groups (vs. nondiabetic controls), but the metformin + Ucn2 gene transfer combined group had the lowest alanine transaminase levels. No group differences in fibrosis were detected. In a hepatoma cell line, activation of AMP kinase showed a rank order of combined metformin + Ucn2 peptide > Ucn2 peptide > metformin. We conclude (1) The combination of metformin + Ucn2 gene transfer does not result in hypoglycemia. (2) Ucn2 gene transfer alone provides superior glucose disposal versus metformin alone. (3) The combination of Ucn2 gene transfer and metformin is safe and has additive effects in reducing serum alanine transaminase concentration, activating AMP kinase activity, and increasing Ucn2 expression, but is no more efficacious than Ucn2 gene transfer alone in reducing hyperglycemia. These data indicate that Ucn2 gene transfer is more effective than metformin in the db/db model of insulin resistance and combined treatment with metformin + Ucn2 gene transfer appears to have favorable effects on liver function and Ucn2 expression.


Assuntos
Hipoglicemia , Metformina , Camundongos , Animais , Glucose/metabolismo , Insulina/genética , Metformina/farmacologia , Urocortinas/genética , Urocortinas/farmacologia , Adenilato Quinase , Alanina Transaminase
2.
Hum Gene Ther ; 28(5): 428-436, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27485975

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating muscle disease caused by loss-of-function mutations in DMD encoding dystrophin. No rational therapy is currently available. Utrophin is a paralog of dystrophin and is highly expressed at the neuromuscular junction. In mdx mice, utrophin is naturally upregulated throughout the muscle fibers, which mitigates muscular dystrophy. Protein-anchoring therapy was previously reported, in which a recombinant extracellular matrix (ECM) protein is delivered to and anchored to a specific target using its proprietary binding domains. Being prompted by a report that intramuscular and intraperitoneal injection of an ECM protein, biglycan, upregulates expression of utrophin and ameliorates muscle pathology in mdx mice, protein-anchoring therapy was applied to mdx mice. Recombinant adeno-associated virus serotype 8 (rAAV8) carrying hBGN encoding human biglycan was intravenously injected into 5-week-old mdx mice. The rAAV8-hBGN treatment improved motor deficits and decreased plasma creatine kinase activities. In muscle sections of treated mice, the number of central myonuclei and the distribution of myofiber sizes were improved. The treated mice increased gene expressions of utrophin and ß1-syntrophin, as well as protein expressions of biglycan, utrophin, γ-sarcoglycan, dystrobrevin, and α1-syntrophin. The expression of hBGN in the skeletal muscle of the treated mice was 1.34-fold higher than that of the native mouse Bgn (mBgn). The low transduction efficiency and improved motor functions suggest that biglycan expressed in a small number of muscle fibers was likely to have been secreted and anchored to the cell surface throughout the whole muscular fibers. It is proposed that the protein-anchoring strategy can be applied not only to deficiency of an ECM protein as previously reported, but also to augmentation of a naturally induced ECM protein.


Assuntos
Biglicano/administração & dosagem , Proteínas da Matriz Extracelular/administração & dosagem , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Animais , Biglicano/genética , Modelos Animais de Doenças , Proteínas Associadas à Distrofina/genética , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Utrofina/genética
3.
Virology ; 482: 84-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25838114

RESUMO

We have recently identified a new gene, involved in DNA replication, at the far 3' end of the adeno-associated virus type 2 (AAV2) genome. The AAV type 6 (AAV6) genome has a disrupted X open reading frame (ORF) whose two halves, when combined, have full-length homology and comparable size to AAV2 X. Hypothesizing that AAV6 X is inactive, we assessed if AAV2 X augments recombinant (r)AAV2 DNA replication and virion production, but with rep and cap trans-functions of AAV6. Using AAV2 X expressing HEK293 cell lines we show AAV2 X significantly boosts rAAV DNA replication/virion production, driven by AAV6 rep/cap as it does the AAV2 rep/cap system. Protein BLAST search for homology between AAV2 X and various AAV Rep78 proteins suggests that X might be AAV8 Rep78-derived and have some of its activities. These data suggest that AAV2 X, and the corresponding X genes of other AAV types/clades, warrant further study.


Assuntos
Dependovirus/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Vírion/metabolismo , Replicação Viral , Linhagem Celular , Biologia Computacional , Replicação do DNA , Dependovirus/genética , Dependovirus/crescimento & desenvolvimento , Células Epiteliais/virologia , Evolução Molecular , Humanos , RNA Polimerase Dependente de RNA/genética , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA