Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(50): e2213157119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36490316

RESUMO

The formation of toxic Amyloid ß-peptide (Aß) oligomers is one of the earliest events in the molecular pathology of Alzheimer's Disease (AD). These oligomers lead to a variety of downstream effects, including impaired neuronal signaling, neuroinflammation, tau phosphorylation, and neurodegeneration, and it is estimated that these events begin 10 to 20 y before the presentation of symptoms. Toxic Aß oligomers contain a nonstandard protein structure, termed α-sheet, and designed α-sheet peptides target this main-chain structure in toxic oligomers independent of sequence. Here we show that a designed α-sheet peptide inhibits the deleterious effects on neuronal signaling and also serves as a capture agent in our soluble oligomer binding assay (SOBA). Pre-incubated synthetic α-sheet-containing Aß oligomers produce strong SOBA signals, while monomeric and ß-sheet protofibrillar Aß do not. α-sheet containing oligomers were also present in cerebrospinal fluid (CSF) from an AD patient versus a noncognitively impaired control. For the detection of toxic oligomers in plasma, we developed a plate coating to increase the density of the capture peptide. The proof of concept was achieved by testing 379 banked human plasma samples. SOBA detected Aß oligomers in patients on the AD continuum, including controls who later progressed to mild cognitive impairment. In addition, SOBA discriminated AD from other forms of dementia, yielding sensitivity and specificity of 99% relative to clinical and neuropathological diagnoses. To explore the broader potential of SOBA, we adapted the assay for a-synuclein oligomers and confirmed their presence in CSF from patients with Parkinson's disease and Lewy body dementia.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Doença de Parkinson/sangue , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/metabolismo , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fragmentos de Peptídeos/metabolismo , Líquido Cefalorraquidiano/química , Doença por Corpos de Lewy/sangue , Doença por Corpos de Lewy/líquido cefalorraquidiano , Doença por Corpos de Lewy/metabolismo , Técnicas Imunoenzimáticas/métodos
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000131

RESUMO

Biofilm-associated microbes are 10-1000 times less susceptible to antibiotics. An emerging treatment strategy is to target the structural components of biofilm to weaken the extracellular matrix without introducing selective pressure. Biofilm-associated bacteria, including Escherichia coli and Staphylococcus aureus, generate amyloid fibrils to reinforce their extracellular matrix. Previously, de novo synthetic α-sheet peptides designed in silico were shown to inhibit amyloid formation in multiple bacterial species, leading to the destabilization of their biofilms. Here, we investigated the impact of inhibiting amyloid formation on antibiotic susceptibility. We hypothesized that combined administration of antibiotics and α-sheet peptides would destabilize biofilm formation and increase antibiotic susceptibility. Two α-sheet peptides, AP90 and AP401, with the same sequence but inverse chirality at every amino acid were tested: AP90 is L-amino acid dominant while AP401 is D-amino acid dominant. For E. coli, both peptides increased antibiotic susceptibility and decreased the biofilm colony forming units when administered with five different antibiotics, and AP401 caused a greater increase in all cases. For S. aureus, increased biofilm antibiotic susceptibility was also observed for both peptides, but AP90 outperformed AP401. A comparison of the peptide effects demonstrates how chirality influences biofilm targeting of gram-negative E. coli and gram-positive S. aureus. The observed increase in antibiotic susceptibility highlights the role amyloid fibrils play in the reduced susceptibility of bacterial biofilms to specific antibiotics. Thus, the co-administration of α-sheet peptides and existing antibiotics represents a promising strategy for the treatment of biofilm infections.


Assuntos
Antibacterianos , Biofilmes , Escherichia coli , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos/farmacologia , Peptídeos/química , Amiloide/química , Amiloide/metabolismo
3.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542452

RESUMO

Amyloid-associated neurodegenerative diseases, including Alzheimer's disease (AD), are characterized by the in-brain accumulation of ß-sheet structured protein aggregates called amyloids. However, neither a disease model nor therapy is established. We review past data and present new, preliminary data and opinions to help solve this problem. The following is the data-derived model/hypothesis. (1) Amyloid-forming proteins have innate immunity functions implemented by conversion to another sheet conformation, α-sheet. (2) In health, α-sheet structured, amyloid-forming proteins inactivate microbes by co-assembly with microbe α-sheets. Amyloid-forming proteins then undergo α-to-ß-sheet conversion. (3) In disease, α-sheet-structured, amyloid-forming proteins over-accumulate and are neuron-toxic. This hypothesis includes formation by virus capsid subunits of α-sheets. In support, we find that 5-10 mM methylene blue (MB) at 54 °C has a hyper-expanding, thinning effect on the phage T4 capsid, as seen by negative stain- and cryo-electron microscopy after initial detection by native gel electrophoresis (AGE). Given the reported mild anti-AD effect of MB, we propose the following corollary hypothesis. (1) Anti-AD MB activity is, at least in part, caused by MB-binding to amyloid α-sheet and (2) MB induces the transition to α-sheet of T4 capsid subunits. We propose using AGE of drug incubated T4 to test for improved anti-AD activity.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Microscopia Crioeletrônica , Amiloide/metabolismo , Proteínas Amiloidogênicas , Modelos Moleculares , Peptídeos beta-Amiloides/metabolismo
4.
Open Biol ; 12(11): 220261, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36416010

RESUMO

Amyloid diseases are linked to protein misfolding whereby the amyloidogenic protein undergoes a conformational change, aggregates and eventually forms amyloid fibrils. While the amyloid fibrils and plaques are hallmarks of these diseases, they typically form late in the disease process and do not correlate with disease. Instead, there is growing evidence that smaller, soluble toxic oligomers form prior and appear to be early triggers of the molecular pathology underlying these diseases. Nearly 20 years ago, we proposed the α-sheet hypothesis after discovering that the early conformational changes observed during atomistic molecular dynamics simulations involve the formation of a non-standard protein structure, α-sheet. Furthermore, we proposed that toxic oligomers contain α-sheet structure and that preferentially targeting this structure could neutralize the toxicity, prevent further aggregation and serve as the basis for early detection of disease. Here, we present the origin of the α-sheet hypothesis and describe α-sheet structure and the corresponding mechanisms of conversion. We discuss experimental studies demonstrating that both mammalian and bacterial amyloid systems form α-sheet oligomers before converting to conventional ß-sheet fibrils. Furthermore, we show that the process can be inhibited with de novo designed α-sheet peptides complementary to the structure in the toxic oligomers.


Assuntos
Amiloide , Proteínas Amiloidogênicas , Animais , Amiloide/química , Conformação Proteica em Folha beta , Simulação de Dinâmica Molecular , Peptídeos/química , Mamíferos
5.
J Alzheimers Dis ; 88(2): 429-438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662126

RESUMO

Protein amyloid-ß (Aß) oligomers with ß-sheet-like backbone (ß-structured) form extracellular amyloid plaques associated with Alzheimer's disease (AD). However, the relationship to AD is not known. Some investigations suggest that the toxic Aß component has α-sheet-like backbone (α-structured) subsequently detoxified by intracellular α-to-ß conversion before plaque formation. Our objective is to compare this latter hypothesis with observations made by electron microscopy of thin sections of AD-cerebral cortex. We observe irregular, 200-2,000 nm, intracellular, lipofuscin-like inclusions. Some are light-staining and smooth. Others are dark-staining and made granular by fibers that are usually overlapping and are sometimes individually seen. Aspects unusual for lipofuscin include 1) dark and light inclusions interlocking as though previously one inclusion, 2) dark inclusion-contained 2.6 nm thick sub-fibers that are bent as though α-structured, and 3) presence of inclusions in lysosomes and apparent transfer of dark inclusion material to damaged, nearby lysosomal membranes. These data suggest the following additions to α-structure-based hypotheses: 1) Lipofuscin-associated, α-structured protein toxicity to lysosomal membranes is in the chain of AD causation; 2) α-to-ß detoxification of α-structured protein occurs in lipofuscin and causes dark-to-light transition that, when incomplete, is the origin of cell-to-cell transmission essential for development of AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Lipofuscina , Lisossomos/metabolismo , Placa Amiloide/metabolismo
6.
Viruses ; 10(6)2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882754

RESUMO

Studies of phage capsids have at least three potential interfaces with nanomedicine. First, investigation of phage capsid states potentially will provide therapies targeted to similar states of pathogenic viruses. Recently detected, altered radius-states of phage T3 capsids include those probably related to intermediate states of DNA injection and DNA packaging (dynamic states). We discuss and test the idea that some T3 dynamic states include extensive α-sheet in subunits of the capsid’s shell. Second, dynamic states of pathogenic viral capsids are possible targets of innate immune systems. Specifically, α-sheet-rich innate immune proteins would interfere with dynamic viral states via inter-α-sheet co-assembly. A possible cause of neurodegenerative diseases is excessive activity of these innate immune proteins. Third, some phage capsids appear to have characteristics useful for improved drug delivery vehicles (DDVs). These characteristics include stability, uniformity and a gate-like sub-structure. Gating by DDVs is needed for (1) drug-loading only with gate opened; (2) closed gate-DDV migration through circulatory systems (no drug leakage-generated toxicity); and (3) drug release only at targets. A gate-like sub-structure is the connector ring of double-stranded DNA phage capsids. Targeting to tumors of phage capsid-DDVs can possibly be achieved via the enhanced permeability and retention effect.


Assuntos
Antineoplásicos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Portadores de Fármacos/metabolismo , Nanomedicina/métodos , Bacteriófago T3/química , Bacteriófago T3/fisiologia , Humanos , Ligação Proteica , Conformação Proteica
7.
Elife ; 3: e01681, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027691

RESUMO

Previous studies suggest that the toxic soluble-oligomeric form of different amyloid proteins share a common backbone conformation, but the amorphous nature of this oligomer prevents its structural characterization by experiment. Based on molecular dynamics simulations we proposed that toxic intermediates of different amyloid proteins adopt a common, nonstandard secondary structure, called α-sheet. Here we report the experimental characterization of peptides designed to be complementary to the α-sheet conformation observed in the simulations. We demonstrate inhibition of aggregation in two different amyloid systems, ß-amyloid peptide (Aß) and transthyretin, by these designed α-sheet peptides. When immobilized the α-sheet designs preferentially bind species from solutions enriched in the toxic conformer compared with non-aggregated, nontoxic species or mature fibrils. The designs display characteristic spectroscopic signatures distinguishing them from conventional secondary structures, supporting α-sheet as a structure involved in the toxic oligomer stage of amyloid formation and paving the way for novel therapeutics and diagnostics.DOI: http://dx.doi.org/10.7554/eLife.01681.001.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Pré-Albumina/metabolismo , Multimerização Proteica/efeitos dos fármacos , Simulação de Dinâmica Molecular , Agregados Proteicos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA