Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(5): 1064-1081.e10, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36948193

RESUMO

The recent revolution in tissue-resident macrophage biology has resulted largely from murine studies performed in C57BL/6 mice. Here, using both C57BL/6 and BALB/c mice, we analyze immune cells in the pleural cavity. Unlike C57BL/6 mice, naive tissue-resident large-cavity macrophages (LCMs) of BALB/c mice failed to fully implement the tissue-residency program. Following infection with a pleural-dwelling nematode, these pre-existing differences were accentuated with LCM expansion occurring in C57BL/6, but not in BALB/c mice. While infection drove monocyte recruitment in both strains, only in C57BL/6 mice were monocytes able to efficiently integrate into the resident pool. Monocyte-to-macrophage conversion required both T cells and interleukin-4 receptor alpha (IL-4Rα) signaling. The transition to tissue residency altered macrophage function, and GATA6+ tissue-resident macrophages were required for host resistance to nematode infection. Therefore, during tissue nematode infection, T helper 2 (Th2) cells control the differentiation pathway of resident macrophages, which determines infection outcome.


Assuntos
Filariose , Filarioidea , Infecções por Nematoides , Camundongos , Animais , Filarioidea/fisiologia , Células Th2 , Monócitos , Cavidade Pleural , Camundongos Endogâmicos C57BL , Macrófagos/fisiologia , Diferenciação Celular , Camundongos Endogâmicos BALB C
2.
Semin Immunol ; 53: 101526, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34802871

RESUMO

Macrophages are innate immune cells with essential roles in host defense, inflammation, immune regulation and repair. During infection with multicellular helminth parasites, macrophages contribute to pathogen trapping and killing as well as to tissue repair and the resolution of type 2 inflammation. Macrophages produce a broad repertoire of effector molecules, including enzymes, cytokines, chemokines and growth factors that govern anti-helminth immunity and repair of parasite-induced tissue damage. Helminth infection and the associated type 2 immune response induces an alternatively activated macrophage (AAM) phenotype that - beyond driving host defense - prevents aberrant Th2 cell activation and type 2 immunopathology. The immune regulatory potential of macrophages is exploited by helminth parasites that induce the production of anti-inflammatory mediators such as interleukin 10 or prostaglandin E2 to evade host immunity. Here, we summarize current insights into the mechanisms of macrophage-mediated host defense and repair during helminth infection and highlight recent progress on the immune regulatory crosstalk between macrophages and helminth parasites. We also point out important remaining questions such as the translation of findings from murine models to human settings of helminth infection as well as long-term consequences of helminth-induced macrophage reprogramming for subsequent host immunity.


Assuntos
Helmintos , Macrófagos , Animais , Quimiocinas , Citocinas , Helmintos/fisiologia , Humanos , Inflamação , Ativação de Macrófagos , Camundongos
3.
J Infect Dis ; 229(4): 1215-1228, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38016013

RESUMO

BACKGROUND: There is an increase in the global incidence of allergies. The hygiene hypothesis and the old friend hypothesis reveal that helminths are associated with the prevalence of allergic diseases. The therapeutic potential of Trichinella spiralis is recognized; however, the stage at which it exerts its immunomodulatory effect is unclear. METHODS: We evaluated the differentiation of bone marrow-derived macrophages stimulated with T spiralis excretory-secretory products. Based on an ovalbumin-induced murine model, T spiralis was introduced during 3 allergy phases. Cytokine levels and immune cell subsets in the lung, spleen, and peritoneal cavity were assessed. RESULTS: We found that T spiralis infection reduced lung inflammation, increased anti-inflammatory cytokines, and decreased Th2 cytokines and alarms. Recruitment of eosinophils, CD11b+ dendritic cells, and interstitial macrophages to the lung was significantly suppressed, whereas Treg cells and alternatively activated macrophages increased in T spiralis infection groups vs the ovalbumin group. Notably, when T spiralis was infected prior to ovalbumin challenge, intestinal adults promoted proportions of CD103+ dendritic cells and alveolar macrophages. CONCLUSIONS: T spiralis strongly suppressed type 2 inflammation, and adults maintained lung immune homeostasis.


Assuntos
Hipersensibilidade , Trichinella spiralis , Camundongos , Humanos , Animais , Trichinella spiralis/metabolismo , Ovalbumina/metabolismo , Inflamação , Citocinas/metabolismo
4.
Eur J Immunol ; 53(10): e2350475, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37452620

RESUMO

Alveolar macrophages (alvMs) play an important role for maintenance of lung function by constant removal of cellular debris in the alveolar space. They further contribute to defense against microbial or viral infections and limit tissue damage during acute lung injury. alvMs arise from embryonic progenitor cells, seed the alveoli before birth, and have life-long self-renewing capacity. However, recruited monocytes may also help to restore the alvM population after depletion caused by toxins or influenza virus infection. At present, the population dynamics and cellular plasticity of alvMs during allergic lung inflammation is poorly defined. To address this point, we used a mouse model of Aspergillus fumigatus-induced allergic lung inflammation and observed that Th2-derived IL-4 and IL-13 caused almost complete disappearance of alvMs. This effect required STAT6 expression in alvMs and also occurred in various other settings of type 2 immunity-mediated lung inflammation or administration of IL-4 complexes to the lung. In addition, Th2 cells promoted conversion of alvMs to alternatively activated macrophages and multinucleated giant cells. Given the well-established role of alvMs for maintenance of lung function, this process may have implications for resolution of inflammation and tissue homeostasis in allergic asthma.


Assuntos
Asma , Pneumonia , Eosinofilia Pulmonar , Camundongos , Animais , Macrófagos Alveolares , Interleucina-4/metabolismo , Pulmão/metabolismo , Asma/metabolismo , Inflamação/metabolismo , Pneumonia/metabolismo
5.
Eur J Immunol ; 51(10): 2417-2429, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34272880

RESUMO

Acumulation of oxidized membrane lipids ultimately results in ferroptotic cell death, which can be prevented by the selenoenzyme glutathione peroxidase 4 (Gpx4). In vivo conditions promoting ferroptosis and susceptible cell types are still poorly defined. In this study, we analyzed the conditional deletion of Gpx4 in mice specifically in the myeloid cell lineages. Surprisingly, development and maintenance of LysM+ macrophages and neutrophils, as well as CD11c+ monocyte-derived macrophages and dendritic cells were unaffected in the absence of Gpx4. Gpx4-deficient macrophages mounted an unaltered proinflammatory cytokine response including IL-1ß production following stimulation with TLR ligands and activation of several inflammasomes. Accordingly, Gpx4fl/fl LysM-cre mice were protected from bacterial and protozoan infections. Despite having the capacity to differentiate to alternatively activated macrophages (AAM), these cells lacking Gpx4 triggered ferroptosis both in vitro and in vivo following IL-4 overexpression and nematode infection. Exposure to nitric oxide restored viability of Gpx4-deficient AAM, while inhibition of iNOS in proinflammatory macrophages had no effect. These data together suggest that activation cues of tissue macrophages determine sensitivity to lipid peroxidation and ferroptotic cell death.


Assuntos
Ferroptose , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Biomarcadores , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Ferroptose/genética , Ferroptose/imunologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Peroxidação de Lipídeos , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/imunologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
6.
Cancer Immunol Immunother ; 71(11): 2677-2689, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35353239

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related mortality; however, effective immunotherapy strategies are limited because of the immunosuppressive tumor microenvironment. Macrophages are essential components of the HCC microenvironment and are related to poor prognosis. Here, we evaluated the attributes of paracancer tissues in tumor immunity and progression using public databases. Based on the abundance of immune cells estimated by CIBERSORT, we performed weighted gene co-expression network analysis and found a specific module associated with M2 macrophages. Through analyzing interaction networks using Cytoscape and public datasets, we identified oncoprotein-induced transcript 3 (OIT3) as a novel marker of M2 macrophages. Overexpression of OIT3 remodeled immune features and reprogrammed the metabolism of M2 macrophages. Moreover, compared with wildtype macrophages, OIT3-overexpressing macrophages further enhanced the migration and invasion of co-cultured cancer cells. Additionally, OIT3-overexpressing macrophages promoted tumorigenesis and cancer development in vivo. Taken together, the findings demonstrate that OIT3 is a novel biomarker of alternatively activated macrophages and facilitates HCC metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/patologia , Macrófagos , Proteínas de Membrana , Proteínas Oncogênicas/metabolismo , Microambiente Tumoral
7.
Cell Biol Int ; 46(10): 1539-1556, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35842768

RESUMO

The activation of immune cells in response to stimuli present in their microenvironment is regulated by their metabolic profile. Unlike the signal transduction events, which overlap to a huge degree in diverse cellular processes, the metabolome of a cell reflects a more precise picture of cell physiology and function. Different factors governing the cellular metabolome include receptor signaling, macro and micronutrients, normoxic and hypoxic conditions, energy needs, and biomass demand. Macrophages have enormous plasticity and can perform diverse functions depending upon their phenotypic state. This review presents recent updates on the cellular metabolome and molecular patterns associated with M1 and M2 macrophages, also termed "classically activated macrophages" and "alternatively activated macrophages," respectively. M1 macrophages are proinflammatory in nature and predominantly Th1-specific immune responses induce their polarization. On the contrary, M2 macrophages are anti-inflammatory in nature and primarily participate in Th2-specific responses. Interestingly, the same macrophage cell can adapt to the M1 or M2 phenotype depending upon the clues from its microenvironment. We elaborate on the various tissue niche-specific factors, which govern macrophage metabolism and heterogeneity. Furthermore, the current review provides an in-depth account of deregulated macrophage metabolism associated with pathological disorders such as cancer, obesity, and atherosclerosis. We further highlight significant differences in various metabolic pathways governing the cellular bioenergetics and their impact on macrophage effector functions and associated disorders.


Assuntos
Inflamação/patologia , Macrófagos/citologia , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Transdução de Sinais
8.
J Pathol ; 248(1): 9-15, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30684265

RESUMO

Acute kidney injury (AKI) remains a global challenge and, despite the availability of dialysis and transplantation, can be fatal. Those that survive an AKI are at increased risk of developing chronic kidney disease and end stage renal failure. Understanding the fundamental mechanisms underpinning the pathophysiology of AKI is critical for developing novel strategies for diagnosis and treatment. A growing body of evidence indicates that amplifying type 2 immunity may have therapeutic potential in kidney injury and disease. Of particular interest are the recently described subset of innate immune cells, termed group 2 innate lymphoid cells (ILCs). Group 2 ILCs are crucial tissue-resident immune cells that maintain homeostasis and regulate tissue repair at multiple organ sites, including the kidney. They are critical mediators of type 2 immune responses following infection and injury. The existing literature suggests that activation of group 2 ILCs and production of a local type 2 immune milieu is protective against renal injury and associated pathology. In this review, we describe the emerging role for group 2 ILCs in renal homeostasis and repair. We provide an in-depth discussion of the most recent literature that use preclinical models of AKI and assess the therapeutic effect of modulating group 2 ILC function. We debate the potential for targeting these cells as novel cellular therapies in AKI and discuss the implications for future studies and translation. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Injúria Renal Aguda/imunologia , Injúria Renal Aguda/terapia , Subpopulações de Linfócitos/imunologia , Imunidade Adaptativa/imunologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Modelos Animais de Doenças , Humanos , Imunidade Inata/imunologia , Interleucina-33/uso terapêutico , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos/transplante , Camundongos
9.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121008

RESUMO

Background: Ulcerative colitis (UC) is characterized by altered chromogranin-A (CHGA), alternatively activated macrophages (M2) and intestinal epithelial cells (IECs). We previously demonstrated that CHGA is implicated in colitis progression by regulating the macrophages. Here, we investigated the interplay between CHGA, M2, tight junctions (TJ) and IECs in an inflammatory environment. Methods: Correlations between CHGA mRNA expression of and TJ proteins mRNA expressions of (Occludin [OCLN], zonula occludens-1 [ZO1], Claudin-1 [CLDN1]), epithelial associated cytokines (interleukin [IL]-8, IL-18), and collagen (COL1A2) were determined in human colonic mucosal biopsies isolated from active UC and healthy patients. Acute UC-like colitis (5% dextran sulphate sodium [DSS], five days) was induced in Chga-C57BL/6-deficient (Chga-/-) and wild type (Chga+/+) mice. Col1a2 TJ proteins, Il-18 mRNA expression and collagen deposition were determined in whole colonic sections. Naïve Chga-/- and Chga+/+ peritoneal macrophages were isolated and exposed six hours to IL-4/IL-13 (20 ng/mL) to promote M2 and generate M2-conditioned supernatant. Caco-2 epithelial cells were cultured in the presence of Chga-/- and Chga+/+ non- or M2-conditioned supernatant for 24 h then exposed to 5% DSS for 24 h, and their functional properties were assessed. Results: In humans, CHGA mRNA correlated positively with COL1A2, IL-8 and IL-18, and negatively with TJ proteins mRNA markers. In the experimental model, the deletion of Chga reduced IL-18 mRNA and its release, COL1A2 mRNA and colonic collagen deposition, and maintained colonic TJ proteins. Chga-/- M2-conditioned supernatant protected caco-2 cells from DSS and oxidative stress injuries by improving caco-2 cells functions (proliferation, viability, wound healing) and by decreasing the release of IL-8 and IL-18 and by maintaining the levels of TJ proteins, and when compared with Chga+/+ M2-conditioned supernatant. Conclusions: CHGA contributes to the development of intestinal inflammation through the regulation of M2 and epithelial cells. Targeting CHGA may lead to novel biomarkers and therapeutic strategies in UC.


Assuntos
Cromogranina A/genética , Colite Ulcerativa/imunologia , Citocinas/genética , Macrófagos/imunologia , Proteínas de Junções Íntimas/genética , Animais , Células CACO-2 , Estudos de Casos e Controles , Células Cultivadas , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Interleucina-18/genética , Interleucina-8/genética , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL
10.
J Cell Mol Med ; 23(2): 841-851, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30407737

RESUMO

Alternatively activated macrophages (M2) have regenerative properties and shown promise as cell therapy in chronic kidney disease. However, M2 plasticity is one of the major hurdles to overcome. Our previous studies showed that genetically modified macrophages stabilized by neutrophil gelatinase-associated lipocalin (NGAL) were able to preserve their M2 phenotype. Nowadays, little is known about M2 macrophage effects in diabetic kidney disease (DKD). The aim of the study was to investigate the therapeutic effect of both bone marrow-derived M2 (BM-фM2) and ф-NGAL macrophages in the db/db mice. Seventeen-week-old mice with established DKD were divided into five treatment groups with their controls: D+BM-фM2; D+ф-BM; D+ф-NGAL; D+ф-RAW; D+SHAM and non-diabetic (ND) (db/- and C57bl/6J) animals. We infused 1 × 106 macrophages twice, at baseline and 2 weeks thereafter. BM-фM2 did not show any therapeutic effect whereas ф-NGAL significantly reduced albuminuria and renal fibrosis. The ф-NGAL therapy increased the anti-inflammatory IL-10 and reduced some pro-inflammatory cytokines, reduced the proportion of M1 glomerular macrophages and podocyte loss and was associated with a significant decrease of renal TGF-ß1. Overall, our study provides evidence that ф-NGAL macrophage cell therapy has a therapeutic effect on DKD probably by modulation of the renal inflammatory response caused by the diabetic milieu.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Diabetes Mellitus Experimental/terapia , Nefropatias Diabéticas/terapia , Lipocalina-2/genética , Macrófagos/transplante , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Apoptose , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Feminino , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Lipocalina-2/metabolismo , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Podócitos/metabolismo , Podócitos/patologia , Cultura Primária de Células , Células RAW 264.7 , Transdução de Sinais , Transdução Genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Transgenes
11.
BMC Immunol ; 20(1): 47, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823769

RESUMO

BACKGROUND: Expansion of type 2 innate lymphoid cells (ILC2s) in hypercholesterolaemic mice protects against atherosclerosis while different ILC2 subsets have been described (natural, inflammatory) based on their suppression of tumorigenicity 2 (ST2) and killer-cell lectin like receptor G1 (KLRG1) expression. The aim of the current study is to characterize the interleukin 25 (IL25)-induced splenic ILC2 population (Lin-CD45+IL17RB+ICOS+IL7raintermediate) and address its direct role in experimental atherosclerosis by its adoptive transfer to hypercholesterolaemic apolipoprotein E deficient (apoE-/-) mice. RESULTS: Immunomagnetically enriched, FACS-sorted ILC2s from the spleens of IL-25 treated apoE-/- mice were stained for KLRG1 and ST2 directly upon cell obtainment or in vitro cell expansion for flow cytometric analysis. IL25-induced splenic ILC2s express high levels of both KLRG1 and ST2. However, both markers are downregulated upon in vitro cell expansion. In vitro expanded splenic ILC2s were intraperitoneally transferred to apoE-/- recipients on high fat diet. ApoE-/- mice that received in vitro expanded splenic ILC2s had decreased lipid content in subvalvular heart and brachiocephalic artery (BCA) plaques accompanied by increased peritoneal B1 cells, activated eosinophils and alternatively activated macrophages (AAMs) as well as anti-phosphorylcholine (PC) immunoglobulin (Ig) M in plasma. CONCLUSIONS: With the current data we designate the IL25-induced ILC2 population to decrease the lipid content of atherosclerotic lesions in apoE-/- mice and we directly link the induction of B1 cells and the atheroprotective anti-PC IgM antibodies with ILC2s.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/etiologia , Aterosclerose/metabolismo , Imunidade Inata , Lipídeos/sangue , Linfócitos/imunologia , Linfócitos/metabolismo , Transferência Adotiva , Animais , Aterosclerose/patologia , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Imunofenotipagem , Camundongos , Camundongos Knockout
12.
J Allergy Clin Immunol ; 139(6): 1946-1956, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27746237

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is progressive and rapidly fatal. Improved understanding of pathogenesis is required to prosper novel therapeutics. Epigenetic changes contribute to IPF; therefore, microRNAs may reveal novel pathogenic pathways. OBJECTIVES: We sought to determine the regulatory role of microRNA (miR)-155 in the profibrotic function of murine lung macrophages and fibroblasts, IPF lung fibroblasts, and its contribution to experimental pulmonary fibrosis. METHODS: Bleomycin-induced lung fibrosis in wild-type and miR-155-/- mice was analyzed by histology, collagen, and profibrotic gene expression. Mechanisms were identified by in silico and molecular approaches and validated in mouse lung fibroblasts and macrophages, and in IPF lung fibroblasts, using loss-and-gain of function assays, and in vivo using specific inhibitors. RESULTS: miR-155-/- mice developed exacerbated lung fibrosis, increased collagen deposition, collagen 1 and 3 mRNA expression, TGF-ß production, and activation of alternatively activated macrophages, contributed by deregulation of the miR-155 target gene the liver X receptor (LXR)α in lung fibroblasts and macrophages. Inhibition of LXRα in experimental lung fibrosis and in IPF lung fibroblasts reduced the exacerbated fibrotic response. Similarly, enforced expression of miR-155 reduced the profibrotic phenotype of IPF and miR-155-/- fibroblasts. CONCLUSIONS: We describe herein a molecular pathway comprising miR-155 and its epigenetic LXRα target that when deregulated enables pathogenic pulmonary fibrosis. Manipulation of the miR-155/LXR pathway may have therapeutic potential for IPF.


Assuntos
Receptores X do Fígado/genética , MicroRNAs/genética , Fibrose Pulmonar/genética , Animais , Bleomicina , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/metabolismo , Humanos , Receptores X do Fígado/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo
13.
Cell Physiol Biochem ; 42(5): 1945-1960, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28793288

RESUMO

BACKGROUND/AIMS: Alternatively activated macrophages (AAM) have regenerative and anti-inflammatory characteristics. Here, we sought to evaluate whether AAM cell therapy reduces renal inflammation and fibrosis in the unilateral ureteral obstruction (UUO) mice model. METHODS: We stabilized macrophages by adenoviral vector NGAL (Neutrophil gelatinase-associated lipocalin-2) and infused them into UUO mice. To ascertain whether macrophages were capable of reaching the obstructed kidney, macrophages were stained and detected by in vivo cell tracking. RESULTS: We demonstrated that some infused macrophages reached the obstructed kidney and that infusion of macrophages overexpressing NGAL was associated with reduced kidney interstitial fibrosis and inflammation. This therapeutic effect was mainly associated with the phenotype and function preservation of the transferred macrophages isolated from the obstructed kidney Conclusions: Macrophage plasticity is a major hurdle for achieving macrophage therapy success in chronic nephropathies and could be overcome by transferring lipocalin-2.


Assuntos
Rim/patologia , Lipocalina-2/metabolismo , Macrófagos/metabolismo , Adenoviridae/genética , Animais , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Antígenos CD40/genética , Antígenos CD40/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lipocalina-2/genética , Macrófagos/citologia , Macrófagos/transplante , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
14.
J Pathol ; 239(4): 411-25, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27135434

RESUMO

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) have been associated with fibrotic lung disease, although exactly how they modulate this process remains unclear. Here we investigated the role of GRP78, the main UPR regulator, in an experimental model of lung injury and fibrosis. Grp78(+/-) , Chop(-/-) and wild type C57BL6/J mice were exposed to bleomycin by oropharyngeal intubation and lungs were examined at days 7 and 21. We demonstrate here that Grp78(+/-) mice were strongly protected from bleomycin-induced fibrosis, as shown by immunohistochemical analysis, collagen content and lung function measurements. In the inflammatory phase of this model, a reduced number of lung macrophages associated with an increased number of TUNEL-positive cells were observed in Grp78(+/-) mice. Dual immunohistochemical and in situ hybridization experiments showed that the macrophage population from the protected Grp78(+/-) mice was also strongly positive for cleaved caspase-3 and Chop mRNA, respectively. In contrast, the administration of bleomycin to Chop(-/-) mice resulted in increased quasi-static elastance and extracellular matrix deposition associated with an increased number of parenchymal arginase-1-positive macrophages that were negative for cleaved caspase-3. The data presented indicate that the UPR is activated in fibrotic lung tissue and strongly localized to macrophages. GRP78- and CHOP-mediated macrophage apoptosis was found to protect against bleomycin-induced fibrosis. Overall, we demonstrate here that the fibrotic response to bleomycin is dependent on GRP78-mediated events and provides evidence that macrophage polarization and apoptosis may play a role in this process. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Apoptose/genética , Proteínas de Choque Térmico/metabolismo , Macrófagos Alveolares/metabolismo , Fibrose Pulmonar/metabolismo , Fator de Transcrição CHOP/metabolismo , Animais , Bleomicina , Caspase 3/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico/genética , Macrófagos Alveolares/patologia , Camundongos , Camundongos Knockout , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fator de Transcrição CHOP/genética , Resposta a Proteínas não Dobradas/genética
15.
Exp Cell Res ; 347(1): 1-13, 2016 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-26500109

RESUMO

The mechanisms by which macrophages control the inflammatory response, wound healing, biomaterial-interactions, and tissue regeneration appear to be related to their activation/differentiation states. Studies of macrophage behavior in vitro can be useful for elucidating their mechanisms of action, but it is not clear to what extent the source of macrophages affects their apparent behavior, potentially affecting interpretation of results. Although comparative studies of macrophage behavior with respect to cell source have been conducted, there has been no direct comparison of the three most commonly used cell sources: murine bone marrow, human monocytes from peripheral blood (PB), and the human leukemic monocytic cell line THP-1, across multiple macrophage phenotypes. In this study, we used multivariate discriminant analysis to compare the in vitro expression of genes commonly chosen to assess macrophage phenotype across all three sources of macrophages, as well as those derived from induced pluripotent stem cells (iPSCs), that were polarized towards four distinct phenotypes using the same differentiation protocols: M(LPS,IFN) (aka M1), M(IL4,IL13) (aka M2a), M(IL10) (aka M2c), and M(-) (aka M0) used as control. Several differences in gene expression trends were found among the sources of macrophages, especially between murine bone marrow-derived and human blood-derived M(LPS,IFN) and M(IL4,IL13) macrophages with respect to commonly used phenotype markers like CCR7 and genes associated with angiogenesis and tissue regeneration like FGF2 and MMP9. We found that the genes with the most similar patterns of expression among all sources were CXCL-10 and CXCL-11 for M(LPS,IFN) and CCL17 and CCL22 for M(IL4,IL13). Human PB-derived macrophages and human iPSC-derived macrophages showed similar gene expression patterns among the groups and genes studied here, suggesting that iPSC-derived monocytes have the potential to be used as a reliable cell source of human macrophages for in vitro studies. These findings could help select appropriate markers when testing macrophage behavior in vitro and highlight those markers that may confuse interpretation of results from experiments employing macrophages from different sources.


Assuntos
Polaridade Celular/genética , Perfilação da Expressão Gênica , Macrófagos/citologia , Macrófagos/metabolismo , Animais , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Polaridade Celular/efeitos dos fármacos , Análise Discriminante , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/farmacologia , Análise dos Mínimos Quadrados , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Fenótipo
16.
Am J Respir Cell Mol Biol ; 55(4): 467-475, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27248771

RESUMO

The immune responses of type 2 T helper cells (Th2) play an important role in asthma and promote the differentiation of alternatively activated (M2) macrophages. M2 macrophages have been increasingly understood to contribute to Th2 immunity. We hypothesized that M2 macrophages are altered in asthma and modulate Th2 responses. The aim of this study was to characterize the phenotype and function of human monocyte-derived M2 and bronchoalveolar lavage fluid (BALF) macrophages from healthy control subjects and subjects with asthma. Phenotypic characteristics and effector function of M2 macrophages were examined using monocyte-derived and BALF macrophages obtained from subjects with asthma (n = 28) and healthy volunteers (n = 9) by flow cytometry and quantitative PCR. Resting monocyte-derived (M0) and M2 macrophages were generated by the addition of macrophage colony-stimulating factor or macrophage colony-stimulating factor plus IL-4, respectively. M2 macrophage cytokine expression and their impact on dendritic and CD4+ T cell activation were examined in vitro. High levels of CD206 and major histocompatibility complex class II expression identify macrophages with an M2 phenotype that are increased 2.9-fold in the BALF of subjects with asthma compared with control subjects. M2 macrophages have elevated IL-6, IL-10, and IL-12p40 production compared with conventional macrophages and modulate dendritic and CD4+ T cell interactions. Histamine receptor 1 and E-cadherin expression identify M2 macrophage subsets associated with increased airflow obstruction. M2 macrophages have a distinct cell surface and effector phenotype and are found in increased numbers in subjects with asthma. These findings suggest that M2 macrophages may play an important role in allergic asthma through their bidirectional interactions with immune and structural cells, and inflammatory mediators.

17.
FASEB J ; 29(1): 50-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25318478

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal, fibroproliferative disease. Pulmonary hypertension (PH) can develop secondary to IPF and increase mortality. Alternatively, activated macrophages (AAMs) contribute to the pathogenesis of both IPF and PH. Here we hypothesized that adenosine signaling through the ADORA2B on AAMs impacts the progression of these disorders and that conditional deletion of ADORA2B on myeloid cells would have a beneficial effect in a model of these diseases. Conditional knockout mice lacking ADORA2B on myeloid cells (Adora2B(f/f)-LysM(Cre)) were exposed to the fibrotic agent bleomycin (BLM; 0.035 U/g body weight, i.p.). At 14, 17, 21, 25, or 33 d after exposure, SpO2, bronchoalveolar lavage fluid (BALF), and histologic analyses were performed. On day 33, lung function and cardiovascular analyses were determined. Markers for AAM and mediators of fibrosis and PH were assessed. Adora2B(f/f)-LysM(Cre) mice presented with attenuated fibrosis, improved lung function, and no evidence of PH compared with control mice exposed to BLM. These findings were accompanied by reduced expression of CD206 and arginase-1, markers for AAMs. A 10-fold reduction in IL-6 and a 5-fold decrease in hyaluronan, both linked to lung fibrosis and PH, were also observed. These data suggest that activation of the ADORA2B on macrophages plays an active role in the pathogenesis of lung fibrosis and PH.


Assuntos
Hipertensão Pulmonar/etiologia , Fibrose Pulmonar Idiopática/etiologia , Receptor A2B de Adenosina/deficiência , Animais , Bleomicina/toxicidade , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/fisiopatologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/fisiologia , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/fisiologia
18.
Am J Respir Cell Mol Biol ; 53(5): 676-88, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25870903

RESUMO

Macrophages are dynamic cells that mature under the influence of signals from the local microenvironment into either classically (M1) or alternatively (M2) activated macrophages with specific functional and phenotypic properties. Although the phenotypic identification of M1 and M2 macrophages is well established in mice, this is less clear for human macrophages. In addition, the persistence and reversibility of polarized human phenotypes is not well established. Human peripheral blood monocytes were differentiated into uncommitted macrophages (M0) and then polarized to M1 and M2 phenotypes using LPS/IFN-γ and IL-4/IL-13, respectively. M1 and M2 were identified as CD64(+)CD80(+) and CD11b(+)CD209(+), respectively, by flow cytometry. Polarized M1 cells secreted IP-10, IFN-γ, IL-8, TNF-α, IL-1ß, and RANTES, whereas M2 cells secreted IL-13, CCL17, and CCL18. Functionally, M2 cells were highly endocytic. In cytokine-deficient medium, the polarized macrophages reverted back to the M0 state within 12 days. If previously polarized macrophages were given the alternative polarizing stimulus after 6 days of resting in cytokine-deficient medium, a switch in polarization was seen (i.e., M1 macrophages switched to M2 and expressed CD11b(+)CD209(+) and vice versa). In summary, we report phenotypic identification of human M1 and M2 macrophages, their functional characteristics, and their ability to be reprogrammed given the appropriate stimuli.


Assuntos
Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Diferenciação Celular , Quimiocina CCL17/biossíntese , Quimiocina CCL17/metabolismo , Quimiocina CCL5/biossíntese , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/biossíntese , Quimiocina CXCL10/metabolismo , Quimiocinas CC/biossíntese , Quimiocinas CC/metabolismo , Endocitose/efeitos dos fármacos , Endocitose/imunologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Humanos , Imunofenotipagem , Interferon gama/farmacologia , Interleucina-13/farmacologia , Interleucina-1beta/biossíntese , Interleucina-1beta/metabolismo , Interleucina-4/farmacologia , Interleucina-8/biossíntese , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/imunologia , Monócitos/citologia , Monócitos/imunologia , Cultura Primária de Células , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
19.
Eur J Immunol ; 44(11): 3353-67, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25124254

RESUMO

Alternatively activated or M2 macrophages have been reported to protect mice from intestinal inflammation, but the mechanism of protection has not been elucidated. In this study, we demonstrate that mice deficient in the p110δ catalytic subunit activity of class I phosphatidylinositol 3-kinase (PI3Kp110δ) have increased clinical disease activity and histological damage during dextran sodium sulfate (DSS) induced colitis. Increased disease severity in PI3Kp110δ-deficient mice is dependent on professional phagocytes and correlates with reduced numbers of arginase I+ M2 macrophages in the colon and increased production of inflammatory nitric oxide. We further demonstrate that PI3Kp110δ-deficient macrophages are defective in their ability to induce arginase I when skewed to an M2 phenotype with IL-4. Importantly, adoptive transfer of IL-4-treated macrophages derived from WT mice, but not those from PI3Kp110δ-deficient mice, protects mice during DSS-induced colitis. Moreover, M2 macrophages mediated protection is lost when mice are cotreated with inhibitors that block arginase activity or during adoptive transfer of arginase I deficient M2 macrophages. Taken together, our data demonstrate that arginase I activity is required for M2 macrophages mediated protection during DSS-induced colitis in PI3Kp110δ-deficient mice.


Assuntos
Arginase/biossíntese , Colite/patologia , Macrófagos/enzimologia , Macrófagos/imunologia , Fosfatidilinositol 3-Quinases/genética , Transferência Adotiva , Animais , Arginase/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases , Colite/induzido quimicamente , Colite/imunologia , Colo/imunologia , Colo/patologia , Sulfato de Dextrana , Inflamação/imunologia , Inflamação/patologia , Interleucina-4/farmacologia , Ativação de Macrófagos/imunologia , Macrófagos/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico/biossíntese , Fosfatidilinositol 3-Quinases/deficiência
20.
Parasite Immunol ; 37(6): 304-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25869527

RESUMO

Although helminth infections are characteristically associated with Th2-mediated responses that include the production of the prototypical cytokines IL-4, IL-5 and IL-13 by CD4(+) cells, the production of IgE, peripheral blood eosinophilia and mucus production in localized sites, these responses are largely attenuated when helminth infections become less acute. This modulation of the immune response that occurs with chronic helminth infection is often induced by molecules secreted by helminth parasites, by non-Th2 regulatory CD4(+) cells, and by nonclassical B cells, macrophages and dendritic cells. This review will focus on those parasite- and host-mediated mechanisms underlying the modulated T-cell response that occurs as the default in chronic helminth infections.


Assuntos
Imunomodulação , Células Th2/imunologia , Animais , Citocinas/imunologia , Células Dendríticas/imunologia , Helmintíase/imunologia , Helmintíase/parasitologia , Helmintos/classificação , Helmintos/crescimento & desenvolvimento , Helmintos/imunologia , Interações Hospedeiro-Parasita , Humanos , Evasão da Resposta Imune , Macrófagos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA